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POISSON CAPACITIES

E.B. Dynkin and S. E. Kuznetsov

Abstract. Poisson capacities appeared, first, in the theory of removable bound-
ary singularities for solutions of semilinear elliptic differential equations. It seems
that these capacities should play a key role for solving the problem: to describe
all positive solutions of the equation Lu = uα with α > 1 in a smooth domain.
We establish two inequalities for the Poisson capacities which might be useful for
this task.

1. Introduction

1.1. Motivation. A Poisson capacity CPα(Γ) was introduced in [DK96] as a
tool for a study of semilinear elliptic differential equations Lu = uα. It was
proved that, if D is a bounded smooth domain, then a closed subset Γ of ∂D
is a removable singularity for positive solutions of Lu = uα in D if and only
if CPα(Γ) = 0. First, this was conjectured in [Dyn94]. In the case α = 2,
the conjecture was proved by Le Gall [Le95] who used a different definition of
capacity (not applicable to α �= 2). Le Gall’s capacity Cap∂ has the same class
of null sets as CPα.

The present paper is motivated by a recent work by Mselati [Ms02] who
proved that positive solutions of ∆u = u2 are characterized uniquely by their fine
boundary traces introduced in [DK98].1 A key part of Mselati’s investigation is
establishing bounds for certain solutions (associated with Γ) in terms of Cap∂(Γ).
A challenging problem is to get a similar result in the case α �= 2 by using Poisson
capacities. This note may be considered as a step in this direction.

1.2. Capacity Cap. Fix a constant α > 1, a bounded smooth domain D of
class C2,λ in R

d and a second order uniformly elliptic differential operator L in
D.

Denote by M(Γ) the set of all finite measures on Γ and put µ ∈ P(Γ) if, in
addition, µ(Γ) = 1. There exists a positive function k(x, y) (called the Poisson
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kernel of L in D) such that the formula

hµ(x) =
∫

∂D

k(x, y)µ(dy)(1.1)

establishes a 1-1 correspondence between M(∂D) and the set of all positive
solutions h of the equation Lh = 0 in D. We define a Poisson capacity of a Borel
set Γ ⊂ ∂D by the formula

Cap(Γ) = sup
ν∈P(Γ)

H(ν)−1.(1.2)

where

H(µ) =
∫

D

dist(y, ∂D)hµ(y)αdy.(1.3)

[Cap(Γ) = CPα(Γ)α where CPα is the capacity used in [Dy02]. A subscript α
can be dropped since α is fixed.]

We denote by C constants depending only on D, L and α (their values can vary
even within one line). We indicate explicitely the dependence on any additional
parameter. For instance, we write Cκ for a constants depending on a parameter
κ (besides a possible dependence on D, L, α). An upper bound of Cap(Γ) is
given by:

Theorem 1.1. For all Γ,

Cap(Γ) ≤ C diam(Γ)γ+(1.4)

where

diam(Γ) = sup
x,y∈Γ

|x − y|,(1.5)

γ = dα − d − α − 1 and γ+ = γ ∨ 0.(1.6)

1.3. Capacities Capx. Put

Hx(µ) =
∫

D

g(x, y)hµ(y)αdy(1.7)

where g(x, y) is the Green function of L in D. To every x ∈ D there corresponds
a capacity on ∂D defined by the formula

Capx(Γ) = sup
ν∈P(Γ)

Hx(ν)−1(1.8)

The second theorem establishes a lower bound for Capx in terms of Cap.
The values α < (d + 1)/(d − 1) are called subcritical and the values α ≥

(d + 1)/(d − 1) are called supercrtical.

Theorem 1.2. Suppose that L is an operator of divergence form (1.13) and
d ≥ 3. Put

ϕ(x) = dist(x, ∂D) dist(x,Γ)−d.(1.9)
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If α is subcritical, then

Capx(Γ) ≥ Cϕ(x)−1 Cap(Γ).(1.10)

for all Γ and x.
If α is supercritical, then, for every κ > 0 there exists a constant Cκ such that

Capx(Γ) ≥ Cκϕ(x)−1 Cap(Γ)(1.11)

for all Γ and x subject to the condition

dist(x,Γ) ≥ κ diam(Γ).(1.12)

[An analog of formula (1.11) with Cap replaced by Cap∂ follows from formula
(3.34) in [Ms02] in the case L = ∆, α = 2, d ≥ 4 and κ = 4.]

