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SEMISTABLE REDUCTION FOR OVERCONVERGENT
F -ISOCRYSTALS ON A CURVE

Kiran S. Kedlaya

Abstract. Let X be a smooth affine curve over a field k of characteristic p > 0
and E an overconvergent F a-isocrystal on X for some positive integer a. We prove
that after replacing k by some finite purely inseparable extension, there exists a
finite separable morphism X′ → X, the pullback of E along which extends to a
log-F a-isocrystal on a smooth compactification of X′. This resolves a weak form
of the global version of a conjecture of Crew; the proof uses the local version of
the conjecture, established (separately) by André, Mebkhout and the author.

1. Introduction

The purpose of this paper is to prove the following semistable reduction the-
orem for overconvergent F -isocrystals on a curve, answering a conjecture of de
Jong [dJ, Section 5], a reformulation of a conjecture of Crew (of which more
about below).

Theorem 1.1 (Semistable reduction). Let X be a smooth, geometrically con-
nected curve over a field k of characteristic p > 0, let K be a complete discrete
valuation field with residue field k, admitting a lift of the p-power Frobenius on
k, and let E be an overconvergent F a-isocrystal on X with respect to K for some
a ∈ N. Then after replacing k by a suitable finite purely inseparable extension
(depending on E), there exist a finite generically étale morphism f : X1 → X,
a smooth compactification j : X1 ↪→ X1 of X1, and a log-F a-isocrystal F on
(X1, X1 \ X1)/K such that j∗F ∼= f∗E.

Our basic approach is to use the quasi-unipotence theorem (p-adic local mon-
odromy theorem) for F a-isocrystals, plus a matrix factorization argument from
[Ke1], to “fill in” E at each of the points of X1 \ X1. The quasi-unipotence
theorem, conjectured by Crew [Cr, Section 10], follows from the work of any
of André [A], Mebkhout [M], or the author [Ke2]; see Proposition 3.1 for the
formulation we need here.

Theorem 1.1 “almost” yields a more precise statement proposed by Crew
[Cr], by implying that there exists a finite morphism f : X1 → X such that
f∗E is unipotent at each point of X1 \ X1. (In fact, we will prove Theorem 1.1
by proving this first.) The caveat is that Crew actually wanted f to be étale.
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We have only been able to achieve this in the unit-root case, and do not know
whether it should be possible in general. We discuss these matters in Section 6.

We hope to extend Theorem 1.1 to higher dimensional varieties in subsequent
work. In this case, we must allow the morphism f : X1 → X to be generically
étale, but not necessarily finite, because the normalization of X in a finite ex-
tension of its function field need not be smooth. For this and other reasons, the
argument in higher dimensions will be technically more involved.

The precise higher-dimensional analogue of Theorem 1.1 has been formu-
lated conjecturally by Shiho [S, Conjecture 3.1.8]; by Shiho’s work, proving this
statement would provide good comparison results between rigid and crystalline
cohomology. For example, it would yield an alternate proof of finite dimen-
sionality of rigid cohomology of a curve with coefficients in an overconvergent
F -isocrystal, via comparison with crystalline cohomology; Theorem 1.1 does this
for curves. (Crew’s proof in [Cr] uses p-adic functional analytic techniques; the
general finiteness proof in [Ke3] uses a devissage to the curve case.)

2. Definitions and notations

We set up notation following [Ke3]; this makes it a bit more convenient to work
with global objects than does the notation of [Ke2]. We retain the convention
of [Ke2] that all matrices are n × n matrices and I denotes the identity matrix.

Let k be a field of characteristic p > 0, and let C(k) be a Cohen ring for
k, that is, a complete discrete valuation ring with residue field k and maximal
ideal generated by p. (See [Bo] for proof of existence and basic properties of
Cohen rings.) Let K be a finite totally ramified extension of FracC(k), let O
be the integral closure of C(k) in K, and let vp denote the p-adic valuation on
K. Assume that there exists a ring endomorphism σ0 on O lifting the p-power
Frobenius on k. Let q = pa be a power of p, and put σ = σa

0 .
The ring Rr consists of bidirectional power series

∑
i∈Z

ciu
i, with ci ∈ K,

such that

lim
i→±∞

svp(ci) + i = ∞ (0 < s ≤ r);

for each s, the function ws(
∑

i ciu
i) = mini{svp(ci) + i} is a nonarchimedean

valuation on Rr. The ring R (the “Robba ring”) is the union of the Rr over all
r > 0. Its subring Rint consists of those series with ci ∈ O for all i; this subring
is a (noncomplete) discrete valuation ring, unramified over O, with residue field
the field k((t)) of formal Laurent series in k. (In [Ke2], the rings R and Rint are
called Γan,con and Γcon, respectively.) By adding the superscript + or − to R or
Rint, we will mean the subring with only nonnegative or nonpositive powers of
u, respectively.

