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KOSZUL DUALITY FOR DIOPERADS

Wee Liang Gan

Abstract. We introduce the notion of a dioperad to describe certain operations
with multiple inputs and multiple outputs. The framework of Koszul duality for
operads is generalized to dioperads. We show that the Lie bialgebra dioperad is
Koszul.

Introduction

The current interest in the understanding of various algebraic structures
using operads is partly due to the theory of Koszul duality for operads, which
was developed by Ginzburg-Kapranov in [GiK]; see eg. [Ka] or [L] for surveys.
However, algebraic structures such as bialgebras and Lie bialgebras, which in-
volve both multiplication and comultiplication, or bracket and cobracket, are
defined using PROP’s (cf. [Ad]) rather than operads. Inspired by the theory
of string topology of Chas-Sullivan (cf. [ChS], [Ch], [Tr]), Victor Ginzburg sug-
gested to the author that there should be a theory of Koszul duality for PROP’s.
This paper results from the attempt to develop such a theory. More precisely,
we introduce the notion of a dioperad, which can be used to describe certain
operations with multiple inputs and multiple outputs. We show that one can
set up a theory of Koszul duality for dioperads, and we prove that the dioperad
associated to Lie bialgebra is Koszul.

Let us explain how dioperads arise. Suppose Q = {Q(m, n)} is a PROP
defined by some generators and relations. We think of an element in Q(m, n)
as an operation obtained by compositions of the generators according to a “flow
chart” with n inputs and m outputs. Assuming that the defining relations
between the generators of Q are expressed by flow charts which are trees, there
is a subspace P(m, n) of Q(m, n) consisting of those operations obtained from
the flow charts which are trees. The collection P = {P(m, n)} is precisely the
dioperad with the same generators and relations as Q. Since the defining relations
of Q are expressed by trees, no essential information is lost by restricting our
attention to P. If f and g are operations in P, then by substituition of the j-th
output of g into the i-th input of f , we get another operation fi ◦j g which is
still in P. Pictorially, this just means that if we join a root of a tree to a leaf of
another tree, we still get a tree.

The assumption that the defining relations between the generators of Q are
expressed by trees is satisfied, for example, by the Lie bialgebra PROP, but
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not by the bialgebra PROP; see eg. [ES] p.19 and p.70. Thus, Lie bialgebras
can be understood in the framework of dioperads, but bialgebras cannot. The
above assumption is motivated by the question of what is a “quadratic” PROP.
It seems an answer (suggested by the fact that the differential in Kontsevich’s
graph complex [Ko] is induced by edge contractions) is that the defining relations
between the generators should be express by graphs with precisely one internal
edge; cf. also [Ge] §4.8. However, a graph with one internal edge is necessarily
a tree.

The paper is organized as follows. In §1, we give the definition of a dioperad
and other generalities. In §2, we define the notion of a quadratic dioperad, its
quadratic dual, and introduce our main example of Lie bialgebra dioperad. In
§3, we define the cobar dual of a dioperad. A quadratic dioperad is Koszul if its
cobar dual is quasi-isomorphic to its quadratic dual. In §4, we prove a proposition
to be used later in §5. This proposition is a generalization of a result of Shnider-
Van Osdol [SVO]. In §5, we prove that Koszulity of a quadratic dioperad is
equivalent to exactness of certain Koszul complexes. In the case of operads, this
is due to Ginzburg-Kapranov, with a different proof by Shnider-Van Osdol. The
Koszulity of the Lie bialgebra dioperad follows from this and an adaptation of
results of Markl [M2].

1. Dioperads

1.1. We give in this subsection the definition of dioperad which is similar to
the definition of operad in [M1]; cf. also [M].

Let C be the symmetric monoidal category of finite dimensional differential
Z-graded super vector spaces over a field k of characteristic 0, and let Hom
be the internal hom functor of C. Let Sn denote the automorphism group of
{1, . . . , n}. If m = m1 + · · · + mn is an ordered partition and σ ∈ Sn, then the
block permutation σm1,... ,mn ∈ Sm is the permutation that acts on {1, . . . , m} by
permuting n intervals of lengths m1, . . . , mn in the same way that σ permutes
1, . . . , n. If σ1 ∈ Sn1 , σ2 ∈ Sn2 and i ∈ {1, . . . , n1}, then define σ1 ◦i σ2 ∈
Sn1+n2−1 by

σ1 ◦i σ2 := (σ1)1,... ,1,n2,1... ,1 ◦ (Id× · · · × σ2 × · · · × Id),

where σ2 is at the i-th place. (See eg. [MSS] Definition 1.2 or [SVO] p.387. )
A dioperad P in C consists of data:

(i) objects P(m, n), equipped with a (Sm, Sn)-bimodule structure, for each
ordered pair of positive integers m, n;

(ii) morphisms i◦j : P(m1, n1)⊗P(m2, n2) → P(m1 + m2 − 1, n1 + n2 − 1) for
each m1, m2, n1, n2 ≥ 1 and 1 ≤ i ≤ n1, 1 ≤ j ≤ m2;

