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A LOWER BOUND FOR THE DIAMETER OF SOLUTIONS
TO THE RICCI FLOW WITH NONZERO H1(Mn; R)

Tom Ilmanen and Dan Knopf

1. Introduction

Consider the Ricci flow

∂

∂t
g = −2 Rc(g), 0 ≤ t < T,(1.1)

of a metric g on S1 × S2. Our intuition suggest that no matter how wild the
metric is, the Ricci curvature in the S1 direction should more or less average out
to zero, so that the distance around the S1 should tend not to decrease.

In this paper, we substantiate this idea by proving the following more general
theorem. Given a Riemannian manifold (Mn, g) and a homology element α ∈
H1(Mn; Z), let Lα(g) denote the infimum of the lengths measured with respect
to g of all curves representing α.

Theorem 1. If (Mn, g(t) : 0 ≤ t < T ) is a compact solution of the Ricci
flow and α ∈ H1(Mn; Z) is an element of infinite order, there exists c =
c(α, g(0)) such that

Lα(g(t)) ≥ c > 0

for all t ∈ [0, T ).

A particular consequence is that the diameter of (Mn, g(t)) is bounded from
below independently of t. As a result, we can resolve a conjecture made by
Hamilton in §26 of [4]. Suppose that (Mn, g(t) : 0 ≤ t < T ) is a solution of the
Ricci flow on a maximal time interval. For xj ∈ Mn, tj ∈ [0, T ), and λj > 0,
define the dilations

gj(t) := λjg(tj +
t

λj
), −λjtj ≤ t < λj(T − tj).(1.2)

If tj ↗ T as j → ∞ and (Mn, gj(t), xj) converges locally smoothly to a limit
(Mn

∞, g∞(t), x∞), we call the latter a final time limit flow of (Mn, g(t) : 0 ≤ t <
T ). The following result answers Hamilton’s conjecture affirmatively.

Corollary 1. (S1 × Sn−1, ḡ(t)) cannot arise as a final time limit flow.
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Here ḡ(t) is the Ricci soliton

ḡ(t) := ds ⊗ ds + 2(n − 1)(T̄ − t)gcan,(1.3)

where gcan is a round metric on Sn−1. Note that the only possible final time
limit flow of (S1 × Sn−1, ḡ(t)) is (R × Sn−1, ḡ(t)). The main content of the
corollary concerns the case that only a subsequence is known to converge.

In order to put our results into context, recall that we should not be surprised
if a solution (Mn, g(t)) of the Ricci flow starting from an arbitrary Riemannian
manifold encounters a finite time singularity. Indeed, this must be the case if the
scalar curvature ever becomes everywhere positive. (See the proof of Corollary
1, below.) To study a finite time singularity, it is often useful to construct
a sequence of dilations (1.2), sometimes called a blowup sequence. In certain
cases (namely if the λj are comparable to the suprema of the curvatures and
if an injectivity radius estimate is available for the sequence gj) one can apply
Gromov-type compactness arguments such as those in [5] in order to show C∞

convergence to a final time limit flow. (Such flows are also called singularity
models in the literature.) Final time limit flows have special properties which
aid analysis of the original solution (Mn, g(t)). With sufficient knowledge of
the limit, one can draw useful conclusions about the analytic, geometric, and
topological character of a singular solution just prior to the formation of the
singularity. The analysis of singularities via the formation of final time limit flows
is an integral part of Hamilton’s well-developed program to resolve Thurston’s
Geometrization Conjecture for closed 3-manifolds [7] by means of the Ricci flow.
(See for example [4] and the survey [1].)

Theorem 1 is essentially a monotonicity result. We shall offer two proofs which
are dual to one another. The first proof (Section 2) uses cohomology, is simpler,
and is more direct. The second proof (Section 3) uses homology. Its value lies
in better revealing the geometry; in particular; we hope that it is instructive in
showing how the ideas introduced here might be generalized. We briefly discuss
such potential applications in Section 4.