For L/k((t)) finite separable, there is a natural discrete valuation ring Rint
L ,

integral and unramified over Rint, with residue field L. Namely, take any monic
polynomial P (x) over Rint whose reduction P satisfies K ∼= k((t))[x]/(P (x)),
and put Rint

L
∼= Rint[x]/(P (x)).
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The Monsky-Washnitzer algebra of rank n is defined as

Wn =

{∑
I

cIx
I : cI ∈ O, lim inf

I

vp(cI)∑
I

> 0

}
,

where I = (i1, . . . , in) represents an n-tuple of nonnegative integers, xI =
xi1

1 · · ·xin
n and

∑
I = i1 + · · · + in. An integral dagger algebra is any quo-

tient Aint of a Monsky-Washnitzer algebra which is flat over O and for which
Spec(Aint ⊗O k) is smooth over Spec(k). (Given Aint ⊗O k, one can always find
a corresponding Aint; see [vdP].) A dagger algebra A is an algebra of the form
Aint ⊗O K for some integral dagger algebra Aint (uniquely determined by A and
the p-adic valuation on A).

Given a dagger algebra A with Aint ∼= Wn/a and f ∈ A not a zero divisor,
the localization A′ of A at f is the dagger algebra with

(A′)int ∼= Wn+1/(Wn+1a + (fxn+1 − 1)Wn+1);

this is a dagger algebra in which f is invertible.
Given a dagger algebra A with Aint ∼= Wn/a for some ideal a of Wn, we define

Ω1
A/K as the free A-module generated by symbols dx1, . . . , dxn, modulo relations

of the form da = 0 for a ∈ a ⊗O K. By construction, Ω1
A/K is equipped with a

K-linear derivation d : A → Ω1
A/K .

3. Log-F -isocrystals and log-(σ,∇)-modules

Let A be a dagger algebra and σ0 : Aint → Aint a lift of the p-power Frobenius
map extending the given σ0 on O; again, set σ = σa

0 . (Such a lift always
exists: again, see [vdP].) Given u ∈ A such that uσ/uq is invertible in A, we
define the logarithmic module of differentials Ω1

A/K [d log u] by adding to Ω1
A/K

a symbol d log u such that u(d log u) = du; then dσ extends to Ω1
A/K [d log u]

sending du/u to q du/u+d(uσ/uq)/(uσ/uq). We define a log-(σ,∇)-module over
A (with respect to u) as a finite locally free A-module M equipped with a σ-
linear map F that induces an isomorphism F : M ⊗A,σ A → M , and with an
A-linear connection ∇ : M → M⊗AΩ1

A/K [d log u] which is integrable (i.e., which
satisfies ∇1 ◦∇ = 0 for ∇1 : M ⊗Ω1

A/K [d log u] → M ⊗∧2
AΩ1

A/K [d log u] induced
by ∇) and which makes the following diagram commute:

M
∇ ��

F

��

M ⊗ Ω1
A/K [d log u]

F⊗dσ

��
M

∇ �� M ⊗ Ω1
A/K [d log u]

If u = 1, we drop the “log” and simply refer to M as a (σ,∇)-module. We
analogously define (σ,∇)-modules over R for σ : R → R induced by the a-th
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composition power of a map σ0 : Rint → Rint of the form∑
i

ciu
i �→

∑
i

cσ0
i (uσ0)i

lifting the p-th power map. In this case, we take Ω1
R/K to be the free R-module

generated by du. (Note: since we are only considering curves, the integrability
condition will be superfluous in our situations, as ∧2Ω1 will vanish.)

Log-(σ,∇)-modules are Zariski-local avatars of more global objects, namely
overconvergent log-F a-isocrystals. Rather than take space for a full-blown defi-
nition of log-F a-isocrystals here, we summarize the key features of the definition
below.

• If X is smooth over k and equipped with the fine log structure associated to
some strict normal crossings divisor Z, there is a category of overconvergent
log-F a-isocrystals on the pair (X, Z). (We drop the “log” if Z is empty.)

• An oveconvergent log-F a-isocrystal on (X, Z) can be specified by giv-
ing overconvergent log-F a-isocrystals on an affine cover of X plus iso-
morphisms on the pairwise intersections satisfying the cocycle condition.
(Loosely put, the category is a Zariski sheaf.)