(iii) a morphism η : k → P(1, 1) such that

1 ◦i (η ⊗ Id) : k ⊗ P(m, n) ∼→ P(m, n)
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and

j ◦1 (Id⊗ η) : P(m, n) ⊗ k
∼→ P(m, n)

are the canonical isomorphisms for all m, n ≥ 1 and 1 ≤ i ≤ m, 1 ≤ j ≤ n.
These data are required to satisfy the following associativity and equivariance

conditions:
(a) for all m1, n1, m2, n2, m3, n3 ≥ 1 and 1 ≤ i ≤ n1 + n2 − 1, 1 ≤ j ≤ m3,

1 ≤ k ≤ n1, 1 ≤ l ≤ m2, the morphism

i ◦j (k◦l ⊗ Id) : P(m1, n1) ⊗ P(m2, n2) ⊗ P(m3, n3)

→ P(m1 + m2 + m3 − 2, n1 + n2 + n3 − 2)

is equal to


(σ, 1)(k+n3−1◦l)(i◦j ⊗ Id)(Id⊗ τ) if i ≤ k − 1
k ◦j+l−1 (Id⊗i−k+1 ◦j) if k ≤ i ≤ k + n2 − 1
(σ, 1)(k◦l)(i−n2+1◦j ⊗ Id)(Id⊗ τ) if k + n2 ≤ i

where

τ : P(m2, n2) ⊗ P(m3, n3)
∼→ P(m3, n3) ⊗ P(m2, n2)

is the symmetry isomorphism, and σ ∈ Sm1+m2+m3−2 is the block permu-
tation

((12)(45))l−1,j−1,m1,m3−j,m2−l.

(b) for all m1, n1, m2, n2, m3, n3 ≥ 1 and 1 ≤ i ≤ n1, 1 ≤ j ≤ m2 + m3 − 1,
1 ≤ k ≤ n2, 1 ≤ l ≤ m3, the morphism

i ◦j (Id⊗k ◦l) : P(m1, n1) ⊗ P(m2, n2) ⊗ P(m3, n3)

→ P(m1 + m2 + m3 − 2, n1 + n2 + n3 − 2)

is equal to


(1, σ)(k◦l+m1−1)(Id⊗i ◦j)(τ ⊗ Id) if j ≤ l − 1
k+i−1 ◦l (i◦j−l+1 ⊗ Id) if l ≤ j ≤ l + m2 − 1
(1, σ)(k◦l)(Id⊗i ◦j−m2+1)(τ ⊗ Id) if l + m2 ≤ j

where

τ : P(m1, n1) ⊗ P(m2, n2)
∼→ P(m2, n2) ⊗ P(m1, n1)

is the symmetry isomorphism, and σ ∈ Sn1+n2+n3−2 is the block permuta-
tion

((12)(45))i−1,k−1,n3,n2−k,n1−i.

(c) for all m1, n1, m2, n2 ≥ 1, 1 ≤ i ≤ n1, 1 ≤ j ≤ m2, and π1 ∈ Sm1 , σ1 ∈ Sn1 ,
π2 ∈ Sm2 , σ2 ∈ Sn2 , the morphism

i ◦j ((π1, σ1) ⊗ (π2, σ2)) : P(m1, n1) ⊗ P(m2, n2)

→ P(m1 + m2 − 1, n1 + n2 − 1)
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is equal to

(π2 ◦π−1
2 (j) π1, σ1 ◦i σ2)(σ1(i)◦π−1

2 (j)).

Remarks.
(1) We shall regard an operad P = {P(n)} as a dioperad via P(1, n) := P(n)

and P(m, n) := 0 for m > 1.
(2) It may be of interests to relate dioperads to cyclic operads [GeK] or pseudo-

tensor categories [BD], but the author does not know how to do this.

1.2. Let V be an object of C. Then the endomorphism dioperad EndV is
defined by

EndV (m, n) = Hom(V ⊗n, V ⊗m).

If f ∈ EndV (m1, n1), g ∈ EndV (m2, n2), then fi ◦j g ∈ EndV (m1 + m2 − 1, n1 +
n2 − 1) is the morphism

(Id⊗ · · · ⊗ f ⊗ · · · ⊗ Id)σ(Id⊗ · · · ⊗ g ⊗ · · · ⊗ Id) : V ⊗(n1+n2−1)

→ V ⊗(m1+m2−1),

where f is at the j-th place, g is at the i-th place, and σ ∈ Sn1+m2−1 is the block
permutation ((12)(45))i−1,j−1,1,m2−j,n1−i.

A morphism f : P → Q of dioperads in C is a collection of morphisms f(m, n) :
P(m, n) → Q(m, n), m, n ≥ 1, compatible with the structures of dioperads. If P

is a dioperad in C and V is an object of C equipped with a morphism P → EndV ,
then V is called a P-algebra.