1.4. On operator L and domain D. We consider an operator

Lu(x) =
d∑

i,j=1

aij(x)
∂2

∂xi∂xj
u(x) +

d∑
i=1

bi(x)
∂

∂xi
u(x)

in a domain D in R
d. Without loss of generality we can put aij = aji. We

assume that

1.4.A.2 There exists a constant β > 0 such that∑
aij(x)titj ≥ β

∑
t2i for all x ∈ D, t1, . . . , td ∈ R.

1.4.B. All coefficients aij(x) and bi(x) are Hölder continuous in D̄ with ex-
ponent λ and Hölder’s coefficient Λ.

We assume that the domain D is smooth (more precicely, D is a domain of
class C2,λ) which means that ∂D can be straightened near every point x ∈ ∂D.
To define straightening, we consider a half-space E+ = {x = (x1, . . . , xd) : xd >
0} = R

d−1 ×R+ and its boundary E0 = {x = (x1, . . . , xd) : xd = 0}. We assume
that, for every x ∈ ∂D, there exists a ball B(x, ε) = {y : |x − y| < ε} and a
diffeomorphism ψx of class C2,λ from B(x, ε) onto a domain D̃ ⊂ R

d such that
ψ(B(x, ε) ∩ D) ⊂ E+ and ψ(B(x, ε) ∩ ∂D) ⊂ E0. We say that ψx straightens
the boundary in B(x, ε).

In Theorem 1.2 we restrict ourself to operators of divergence form

Lu(x) =
d∑

i,j=1

∂

∂xi
aij(x)

∂

∂xj
u(x).(1.13)

2The property 1.4.A is called uniform ellipticity and β is called the ellipticity coefficient
of L.
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1.5. Bounds for g(x, y) and k(x, y). In the proofs of Theorems 1.1 and 1.2
we use the following bounds for the Poisson kernel (see, e.g. [Maz75], Lemma 6
and the Appendix B in [Dy02]):

C−1ρ(x)|x − y|−d ≤ k(x, y) ≤ Cρ(x)|x − y|−d(1.14)

where

ρ(x) = dist(x, ∂D).(1.15)

[It follows from (1.14) that, if Cap′ and Cap′′ are the Poisson capacities as-
sociated with operators L′ and L′′, then Cap′(Γ)/ Cap′′(γ) ≤ C where C is a
constant independent of Γ.]

In the proof of Theorem 1.2 we also use bounds for the Green function:

g(x, y) ≤ C|x − y|2−d,(1.16)

g(x, y) ≤ Cρ(x)|x − y|1−d,(1.17)

g(x, y) ≤ Cρ(x)ρ(y)|x − y|−d.(1.18)

established in [GrW] for operators L of divergence form and d ≥ 3.

2. Upper bound for Cap(Γ)

2.1. Capacity Ĉap. To prove Theorem 1.1 we introduce a capacity on the set
E0 associated with the kernel

k̂(x, y) = r(x)|x − y|−d, x ∈ E+, y ∈ E0(2.1)

where

r(x) = dist(x, E0) = xd.(2.2)

Put

E = {x = (x1, . . . , xd) : 0 < xd < 1},(2.3)

To every measure ν ∈ P(E0) there corresponds a function

ĥν(x) =
∫

E0

k̂(x, y)ν(dy)

on E+. Put

Ĥ(ν) =
∫

E

r(x)ĥν(x)α dx.

and

Ĥ(ν, B) =
∫

B

r(x)ĥ(x)α dx

for B ⊂ E+. Note that

k̂(x/t, y/t) = td−1k̂(x, y) for all t > 0.
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To every ν ∈ P(E0) there corresponds a measure νt defined by the formula
νt(B) = ν(tB). We have∫

E0

f(y)νt(dy) =
∫

E0

f(y/t)ν(dy)

for every function f and therefore

ĥνt(x/t) =
∫

E0

k̂(x/t, y)νt(dy) =
∫

E0

k̂(x/t, y/t)ν(dy) = td−1ĥν(x).(2.4)

Change of variables x = tx̃ and (2.4) yield

Ĥ(νt) = tγĤ(ν, tE).