• Given a dagger algebra A, a Frobenius lift σ, and an element u ∈ Aint

such that uσ/uq is invertible in A, the category of log-(σ,∇)-modules with
respect to u is canonically equivalent to the category of overconvergent log-
F a-isocrystals on (X, Z), where X = Spec(Aint ⊗O k) and Z ⊆ X is the
zero locus of u. In particular, the former does not depend on σ; in fact,
there is an explicit formula for transforming a Frobenius structure with
respect to a given σ into a Frobenius structure with respect to another
(with respect to the same ∇).

See [CI, Section 6] for an informal overview of log-F a-isocrystals; for a much
more detailed study, see [S, Chapter 2]. (It might help to consider the situation
without logarithmic structures first; see [Be] for an introduction there.)

The main input into this paper is the p-adic local monodromy theorem
(“Crew’s conjecture”), established separately by André [A], Mebkhout [M], and
the author [Ke2]. We say an extension of k((t)) is nearly finite separable if it is
finite separable over k1/pn

((t)) for some nonnegative integer n. With that defi-
nition, the local monodromy theorem (e.g., in the form of [Ke2, Theorem 6.12])
implies the following.

Proposition 3.1. Let M be a (σ,∇)-module over R. Then there exists a nearly
finite separable extension L/k((t)) so that M⊗RintRint

L admits a basis v1, . . . ,vn

such that ∇vi ∈ SatSpan(v1, . . . ,vi−1) ⊗ Ω1 for i = 1, . . . , n.

In fact, if u ∈ Rint
L lifts a uniformizer of L and K ′ is the integral closure of

K in Rint
L (so that Rint

L is isomorphic to the integral Robba ring with coefficient
field K ′), then one can ensure that in fact ∇vi ∈ (K ′v1 + · · · + K ′vi−1) ⊗ du

u ;
this implies that Fvi ∈ K ′v1 + · · ·+K ′vn for all i. If such a basis already exists
over R, we say M is unipotent over R.
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4. Matrix factorizations

In this section, let A be a dagger algebra such that Spec(A⊗O k) is a smooth
affine geometrically connected curve over Spec(k); in particular, A is an integral
domain. Suppose t ∈ A⊗O k generates a prime ideal with residue field k; choose
a lift u ∈ Aint of t. Then there is a natural embedding ρu : Aint ↪→ R+,int sending
u to the series parameter; this extends to an embedding of any localization of A
into R. We identify each localization of A with its image under ρu.

Lemma 4.1. For r > 0, let U be an invertible matrix over Rr. Then there exists
an invertible matrix V over some localization A′ of A such that wr(V U −I) > 0.

Proof. Let A1 be the localization of A at u; then A1 is dense in Rr under wr.
Thus we can choose a matrix V over A1 such that wr(V −U−1) > −wr(U); then

wr(V U − I) = wr((V − U−1)U) ≥ wr(V − U−1) + wr(U) > 0.

Since wr(V U−I) > 0, we have wr(det(V U)−1) > 0, so in particular det(V U) �=
0. Hence det(V ) �= 0, so we can form the localization A′ of A1 at det(V ). Over
A′, V becomes an invertible matrix, as desired.

Proposition 4.2. Let U be an invertible matrix over R. Then there exist in-
vertible matrices V over some localization A′ of A and W over R+ such that
U = V W .

Proof. Choose r > 0 so that U is invertible over Rr. By Lemma 4.1, we can find
an invertible matrix X over some localization A1 of A such that wr(XU−I) > 0.
By [Ke2, Proposition 6.5], we can write XU as a product Y Z with Y invertible
over R− and Z invertible over R+. Let A′ be the localization of A1 at u; then
R− ⊆ A′, so X−1Y is invertible over A′. Thus we may take V = X−1Y and
W = Z.

5. Semistable reduction

In this section, we prove that an overconvergent F a-isocrystal E on X which
is unipotent at each point of X −X, for X a smooth compactification of X, has
“semistable reduction.” This will yield our proof of Theorem 1.1.

We begin with a result that translates unipotence of a (σ,∇)-module into
semistable reduction. The argument is based on the proof of [Ke1, Theo-
rem 5.0.1].