1.3. If P is a dioperad, then its opposite Pop(m, n) := P(n, m) with the trans-
posed actions is a dioperad via the composition rule

i
op◦ j := (j◦i)τ : Pop(m1, n1) ⊗ Pop(m2, n2) → Pop(m1 + m2 − 1, n1 + n2 − 1),

where

τ : P(n1, m1) ⊗ P(n2, m2)
∼→ P(n2, m2) ⊗ P(n1, m1)

is the symmetry isomorphism.
If P and Q are dioperads, then (P ⊗ Q)(m, n) := P(m, n) ⊗ Q(m, n) with the

diagonal actions of Sm and Sn is a dioperad via the composition rule

i
P⊗Q◦ j := (i

P◦j ⊗i
Q◦j)(Id⊗ τ ⊗ Id) : (P ⊗ Q)(m1, n1) ⊗ (P ⊗ Q)(m2, n2)

→ (P ⊗ Q)(m1 + m2 − 1, n1 + n2 − 1),

where

τ : Q(m1, n1) ⊗ P(m2, n2)
∼→ P(m2, n2) ⊗ Q(m1, n1)

is the symmetry isomorphism.
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1.4. The suspension dioperad Σ is the endomorphism dioperad of k[1], and the
desuspension dioperad Σ−1 is the endomorphism dioperad of k[−1]; see eg. [Sm]
§3.1. Thus, Σ(m, n) is a one dimensional vector space placed in degree n−m with
sign representations of Sm and Sn, and Σ−1(m, n) is a one dimensional vector
space placed in degree m − n with sign representations of Sm and Sn. The
suspension of a dioperad P is ΣP := Σ ⊗ P, and the desuspension is Σ−1P :=
Σ−1 ⊗ P.

Observe that if P is a dioperad, then {P(m, n)[2m − 2]} is also a dioperad.
Define the sheared suspension dioperad Λ by Λ(m, n) := Σ(m, n)[2 − 2m], and
the sheared desuspension dioperad Λ−1 by Λ−1(m, n) := Σ−1(m, n)[2m − 2].
Thus, Λ(m, n) is a one dimensional vector space placed in degree m+n−2 with
sign representations of Sm and Sn, and Λ−1(m, n) is a one dimensional vector
space placed in degree 2 − m − n with sign representations of Sm and Sn. The
sheared suspension of a dioperad P is ΛP := Λ⊗P, and the sheared desuspension
is Λ−1P := Λ−1 ⊗ P.

2. Quadratic dual

From now on, for all dioperads P, assume P(1, 1) = k unless otherwise stated.

2.1. By a tree, we shall always mean a directed tree such that each vertex
has at least one outgoing edge and at least one incoming edge. A forest is a
disjoint union of trees. If each vertex of a forest has valency at least three, then
the forest is said to be reduced. Denote by Vert(T) (resp. edge(T), Edge(T))
the set of vertices (resp. internal edges, all edges) of a forest T , and Out(v)
(resp. In(v)) the set of outgoing (resp. incoming) edges at a vertex v. Let
det(T ) :=

∧|edge(T)| kedge(T) and Det(T) :=
∧|Edge(T)| kEdge(T).

A (m, n)-tree is defined to be a tree with leaves labelled by {1, . . . , n} and
roots labelled by {1, . . . , m}. For any (m, n)-tree T , we have the formula∑

v∈Vert(T)

(|Out(v)| + |In(v)| − 2) = m + n − 2.(2.1)

Observe that the maximal number of vertices in a reduced (m, n)-tree is m+n−2.
Note also that a trivalent (m, n)-tree has m−1 vertices with two outgoing edges
and n − 1 vertices with two incoming edges.

If m = (m1, . . . , mk), where m1, . . . , mk are positive integers, then let |m| :=
m1 + · · · + mk. Suppose m = (m1, . . . , mk) and n = (n1, . . . , nk). A (m, n)-
forest is defined to be a disjoint union of trees T1, . . . , Tk such that, for each i,
the leaves of Ti are labelled by

{n1 + · · · + ni−1 + 1, . . . , n1 + · · · + ni−1 + ni}
and the roots of Ti are labelled by

{m1 + · · · + mi−1 + 1, . . . , m1 + · · · + mi−1 + mi}.
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2.2. Let E(m, n), m, n ≥ 1, be a collection of finite dimensional (Sm, Sn)-
bimodules with E(1, 1) = 0. If T is a tree, let

E(T ) =
⊗

v∈Vert(T)

E(Out(v), In(v)).

The free dioperad F(E) generated by E is defined by

F(E)(m, n) :=
⊕

(m,n)−trees T

E(T ).

Let (ΛE)(m, n) := Λ(m, n) ⊗ E(m, n) and (Λ−1E)(m, n) := Λ−1(m, n) ⊗
E(m, n). Observe that the canonical injections (ΛE)(m, n) ↪→ (ΛF(E))(m, n)
and (Λ−1E)(m, n) ↪→ (Λ−1F(E))(m, n) induce canonical dioperad isomorphisms

F(ΛE) ∼→ ΛF(E) and F(Λ−1E) ∼→ Λ−1F(E)(2.2)

respectively.

2.3. Let P be a dioperad. An ideal I in P is a collection of (Sm, Sn)-sub-
bimodules I(m, n) ⊂ P(m, n) such that fi ◦j g ∈ I(m1 + m2 − 1, n1 + n2 − 1)
for all 1 ≤ i ≤ n1, 1 ≤ j ≤ m2, whenever f ∈ I(m1, n1), g ∈ P(m2, n2), or
f ∈ P(m1, n1), g ∈ I(m2, n2). Intersection of ideals is an ideal. If I is an ideal in
P, then (P/I)(m, n) := P(m, n)/I(m, n) is a dioperad. The augmentation ideal
of P is defined by P̄(1, 1) := 0 and P̄(m, n) := P(m, n) if m + n ≥ 3.