2. The cohomology proof

Our starting point is the following observation, which was pointed out to the
first author by Sun-Chin (Michael) Chu [2]. Let (Mn, g(t)) be a solution of the
Ricci flow, and let φ(t) be a 1-parameter family of 1-forms evolving by

∂

∂t
φ = ∆dφ,

where −∆d := dδ + δd is the Hodge–de Rham Laplacian. Recalling that

∆dφi = ∆φi − Rj
i φj ,
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where ∆ is the rough Laplacian, one computes that
∂

∂t
|φ|2 =

∂

∂t
(gijφiφj)

= 2Rijφiφj + 2φi ∂

∂t
φi

= 2φi∆φi

= ∆ |φ|2 − 2 |∇φ|2 .

Applying the parabolic maximum principle, one concludes that

‖φ(t)‖g(t) ≤ ‖φ(0)‖g(0)(2.1)

for as long as the solution g(t) exists, where ‖φ‖g denotes the supremum norm
‖φ‖g := supx∈M |φ(x)|g(x).

We use this observation to establish a key monotonicity property. Given a
Riemannian manifold (Mn, g) and an element Φ of the first de Rham cohomology
group H1

dR(Mn; R), define

Ng(Φ) := inf
φ∈Φ

‖φ‖g .(2.2)

Lemma 1. If (Mn, g(t) : 0 ≤ t < T ) is a solution of the Ricci flow, Ng(t)(Φ) is
a non-increasing function of time.

Proof. For any ε > 0, there is a smooth representative φ0 ∈ Φ such that

‖φ0‖ ≤ Ng(0)(Φ) + ε.

Define φ(t) by
∂

∂t
φ = ∆dφ

φ(0) = φ0,

noting that a solution φ(t) exists for as long as g(t) exists. Note too that φ(t) ∈ Φ.
Indeed, if we define a smooth function F (t) by

∂F

∂t
= ∆F − δφ0

F (0) = 0,

we have

φ = φ0 + dF

for all t ∈ [0, T ), because
∂

∂t
(φ0 + dF ) = ∆d(φ0 + dF ).

Hence by (2.1), we obtain

Ng(t)(Φ) ≤ ‖φ‖g(t) ≤ ‖φ‖g(0) ≤ Ng(0)(Φ) + ε.
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The following observation is of independent interest.

Lemma 2. If (Mn, g) is a compact Riemannian manifold, then Ng is a norm
on H1

dR(Mn; R).

Proof. Homogeneity and the triangle inequality are readily verified. To show
positivity, suppose that Ng(Φ) = 0. Then there is a sequence {φj : j ∈ N} ⊂ Φ
of smooth 1-forms such that ‖φj‖g → 0. Fix any φ ∈ Φ. We may write

φ − φj = dFj ,

where each Fj is smooth. Since Mn is compact, supj∈N ‖dFj‖ < ∞. So after
adding a locally constant function to Fj , we may by Arzela–Ascoli select a
subsequence Fjk

that converges uniformly to a Lipschitz function F . Then

ess sup |φ − dF |g ≤ lim sup
k→∞

‖φ − dFjk
‖g = lim sup

k→∞
‖φjk

‖g = 0.

So dF = φ almost everywhere, which implies in particular that F is smooth.
Hence Φ = 0.

We can now obtain a lower bound for the diameter of a solution of the Ricci
flow on a compact manifold Mn with H1(Mn; R) �= {0}.
First proof of Theorem 1. Let (Mn, g(t) : 0 ≤ t < T ) be a solution of the Ricci
flow. Consider the natural map ρ : H1(Mn; Z) → H1(Mn; R) and note that
β ∈ H1(Mn; Z) is a torsion element if and only if ρ(β) = 0, hence if and only if
〈Ψ, β〉 = 0 for all Ψ ∈ H1(Mn; R). So if α ∈ H1(Mn; Z) is an element of infinite
order, then there exists Φ ∈ H1(Mn; R) such that 〈Φ, α〉 > 0.

Fix any t ∈ [0, T ), and let a be any curve representing α. Then for all φ ∈ Φ,
we have

0 < 〈Φ, α〉 =
∫

a

φ ≤ ‖φ‖g(t) · lengthg(t)(a).