Theorem 5.1. Let A be a dagger algebra equipped with a Frobenius lift σ. Sup-
pose the image of u ∈ Aint in Aint ⊗O k generates a prime ideal and uσ/uq is a
unit in A. Let A′ be the localization of A at u, and let M be a free (σ,∇)-module
over A′ which becomes unipotent over R (where A′ is identified with a subring
of R via ρu). Then M is isomorphic to a log-(σ,∇)-module, with respect to u,
over some localization A′′ of A in which u is not invertible.
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Proof. Let e1, . . . , en be a basis of M , so that Fej =
∑

i Φijei and ∇ej =∑
i Nijei ⊗ du

u . Define the differential operator θ(f) = u df
du . By hypothesis,

there exists a matrix U over R such that U−1ΦUσ and U−1NU + U−1θ(U)
have entries in O. By Proposition 4.2, we can factor U as V W , where V is
invertible over some localization A1 of A′ and W is invertible over R+. Now put
vj =

∑
j Vijei; then Fvj =

∑
i Φ̃ijvi and ∇vj =

∑
i Ñijvi ⊗ du

u , where

Φ̃ = V −1ΦV σ = W (U−1ΦUσ)W−σ

Ñ = V −1NV + V −1θ(V ) = W (U−1NU + U−1θ(U))W−1 − θ(W )W−1

have entries in A′′ = A1 ∩R+, which is a localization of A (because it contains
A and is contained in the localization A1) in which u is not invertible (because
u is not invertible in R+).

We now proceed to the proof of our main theorem.

Proof of Theorem 1.1. Let K(X) be the function field of X, and let X be a
smooth compactification of X. Without loss of generality, enlarge k so that the
geometric points of Z = X \ X are k-rational. (Given the desired result over a
finite extension of k, we deduce the result over k by restriction of scalars.) For
each geometric point x of Z, choose a function tx ∈ K(X) with a simple zero at
x, and choose an open affine neighborhood Ux of x in X such that Ux ∩Z = {x}
and div(tx)∩Ux = {x}. Let Ax be a dagger algebra with U ∼= Spec(Aint

x ⊗O k),
choose a Frobenius lift σ on Ax and choose a lift ux of tx in Aint

x . Let A′
x be the

localization of Ax at ux; then the restriction of E to U \ {x} corresponds to a
(σ,∇)-module Mx over A′

x. After shrinking Ux if needed, we may assume that
Mx is free over A′

x.
Let ρx be the embedding of Ax into R+,int sending ux to the series parameter.

By Proposition 3.1, there exists a nearly finite separable extension Lx of the tx-
adic completion of K(X) such that Mx ⊗A′

x
Rint

Lx
is unipotent. By Krasner’s

lemma, after replacing k with k1/pn

for some nonnegative integer n, we can
choose a finite separable extension L of K(X) whose completion at any point
above x contains Lx for each x ∈ Z. After enlarging k again, we may assume
that the places of L above x are all k-rational. Let f : X1 → X be the cover
corresponding to the extension L/K(X), and put X1 = f−1(X).

For each geometric point y of Z1 = X1 \ X1, choose a function ty ∈ K(X1)
with a simple zero at y and no multiple zeroes; then ty gives rise to a map
gy : X1 → P

1. (If k is finite, it may be necessary to enlarge it again to find such
ty.) Put x = f(y), and choose an open affine neighborhood Vy of y in X1 such
that Vy ∩ Z1 = {y}, div(ty) ∩ Vy = {y}, f(Vy) ⊆ Ux, and Vy does not meet the
branch locus of gy. Then there is a dagger algebra By with Vy

∼= Spec(Bint
y ⊗O k)

which is a localization of a finite extension of Ax.
Choose a lift uy of ty in Bint

y . Since Vy is unramified over its image under gy,
By is finite and unramified over some localization Cy of its subring K〈uy〉† (the
p-adic closure of K[uy] within By). Now K〈uy〉† admits a p-power Frobenius
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lift σ′
0 sending uy to uσ

y ; this lift extends to the localization Cy, then to the
unramified extension By. Put σ′ = (σ′

0)
a.