2.4. Let E(1, 2) be a right S2-module, E(2, 1) be a left S2-module, and
E(m, n) = 0 for (m, n) �= (1, 2), (2, 1). Observe that

F(E)(1, 3) = IndS3
S2

(E(1, 2) ⊗ E(1, 2)),

F(E)(3, 1) = IndS3
S2

(E(2, 1) ⊗ E(2, 1)),

F(E)(2, 2) = (E(2, 1) ⊗ E(1, 2)) ⊕ IndS2×S2
{1} (E(1, 2) ⊗ E(2, 1)).

Let (R) be the ideal in F(E) generated by a right S3-submodule R(1, 3) ⊂
F(E)(1, 3), a left S3-submodule R(3, 1) ⊂ F(E)(3, 1), and a (S2, S2)-sub-
bimodule R(2, 2) ⊂ F(E)(2, 2). Denote by 〈E; R〉 the dioperad F(E)/(R). A
dioperad of the form 〈E;R〉 is called a quadratic dioperad with generators E and
relations R. If P is a quadratic dioperad, then P(1, 1) = k and P = 〈E; R〉 where

E(i, j) = P(i, j) for (i, j) = (1, 2), (2, 1),

R(i, j) = Ker(F(E)(i, j) → P(i, j)) for (i, j) = (1, 3), (3, 1), (2, 2).
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2.5. Let Sgnn denote the sign representation of Sn. If V is a (Sm, Sn)-bimodule,
then let V ∗ := Hom(V, k) be the (Sm, Sn)-bimodule with the transposed actions,
and let V ∨ := V ∗ ⊗ (Sgnm ⊗ Sgnn). If P = 〈E;R〉 is a quadratic dioperad, then
its quadratic dual is defined by P! := 〈E∨;R⊥〉, where E∨(i, j) := E(i, j)∨ for
(i, j) = (1, 2), (2, 1), and R⊥(i, j) ⊂ F(E∨)(i, j) = F(E)(i, j)∨ is the orthogonal
complement of R(i, j) for (i, j) = (1, 3), (3, 1), (2, 2). Here, the identification
F(E∨) = F(E)∨ is canonically defined as follows:

F(E∨) = F(Λ−1E∗[−1])
(2.2)
∼−→ Λ−1F(E∗[−1]) = F(E)∨,(2.3)

where the last equality follows from [GiK] Lemma 3.2.9(b).

Example. The quadratic dioperad BiLie has generators E(1, 2) = k · l,
E(2, 1) = k · δ, both with sign actions of S2. The relations are spanned by

(l1 ◦1 l) + (l1 ◦1 l)σ + (l1 ◦1 l)σ2,

(δ1 ◦1 δ) + σ(δ1 ◦1 δ) + σ2(δ1 ◦1 δ),

(δ1 ◦1 l) − (l1 ◦1 δ) − (l1 ◦2 δ) − (l2 ◦1 δ) − (l2 ◦2 δ),

where σ denotes the permutation (123) ∈ S3. Thus, BiLie-algebras are same as
Lie bialgebras [Dr].

The quadratic dual BiLie! has generators E(1, 2) = k · m, E(2, 1) = k · ∆,
both with trivial actions of S2. The relations are spanned by

(m1 ◦1 m) − (m1 ◦1 m)σ, (m1 ◦1 m) − (m1 ◦1 m)σ2,

(∆1 ◦1 ∆) − σ(∆1 ◦1 ∆), (∆1 ◦1 ∆) − σ2(∆1 ◦1 ∆),

(∆1 ◦1 m) − (m1 ◦1 ∆), (∆1 ◦1 m) − (m1 ◦2 ∆),

(∆1 ◦1 m) − (m2 ◦1 ∆), (∆1 ◦1 m) − (m2 ◦2 ∆).

Thus, a BiLie!-algebra is a commutative algebra A equipped with a cocommu-
tative comultiplication ∆ : A → A ⊗ A such that ∆ is a map of A-modules.
Abrams ([Ab] Theorem 1) has proved that unital, counital BiLie!-algebras are
same as unital commutative Frobenius algebras. Observe that BiLie!(m, n) = k
for all m, n (cf. §5.2 below).

Remarks.
(1) Infinitesimal bialgebras (cf. eg. [Ag]) are also algebras over a quadratic

dioperad.
(2) A dioperad P gives a PROP Q defined using the same generators and rela-

tions. Algebras over the dioperad P are same as algebras over the PROP
Q. Since the relations defining P are expressed using trees, the grading of
a free PROP by genus of graphs induces a grading on Q. The bialgebra
PROP does not have this grading because the compatibility relation be-
tween the multiplication and the comultiplication is expressed using a tree
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and a graph of genus 1 (cf. [ES]), hence bialgebras cannot be described by
a dioperad. Thus, not all PROP’s come from dioperads.

3. Cobar dual

3.1. Let P be a dioperad. The bicomplex F(P̄∗[−1])(m, n) has differential
d′ + d′′, where d′ is induced by the differential of P and d′′ is induced by edge
contractions ([GiK] (3.2.3)):

(3.1)

P̄(m, n)∗ d′′
→

⊕
|edge(T)|=1

P̄∗(T ) ⊗ det(T ) d′′
→

⊕
|edge(T)|=2

P̄∗(T ) ⊗ det(T ) d′′
→ . . . ,

where the sums are taken over reduced (m, n)-trees. In (3.1), the leftmost term
is placed in degree 1. The cobar complex CP(m, n) is defined to be the total
complex of F(P̄∗[−1])(m, n).