Taking the infimum over φ ∈ Φ, we get

〈Φ, α〉 ≤ Ng(t)(Φ) · lengthg(t)(a) ≤ Ng(0)(Φ) · lengthg(t)(a)

by Lemma 1. Taking the infimum over all a ∈ α, we obtain

Lα(g(t)) ≥ 〈Φ, α〉
Ng(0)(Φ)

> 0.(2.4)

Proof of Corollary 1. Let (Mn, g(t) : 0 ≤ t < T ≤ ∞) be a solution of the Ricci
flow on a maximal time interval, and let gj(t) = λjg(tj + t/λj) be a sequence of
dilations such that

(Mn, gj(t)) → (S1 × Sn−1, ḡ(t)),(2.5)

where ḡ(t) is defined by (1.3). Then there exists j0 such that g(tj0) has positive
scalar curvature R > 0. Because

∂

∂t
R = ∆R + 2 |Rc|2 ≥ ∆R +

2
n

R2,
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the maximum principle implies that the solution must fail to exist at a finite
time T < ∞. By Theorem 8.1 of [4], a finite time singularity implies that

lim sup
t↗T

(
sup
x∈M

|Rm(x, t)|
)

= ∞.

Then because there is C = C(n) such that

∂

∂t
|Rm|2 ≤ ∆ |Rm|2 + C |Rm|3 ,

the maximum principle further implies a lower bound for the curvature blowup
rate,

sup
x∈M

|Rm(x, t)| ≥ 2/C

T − t
.

But then smooth convergence (2.5) is possible only if

lim
j→∞

λj = ∞.

On the other hand, since S1 × Sn−1 is compact, (2.5) also implies that

H1(Mn; Z) ∼= H1(S1 × Sn−1; Z) ∼= Z.

Let α generate H1(Mn; Z). By Theorem 1, we have

Lα(g(t)) ≥ c > 0.

Hence

Lα(gj(0)) ≥ √
λjc → ∞

as j → ∞. This contradicts (2.5) and establishes Corollary 1.

3. The homology proof

We now seek a monotone quantity dual to the metric norms Ng(t) defined
above on H1

dR. Let (Mn, g) be a Riemannian manifold. For each free homotopy
class Γ ∈ Free(Mn), define

!g(Γ) := inf
γ∈Γ

lengthg(γ),

mg(Γ) := lim inf
k→∞

!g(kΓ)
k

,

where kΓ denotes the k-fold cover of Γ.
We first obtain a lower bound on the decay of !g(t)(Γ) during the Ricci flow.

Lemma 3. Let (Mn, g(t) : 0 ≤ t < T ) be a solution of the Ricci flow and
Γ ∈ Free(Mn) a free homotopy class. Then there exists C > 0 depending only
on n such that

(!g(t)(Γ))2 ≥ (!g(0)(Γ))2 − Ct

for all t ∈ [0, T ).
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Proof. We may assume Γ is nontrivial. Fix t ∈ [0, T ). There is a nontrivial
smooth closed geodesic γ ∈ Γ such that

lengthg(t)(γ) = !g(t)(Γ) > 0.

Let V denote the unit tangent vector field along γ. Stability implies that∫
γ

(|∇V X|2 − 〈R(V, X)X, V 〉) ds ≥ 0(3.1)

for any smooth vector field X along γ. Because of holonomy, there may not exist
a parallel orthonormal frame along γ; but we can choose an orthonormal frame
(e1, . . . , en) along γ such that en = V and

|∇V ei| ≤ Cn

lengthg(t)(γt)
=

Cn

!g(t)(Γ)

for 1 ≤ i ≤ n− 1, where Cn > 0 depends only on n. Taking X = ei in (3.1) and
summing over i = 1, . . . , n − 1 yields

0 ≤ (n − 1)

(
Cn

lengthg(t)(γ)

)2

· lengthg(t)(γ) −
∫

γ

Rc(V, V ) ds.

Thus
d

ds
(lengthg(s)(γ))

∣∣∣∣
s=t

= −
∫

γ

Rc(V, V ) ds ≥ − (n − 1)C2
n

lengthg(t)(γ)
.(3.2)

Now define

f : Γ × [0, T ) → R,

f(β, t) := lengthg(t)(β).