If t ≥ 1, then tE ⊃ E and we have

Ĥ(νt) ≥ tγĤ(ν).(2.5)

We introduce a capacity on E0 by the formula

Ĉap(Γ) = sup
ν∈P(Γ)

Ĥ(ν)−1.(2.6)

Lemma 2.1. If diam(Γ) ≤ 1, then

Ĉap(Γ) ≤ Cd(diam(Γ))γ .(2.7)

The constant Cd depends only on the dimension d. (It is equal to Ĉap(U) where
U = {x ∈ E0 : |x| < 1}.

Proof. Since Ĉap is translation invariant, we can assume that 0 ∈ Γ. Let t =
diam(Γ)−1. Since tΓ ⊂ U , we have

Ĉap(tΓ) ≤ Ĉap(U).(2.8)

Since ν → νt is a 1-1 mapping from P(tΓ) onto P(Γ), we get

Ĉap(Γ) = sup
νt∈P(Γ)

Ĥ(νt)−1 = sup
ν∈P(tΓ)

Ĥ(νt)−1.

Therefore, by (2.6) and (2.5),

Ĉap(Γ) ≤ t−γĈap(tΓ)

and (2.8) implies (2.7).

2.2. Two lemmas.

Lemma 2.2. Suppose D ⊂ E, 0 ∈ Γ ⊂ ∂D ∩ E0 and put A = ∂D ∩ E+,
Bλ = {x ∈ E : |x| < λ}. If dist(Γ, A) > 2λ, then Bλ ⊂ D and r(x) = ρ(x) for
x ∈ Bλ.
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Proof. If x ∈ Bλ, then r(x) ≤ |x| < λ. If x ∈ Bλ and y ∈ A, then |x − y| ≥
|y| − |x| > λ because |y| > dist(y, Γ) > dist(A,Γ) > 2λ. Hence dist(x, A) ≥ λ
which implies that Bλ ⊂ D.

For x ∈ D ∪ ∂D, ρ(x) = dist(x, Dc), r(x) = dist(x, Ec
+) and therefore ρ(x) ≤

r(x). Put Ã = ∂D \ A. Let x ∈ Bλ. Since ρ(x) = dist(x, Ã) ∧ dist(x, A),
the equality r(x) = ρ(x) holds because dist(x, Ã) ≥ r(x) (since Ã ⊂ E0) and
dist(x, A) ≥ λ > r(x).

Lemma 2.3. There exists a constant C (depending only on λ) such that

Ĥ(ν, Bλ) ≥ CĤ(ν)(2.9)

for all Γ � 0 such that diam(Γ) < λ/2 and for all ν ∈ P(Γ).

Proof. If x ∈ Fλ = E+ \ Bλ and y ∈ Γ, then |y| ≤ diam(Γ) < λ/2 ≤ |x|/2 and
therefore |x − y| > |x| − |y| ≥ |x|/2. This implies

ĥν(x) ≤ r(x)2d|x|−d

and

Ĥ(ν, Fλ) ≤ 2dα

∫
Fλ

r(x)α+1|x|−dαdx = C1 < ∞.(2.10)

On the other hand, if x ∈ Bλ, y ∈ Γ, then |x − y| ≤ |x| + |y| ≤ 3λ/2. Therefore
ĥν(x) ≥ (3λ/2)−dr(x) and

Ĥ(ν, Bλ) ≥ (3λ/2)−dα

∫
Bλ

r(x)α+1dx = C2 > 0.(2.11)

It follows from (2.10) and (2.11) that

C1Ĥ(ν, Bλ) ≥ C1C2 ≥ C2Ĥ(ν, Fλ) = C2[Ĥ(ν) − Ĥ(ν, Bλ)]

and (2.9) holds with C = C2/(C1 + C2).