Define the cobar dual DP of P by DP := Λ−1CP. Thus, DP is the total
complex of

(3.2)

P̄(m, n)∨ d′′
→

⊕
|edge(T)|=1

P̄∗(T )⊗Det(T) d′′
→

⊕
|edge(T)|=2

P̄∗(T)⊗Det(T) d′′
→ . . . ,

where the sums are taken over reduced (m, n)-trees. In (3.2), the leftmost term
is placed in degree 3−m−n. Note that DP is also the total complex of the free
dioperad generated by Λ−1P̄ ∗[−1] with differential d′ + d′′.

Proposition 3.3. There is a canonical quasi-isomorphism DDP → P.

Proof. (See [GiK] Theorem (3.2.16) or [MSS] Theorem 3.24.)

DP(m, n) =
⊕

(m, n)-trees T

⊗
v∈Vert(T)

P̄(Out(v), In(v))∗ ⊗ Det(T).

DDP(m, n) =
⊕

(m, n)-trees T ′

⊗
w∈Vert(T′)

[ ⊕
(Out(v), In(v))-trees Tw⊗

v∈Vert(Tw)

P̄(Out(v), In(v))∗ ⊗ Det(Tw)
]∗ ⊗ Det(T′)

=
⊕

(m, n)-trees T ′

⊕
(m, n)-trees T ≥ T ′

( ⊗
v∈Vert(T)

P̄(Out(v), In(v))
)

⊗ ( ⊗
w∈Vert(T′)

Det(Tw)∗
) ⊗ Det(T′)

=
⊕

(m, n)-trees T

P̄(T ) ⊗ ( ⊕
T ′≤T

⊗
w∈Vert(T′)

Det(Tw)∗ ⊗ Det(T′)
)
,
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where Tw is the subtree of T contracted into w. Note that the summand cor-
responding to T with just one vertex is P(m, n). From here on, continue as in
[GiK] p.247.

3.2. Let P = 〈E;R〉 be a quadratic dioperad concentrated in degree 0. Then

DP(m, n)0 = F(E∨)(m, n), H0DP(m, n) = P!(m, n).(3.4)

If the canonical map DP(m, n) → P!(m, n) is a quasi-isomorphism for all m, n ≥
1, then P is said to be Koszul. If P is Koszul, then DP!-algebras are called strong
homotopy P-algebras.

4. Categorical cobar complex

From now on, P denotes a dioperad concentrated in degree 0 unless otherwise
stated.

4.1. Let T be a forest as in §2 (not necessarily reduced). The direction on
edges induces a partial ordering � on Vert(T). A surjective map  : Vert(T) →
{1, . . . ,N} is called a N -level function on T if v � w implies  (v) �  (w). A
N -level forest (T,  ) is a forest T equipped with a N -level function  . A N -level
forest (T,  ) is said to be i-saturated if each path from a leave to a root traverse
some vertex v such that  (v) = i (v need not be the same for all paths). If (T,  )
is i-saturated for all i, then we say that it is saturated.

4.2. A S-bimodule P = {P(m, n)} is a collection consisting of a (Sm, Sn)-
bimodule P(m, n) for each m, n ≥ 1. We can consider k as a S-bimodule via

k(m, n) :=
{

k if (m, n) = (1, 1),
0 else.

Let M be the category of S-bimodules P with P(1, 1) nonzero. Define a
monoidal structure on M, with unit object k, as follows: if P1,P2 are objects of
M, then let

(P1✷P2)(m, n) :=
⊕
(T,�)

2⊗
i=1

⊗
v∈�−1(i)

Pi(Out(v), In(v)),

where the direct sum is taken over all saturated 2-level (m, n)-trees (T,  ). Thus,
if P1, . . . ,PN are objects of M, then

(P1✷ . . .✷PN )(m, n) =
⊕
(T,�)

N⊗
i=1

⊗
v∈�−1(i)

Pi(Out(v), In(v)),(4.1)

where the direct sum is taken over all saturated N -level (m, n)-trees (T,  ). Di-
operads are precisely monoids in M.

More generally, suppose P1, . . . ,PN are S-bimodules such that Pi ∈ M for
all i ≤ r and Pi /∈ M for all i > r. Let m = (m1, . . . , mk) and n = (n1, . . . , nk).
Then we define (P1✷ . . .✷PN )(m, n) by the right-hand side of (4.1), but with
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the direct sum taken over all N -level (m, n)-forests (T,  ) such that (T,  ) is
i-saturated for all i ≤ r.

4.3. Let P be a dioperad. Then the categorical cobar complex LP of P is

P̄∗ → P̄∗✷2 → P̄∗✷3 → . . . ,

where the leftmost term is placed in degree 1; see [MSS] §3.4 or [SVO] p.398.
More generally, let LP(m, n) be the complex

P̄∗(m, n) → P̄∗✷2(m, n) → P̄∗✷3(m, n) → . . . ,

where the leftmost term is placed in degree 1.

Proposition 4.2. If mi + ni ≥ 3 for all i, then

H(LP(m, n)) = H(CP(m1, n1)) ⊗ . . . ⊗ H(CP(mk, nk)).

In particular, if m + n ≥ 3, then H(LP(m, n)) = H(CP(m, n)).