Let B′
y be the localization of By at ux ∈ Ax ⊆ By, which is the same as

the localization at uy because div(tx) ∩ Vy = div(ty) ∩ Vy = {y}, and put
V ′

y = Spec((B′
y)int⊗Ok) = Vy\{y}; then the restriction of f∗E to V ′

y corresponds
to the (σ′,∇)-module Mx ⊗A′

x
B′

y. (That is, its connection is the one induced
from Mx, but its Frobenius structure is defined with respect to σ′ instead of
σ.) By construction, this (σ′,∇)-module is unipotent. Moreover, uσ′

y /uq
y = 1, so

Theorem 5.1 implies that Mx ⊗A′
x

B′
y is isomorphic to a log-(σ,∇)-module over

some localization B′′
y of By in which uy is not invertible. If V ′′

y = Spec((B′′
y )int⊗O

k), then V ′′
y is an open affine neighborhood of y in X1 on which f∗E extends to

a log-F -isocrystal.
In short, we have an open affine neighborhood of each y ∈ Z1 in X1, on

which f∗E extends to a log-F -isocrystal relative to {y}. Each neighborhood
contains no other points of y, so the pairwise intersections all lie in X1. Thus
we automatically have glueing isomorphisms on the log-F -isocrystals satisfying
the cocycle conditions (since f∗E is defined on X1), yielding a log-F -isocrystal
on (X1, Z1), as desired.

6. Finite versus étale

As noted earlier, Crew [Cr, Section 10] conjectured that an overconvergent
F -isocrystal on a curve should extend to a log-F -isocrystal after a base extension
which is not just finite and generically étale, but actually étale. It is unclear
whether this should hold in general; the best we can do at the moment is prove
it in the unit-root case, as done below. Note that this proof does not use the full
strength of the quasi-unipotence theorem, but only the unit-root case; this case is
due to Tsuzuki [T1]. Also note that a unit-root log-F -isocrystal is automatically
an F -isocrystal, so there is no “log” in the statement of the theorem.

The proof of the following lemma is straightforward.

Lemma 6.1. Let B be a matrix over k[[t]], for k a perfect field of characteristic
p > 0, and let τ denote the q-th power map. Then any solution D of either of
the matrix equations

D−1BDτ = I or Dτ − D = B

over the integral closure of k[[t]] in k((t))alg is defined over an unramified exten-
sion of k[[t]].

Theorem 6.2. Let X be a smooth, geometrically connected curve over a perfect
field k of characteristic p > 0, and let E be an overconvergent unit-root F a-
isocrystal on X/K. Then there exists a finite étale morphism f : X1 → X, a
smooth compactification j : X1 ↪→ X1 of X1, and a unit-root F a-isocrystal F on
X1 such that j∗F ∼= f∗E.
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Proof. If X is projective, there is nothing to prove, so we assume X is affine.
Let A be a dagger algebra with X ∼= Spec(Aint ⊗O k), and choose a Frobenius
lift σ on A. Then E corresponds to a (σ,∇)-module M over A. Choose (not
necessarily free) generators v1, . . . ,vm of M , and let N ⊂ M be the Aint-span
of F ivj over i = 0, 1, . . . and j = 1, . . . , m. Then N is locally free over Aint.

Let L be the p-adic completion of the valuation subring of FracA; note that
N is free over L and F acts on any basis of N over L via an invertible matrix.
Let π be a uniformizer of O, and pick an integer d such that vp(πd) > 1/(p− 1).

Given any basis e1, . . . , en of N to start with, define the matrix Φ by Fej =∑
ij Φijei. We then solve the matrix equation C−1

i ΦCσ
i ≡ I (mod πi) for i =

1, . . . , d to obtain a matrix Cd over some finite unramified extension L′ of L.
Then N ⊗Aint L′ admits a basis w1, . . . ,wn for which Fwi ≡ wi (mod πd).

If we insist that L′ be minimal for the existence of the basis of the desired
form, then it is unique; in particular, it does not depend on the choice of the
starting basis. Let X1 be a curve for which K(X1) ∼= L′/πL′ and let f : X1 → X
be the induced map. If we choose the initial basis e1, . . . , en over a localization
Aint

1 of Aint over which N becomes free, we discover that f is étale over any point
in Spec(Aint

1 ⊗O k) by Lemma 6.1. (Namely, C0 satisfies an equation modulo π
of the first type in the lemma, while C−1

i−1Ci = I + πi−1D for some matrix D
satisfying an equation modulo π of the second type.) Since N is locally free over
Aint, we can arrange for Spec(Aint

1 ⊗O k) to contain any closed point of X. Thus
f is finite étale. Since vp(πd) > 1/(p − 1), we may apply [T1, Theorem 5.1.1]
(at least for a = 1; see [Ke2, Proposition 6.11] for a reduction to this case) to
see that f∗E admits a basis of elements in the kernel of ∇, on which F acts by
a matrix over O. This allows us to extend f∗E to a compactification X1 of X1,
as desired.
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[A] Y. André, Filtrations de type Hasse-Arf et monodromie p-adique, Invent. Math. 148
(2002), 285–317.
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