Note that f is continuous in (β, t) and is C1 in t for each fixed β ∈ Γ. Moreover,
for each u < T , there is a compact set Ku ⊆ Γ such that

F (t) := min
β∈Γ

f(β, t) ≡ !g(t)(Γ)

is attained in Ku for 0 ≤ t ≤ u. It follows therefore from (3.2) that the lower
derivate

D̄F (t) := lim inf
s→t

F (s) − F (t)
s − t

satisfies

D̄F (t) ≥ − (n − 1)C2
n

F (t)
, 0 ≤ t < T.

Hence as in §3 of [3], we conclude that

(F (t))2 + 2(n − 1)C2
nt

is nondecreasing, as required.

The preceding lemma yields a monotonicity result dual to Lemma 1.
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Lemma 4. If (Mn, g(t) : 0 ≤ t < T ) is a solution of the Ricci flow, then
mg(t)(Γ) is non-decreasing.

Proof. By Lemma 3, we have

(mg(t)(Γ))2 = lim inf
k→∞

(!g(t)(kΓ))2

k2
≥ lim inf

k→∞
(!g(s)(kΓ))2 − Ct

k2
= (mg(s)(Γ))2

whenever 0 ≤ s ≤ t < T .

To exploit Lemma 4, we need to know when mg(0)(Γ) is nonzero. Let η(Γ)
denote the image of Γ in H1(Mn; R).

Lemma 5. If (Mn, g) is a Riemannian manifold and Γ ∈ Free(Mn) is a free
homotopy class such that η(Γ) is nonzero, then mg(Γ) > 0.

Proof. Since η(Γ) �= 0, there exists Φ ∈ H1(Mn; R) such that 〈Φ, η(Γ)〉 > 0. For
any φ ∈ Φ and any curve γ ∈ kΓ, we have

〈Φ, η(kΓ)〉 =
∫

γ

φ ≤ ‖φ‖ · lengthg(γ).

Taking the infimum over φ and γ yields

〈Φ, η(kΓ)〉 ≤ Ng(Φ) · !g(kΓ).

Hence

mg(Γ) = lim inf
k→∞

!g(kΓ)
k

≥ lim inf
k→∞

〈Φ, η(kΓ)〉
kNg(Φ)

=
〈Φ, η(Γ)〉
Ng(Φ)

> 0.

These observations lead to another proof of the main result of this paper.

Second proof of Theorem 1. Let (Mn, g(t) : 0 ≤ t < T ) be a solution of the Ricci
flow, and let α ∈ H1(Mn; Z) be an element of infinite order. Then there exists
a free homotopy class Γ ∈ Free(Mn) whose image in H1(Mn; Z) is α. Clearly,
Lα(g(t)) = !g(t)(Γ) ≥ mg(t)(Γ). Since α is of infinite order, η(Γ) ∈ H1(Mn; R)
is nonzero. So we can apply Lemmas 4 and 5 to conclude that

Lα(g(t)) ≥ mg(t)(Γ) ≥ mg(0)(Γ) > 0.

4. Concluding remarks

Although one expects Ricci flow evolutions to encounter finite-time singular-
ities for a large class of initial Riemannian manifolds, the main result of this
paper shows that there are topological restrictions on the geometry of such
singularities. Motivated by this observation, we pose the following problems.1

1We wish to thank the referee for thoughtful comments regarding these questions.
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Problem 1. Let (Mn, gj(t)) be a dilation sequence as in (1.2). Suppose that the
rescaling factors λj → ∞ and that (Mn, gj(t)) converges smoothly in the pointed
sense to a limit (Nn, h(t)). Show that the image of H1(Nn; Z) in H1(Mn; Z)
under the natural map is finite. (Following Theorem 1, the idea is that any
element of infinite order will be expanded to infinite length.)

Problem 2. If π1(Mn) is finite, will any solution (Mn, g(t)) of the Ricci flow
become singular in finite time?

Problem 3. Let (Mn, g(t)) be a solution of the Ricci flow. The techniques of
Section 3 (in particular Lemma 4) give a lower bound for the length of any curve
representing a free homotopy class Γ ∈ Free(Mn) such that mg(0)(Γ) is nonzero.
Lemma 5 provides a sufficient condition for this but does not apply in case
Mn has vanishing first homology. In general, if (Mn, g) is a given Riemannian
manifold and Γ ∈ Free(Mn) is a free homotopy class, when is mg(Γ) positive?
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