Define a decreasing filtration on LP(m, n) by letting F pLP(m, n) be the sub-
complex spanned by forests with at least p vertices. This gives a spectral se-
quence

Ep,q
0 =

F pLP(m, n)p+q

F p+1LP(m, n)p+q
=⇒ Hp+q(LP(m, n)).(4.3)

Hence, Proposition 4.2 follows from the following lemma.

Lemma 4.4. If mi + ni ≥ 3 for all i, then

E•,0
1

∼= CP(m1, n1) ⊗ . . . ⊗ CP(mk, nk),

and Ep,q
1 = 0 if q �= 0.

The rest of this section is devoted to the proof of Lemma 4.4, which is same
as the proofs in [MSS] §3.6 and [SVO] §7 except for the following modification:
instead of using their surjection algebra, use another algebra that we next define.

4.4. Let X be a finite set, and let S = {Xi}i∈I be a collection of nonempty
subsets Xi of X such that:

(a) X =
⋃

Xi;
(b) if ∅ �= Y ⊂ Xi for some i, then Y ∈ S;
(c) if ∅ �= Y ⊂ X and all subsets of Y with 2 elements are in S, then Y ∈ S.
Define an associative graded k-algebra A as follows: as a vector space, A has

a basis {1} ∪ {ai}i∈I ; multiplication of basis elements is defined by

aiaj :=
{

ak if Xi ∩ Xj = ∅ & Xi ∪ Xj = Xk,
0 else.

The degree of ai is the number of elements of Xi. Equivalently, A is a quadratic
algebra with generators ax indexed by elements of X, and relations

axay :=
{

ayax if x �= y & {x, y} ∈ S,
0 else.
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Thus, ai is the product of all ax with x ∈ Xi.

Lemma 4.5. The quadratic algebra A is Koszul.

Proof. A PBW basis for A is defined by choosing a simple order on the generators
ax, and then for each i, choose the admissible expression ai = axay . . . az to be
the one which is maximal in the lexicographical ordering; cf. [MSS] Proposition
3.66 or [SVO] Proposition 19. Hence, A is Koszul by [Pr] Theorem 5.3.

4.5. Fix a forest T such that each component of T has at least one vertex. Call
V ⊂ Vert(T) a level of T if there exists a level function  with V =  −1(i) for
some i. Let X = Vert(T) and let S be the collection of all levels of T . Then X
and S satisfy the conditions in §4.4. (To verify condition (c), use induction on
the number of elements in Y .) Thus, there is a corresponding algebra A. Recall
that A has a basis labelled by 1 and all the levels.

Call a sequence V1, . . . , VN of levels good if there exists a N -level function  
such that Vi =  −1(i) for all i. Consider the cochain complex C•(A) := Ā∗⊗•.
For each N , there is a direct sum decompositon Ā⊗N = UN ⊕ VN , where UN is
spanned by ai1⊗. . .⊗aiN

such that Xi1 , . . . , XiN
is not a good sequence of levels,

and VN is spanned by ai1 ⊗ . . .⊗ aiN
such that Xi1 , . . . , XiN

is a good sequence
of levels. Let CN

U be the annihilator of VN and CN
V be the annihilator of UN .

Denote by ∂ the boundary map of the chain complex Ā⊗•. Since ∂(UN ) ⊂ UN−1

and ∂(VN ) ⊂ VN−1, it follows that C•(A) = C•
U ⊕ C•

V , a direct sum of two
subcomplexes.

Let {a∗
i } be the dual basis of {ai}, then CN

V has a basis consisting of all
a∗

i1
⊗. . .⊗a∗

iN
for which Xi1 , . . . , XiN

is a good sequence of levels. The differential
on CN

V is

δ(a∗
i1 ⊗ . . . ⊗ a∗

iN
) =

∑
(−1)ra∗

i1 ⊗ . . . ⊗ δ(a∗
ir

) ⊗ . . . ⊗ a∗
iN

,

δ(a∗
i ) =

∑
Xj

∐
Xk=Xi

a∗
j ⊗ a∗

k

Lemma 4.6. If N �= |Vert(T)|, then HN (C•
V ) = 0. If N = |Vert(T)|, then

HN (C•
V ) = det(T ).

Proof. (See [MSS] Proposition 3.68 or [SVO] Proposition 21.)
Note that H(C•(A)) = H(C•

U )⊕H(C•
V ). Let [a∗

i1
⊗ . . .⊗a∗

iN
] ∈ HN (C•

V ) be a
nonzero cohomology class. By Lemma 4.5, A is Koszul. Therefore, Xi1 , . . . , XiN

must each be a one element subset of Vert(T). But Xi1 , . . . , XiN
is a good

sequence of levels, hence N = |Vert(T)|.
Define a map ι : CN

V → ∧|Vert(T)| kVert(T) ∼= det(T ) by sending a∗
x⊗a∗

y⊗. . .⊗a∗
z

to x ∧ y ∧ . . . ∧ z, where {x}, {y}, . . . , {z} is any good sequence of levels. The
coboundaries in CN

V are spanned by terms of the form a∗
x⊗. . .⊗δa∗

{y1,y2}⊗. . .⊗a∗
z

with

δa∗
{y1,y2} = a∗

y1
⊗ a∗

y2
+ a∗

y2
⊗ a∗

y1
,
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hence ι induces a map HN (C•
V ) → det(T ). Clearly, ι is surjective. Observe that

any two good sequences of singleton levels can be obtained from each other by
performing transpositions of succesive levels while remaining good at the inter-
mediate steps. This implies that HN (C•

V ) is at most one dimensional. Hence ι
is bijective.

4.6. Suppose mi + ni ≥ 3 for all i. For a (m, n)-forest T with p vertices, let

Ep,•
0 (T ) := P̄∗(T1) ⊗ · · · ⊗ P̄∗(Tk) ⊗ Cp+•

V ,

where T1, . . . , Tk are the connected components of T . Observe that the complex
Ep,•

0 of (4.3) is the direct sum of Ep,•
0 (T ) over all (m, n)-forests T with p vertices.

Therefore, Lemma 4.6 implies Lemma 4.4.

5. Koszul complex

From now on, assume that P is quadratic unless otherwise stated.

5.1. Observe that a summand in P✷(ΛP!)∗ corresponding to a saturated 2-
level tree (T,  ) is placed in degree

∑
v∈�−1(2)(2−|Out(v)|− |In(v)|). The Koszul

complex of a quadratic dioperad P = 〈E;R〉 is defined to be KP := P✷(ΛP!)∗

with differential d defined as follows.
Let

µ : P✷P → P and δ : (ΛP!)∗ → (ΛP!)∗✷(ΛP!)∗

be, respectively, the composition map of P and the dual of the composition map
of ΛP!. Let

α(1, 2) : E(1, 2)[1] → E(1, 2), α(2, 1) : E(2, 1)[1] → E(2, 1)

be the identity maps of degree 1. Then d is defined to be the composition

P✷(ΛP!)∗ Id✷δ−→ P✷(ΛP!)∗✷(ΛP!)∗ Φ−→ P✷P✷(ΛP!)∗
µ✷Id−→ P✷(ΛP!)∗,

where Φ is defined to be Id✷α✷Id on saturated 3-level trees whose second level
has one vertex of valency 3 and all other second level vertices are of valency 2,
and zero otherwise.

The proof of the next lemma is a standard argument for twisted tensor
products.

Lemma 5.1. The map d is a differential, i.e. dd = 0.

Proof.

dd = (µ✷Id)Φ(Id✷δ)(µ✷Id)Φ(Id✷δ)
= (µ✷Id)Φ(µ✷Id✷Id)(Id✷Id✷δ)Φ(Id✷δ)
= (µ✷Id)(µ✷Id✷Id)(Id✷Φ)(Φ✷Id)(Id✷Id✷δ)(Id✷δ)
= (µ✷Id)(Id✷µ✷Id)(Id✷Φ)(Φ✷Id)(Id✷δ✷Id)(Id✷δ).

But (Id✷µ✷Id)(Id✷Φ)(Φ✷Id)(Id✷δ✷Id) = 0 by relations defining P (in the
case when the second level has one vertex of valency 4 and all other second
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level vertices are of valency 2) and by Koszul sign rule (in the case when the
second level has two vertices of valency 3 and all other second level vertices are
of valency 2).

Theorem 5.2. A quadratic dioperad P is Koszul if and only if the canonical map
KP → k is a quasi-isomorphism (i.e. KP(m, n) is exact for all (m, n) �= (1, 1)).

Proof. As usual, there is an exact sequence BP(m, n):

(P✷P̄✷ · · ·✷P̄)(m, n) → · · · → (P✷P̄)(m, n) → P(m, n) → k(m, n),

where the leftmost term is placed in degree 1 − m − n and the rightmost term
is placed in degree 0. Suppose m + n ≥ 3. Define a decreasing filtration on
BP(m, n) by letting F pBP(m, n) be the subcomplex spanned by 1-saturated
(m, n)-trees (T,  ) with ∑

v∈�−1(1)

(|Out(v)| + |In(v)| − 2) ≥ p.

This gives a spectral sequence

Ep,q
0 =

F pBP(m, n)p+q

F p+1BP(m, n)p+q
=⇒ Hp+q(BP(m, n)) = 0.(5.3)

Let (T,  ) be a saturated 2-level (m, n)-tree. Suppose

{v1, . . . , vk} := {v ∈  −1(2); |Out(v)| + |In(v)| ≥ 3} �= ∅.
Let

r := (|Out(v1)|, . . . , |Out(vk)|) and s := (|In(v1)|, . . . , |In(vk)|).
Note that, by (2.1), we have

|r| + |s| − 2k +
∑

v∈�−1(1)

(|Out(v)| + |In(v)| − 2) = m + n − 2.(5.4)

Let

Ep,•
0 (T,  ) :=

⊗
v∈�−1(1)

P(Out(v), In(v)) ⊗ LP(r, s)∗[p + 1].(5.5)

Observe that, for 0 ≤ p ≤ m+n− 3, the complex Ep,•
0 of (5.3) is the direct sum

of Ep,•
0 (T,  ) over all saturated 2-level (m, n)-trees (T,  ) such that∑

v∈�−1(1)

(|Out(v)| + |In(v)| − 2) = p.(5.6)

By (3.4) and Proposition 4.2, H |r|+|s|−2k(LP(r, s)) = (ΛP!)(r, s). Hence, by
(5.4)–(5.6),

E•,1−m−n
1 = KP(m, n)[2 − m − n].(5.7)

Now assume that P is Koszul. Suppose (m, n) �= (1, 1). By Proposition 4.2
and (5.4)–(5.6), Ep,q

1 = 0 if q �= 1 − m − n. Hence, by (5.7), KP(m, n) is exact.
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Conversely, assume KP(m, n) is exact for all (m, n) �= (1, 1). Let w :=
(w1, . . . , wj) and x := (x1, . . . , xj), where wl + xl ≥ 3 for all l. We shall prove,
by induction on |w| + |x| − 2j, that

Hi(LP(w, x)) = 0 if i < |w| + |x| − 2j.(5.8)

By Proposition 4.2, this would imply that P is Koszul.
First, note that (5.8) is true if |w| + |x| − 2j = 1. Assume that (5.8) is true

if |w| + |x| − 2j < N . Now let |w| + |x| − 2j = N . By Proposition 4.2, it
suffices to show that, for each l, we have Hi(LP(wl, xl)) = 0 if i < wl + xl − 2.
Consider the spectral sequence (5.3) with m := wl and n := xl. Note that
by (5.5)–(5.6), E0,•

0 = LP(m, n)∗[1], so E0,q
1 = Hq+1(LP(m, n)∗). Moreover, by

induction hypothesis and (5.4)–(5.6), we have Ep,q
1 = 0 if p > 0 and q > 1−m−n.

Hence, by (5.7) and exactness of KP(m, n), we obtain

Ep,q
2 =

{
Hq+1(LP(m, n)∗) if p = 0 and q ≥ 2 − m − n,
0 else.

Therefore, Hi(LP(m, n)) = 0 for i < m + n − 2.

5.2. Observe that if P is a quadratic dioperad, then A(n) := P(1, n) and
B(n) := Pop(1, n) are quadratic operads. The inclusions A ↪→ P and Bop ↪→ P

induce canonical morphisms A✷Bop → P and Bop✷A → P. The following
proposition is adapted from [M2]; cf. also [FM].

Proposition 5.9. Let P = 〈E;R〉 be a quadratic dioperad, let A(n) := P(1, n),
and let B(n) := Pop(1, n).

(a) If P(m, n) = (A✷Bop)(m, n) (resp. P(m, n) = (Bop✷A)(m, n)) for (m, n) =
(2, 2), (2, 3), and (3, 2), then P = A✷Bop (resp. P = Bop✷A).

(b) We have P = A✷Bop if and only if P! = B!op✷A!.
(c) If A and B are Koszul, and P = A✷Bop, then P is Koszul.

Proof.
(a) (See [M2] Theorem 2.3.)

Note that F(E)(2, 2) = (A✷Bop)(2, 2)⊕ (Bop✷A)(2, 2). We have P(2, 2) =
(A✷Bop)(2, 2) if and only if there is a (S2, S2)-equivariant map

λ : (Bop✷A)(2, 2) → (A✷Bop)(2, 2)

such that

R(2, 2) = {x − λ(x); x ∈ (Bop✷A)(2, 2)}.
The rest of the proof is same as [M2] Theorem 2.3. Similarly in the other
case.

(b) (See [M2] Lemma 4.3.)
Assume that P = A✷Bop, and let λ be the map in the proof of (a). Via
the identification (2.3), we obtain

R⊥(2, 2) = {α − λ∨(α); α ∈ (A!✷B!op)(2, 2)},
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where λ∨ is the dual of λ. It follows by a direct verification, using (a), that
P! = B!op✷A!. Similarly for the converse.

(c) (See [M2] Proposition 4.4 and Theorem 4.5.)
Observe that P̄✷P̄ ⊂ F(P̄). Thus, using (2.2), we have

KP = A✷Bop✷(Λ(B!op✷A!))∗ = A✷Bop✷(ΛBop!)∗✷(ΛA!)∗.

Suppose (m, n) �= (1, 1). Define a decreasing filtration on KP(m, n) by let-
ting F pKP(m, n) be the subcomplex spanned by saturated 4-level (m, n)-
trees (T,  ) with

∑
v∈�−1(4)

(2 − |Out(v)| − |In(v)|) ≥ p.

This gives a spectral sequence

Ep,q
0 =

F pKP(m, n)p+q

F p+1KP(m, n)p+q
=⇒ Hp+qKP(m, n).

Now Ep,•
0 is the subcomplex of A✷KBop✷(ΛA!)∗ (with differential

Id✷d✷Id) spanned by saturated 3-level (m, n)-trees (T,  ) with
∑

v∈�−1(3)

(2 − |Out(v)| − |In(v)|) = p.

Thus, Ep,q
1 = 0 if q �= 0 and E•,0

1 = KA(m, n). Hence, Ep,q
2 = 0 for all p, q.

Corollary 5.10. The dioperad BiLie is Koszul.

Proof. This is immediate from Proposition 5.9 and Koszulity of the Lie operad
Lie ([BG] (6.4) or [GiK] Corollary (4.2.7)). We have: BiLie = Lie✷Lieop,
BiLie! = Comop✷Com, where Com = Lie!.

Remarks.
(1) Note that, in more explicit terms, the cobar dual of BiLie! is the complex

of trees with multiple leaves and multiple roots. The Koszulity of BiLie!

means that the cohomology of its cobar dual is zero in all negative degrees,
but the author does not know of a direct proof of this.

(2) Similarly, one can show that the infinitesimal bialgebra dioperad is Koszul.
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