2.3. Straightening of the boundary.

Proposition 2.1. Suppose that D is a bounded smooth domain. Then there
exist strictly positive constants ε, a, b such that, for every x ∈ ∂D:

(a) The boundary can be straightened in B(x, ε).
(b) The corresponding diffeomorphism ψx satisfies the conditions

a−1|y1 − y2| ≤ |ψx(y1) − ψx(y2)| ≤ a|y1 − y2| for all y1, y2 ∈ B(x, ε);(2.12)

a−1 diam(A) ≤ diam(ψx(A)) ≤ adiam(A) for all A ⊂ B(x, ε);(2.13)

(2.14) a−1 dist(A1, A2) ≤ dist(ψx(A1), ψx(A2)) ≤ a dist(A1, A2)

for all A1, A2 ⊂ B(x, ε).

b−1 ≤ Jx(y) ≤ b for all y ∈ B(x, ε)(2.15)

where Jx(y) is the Jacobian of ψx at y.
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Diffeomorphisms ψx can be chosen to satisfy additional conditions

ψx(x) = 0 and ψx(B(x, ε)) ⊂ E.(2.16)

Proof. The boundary ∂D can be covered by a finite number of balls Bi =
B(xi, εi). The function q(x) = maxi dist(x, Bi) is continuous and strictly posi-
tive on ∂D. Therefore ε = 1

2 minx q(x) > 0. For every x ∈ D we choose a ball
Bi which contains x and we put

ψx(y) = ψxi
(y) for y ∈ B(x, ε).

This is a diffeomorphism straightening ∂D in B(x, ε).
Since the closure of B(x, ε) is contained in Bi, ψxi

is uniformly continuous on
B(x, ε). The inverse mapping is uniformly continuous on the image of B(x, ε).
Hence there exist constants ai > 0 such that

a−1
i |y1 − y2| ≤ |ψxi(y1) − ψxi(y2)| ≤ ai|y1 − y2| for all y1, y2 ∈ B(xi, εi/2).

The condition (2.12) holds for a = max ai. The conditions (2.13) and (2.14)
follow from (2.12). The condition (2.15) holds because Jxi is continuous and
strictly positive on the closure of Bi.

By replacing ψx(y) with c[ψx(y)−ψx(x)] with is a suitable constant c, we get
diffeomorphisms subject to (2.16) in addition to (2.12)-(2.15).

2.4. Proof of Theorem 1.1.
1◦. If γ < 0, then (1.4) holds because Cap(Γ) ≤ Cap(∂D) = C. To prove (1.4)

for γ ≥ 0, it is sufficient to prove that, for some β > 0, there is a constant
C1 such that

Cap(Γ) ≤ C1 diam(Γ)γ if diam(Γ) ≤ β.

Indeed,

Cap(Γ) ≤ C2 diam(Γ)γ if diam(Γ) ≥ β

with C2 = Cap(∂D)β−γ .

2◦. Let ε, a be the constants defined in Proposition 2.1 and let β = ε/2 ∧ 1.
Suppose that diam(Γ) ≤ β and let x ∈ Γ. Consider a straightening ψx

of ∂D in B(x, ε) which satisfies conditions (2.16). Put B = B(x, ε), B̃ =
B(x, ε/2). There exists a smooth domain U such that B̃∩D ⊂ U ⊂ B∩D.
Note that B̃ ∩ ∂D ⊂ ∂U ∩ ∂D ⊂ B ∩ ∂D. If A = ∂U ∩ B ∩ D, then
dist(x, A) ≥ ε/2 and dist(Γ, A) ≥ ε/2 − diam(Γ) ≥ ε/2 − β. Denote by
U ′,Γ′, A′ the images of U,Γ, A under ψx. By (2.13), diam(Γ′) ≤ λ1 = aβ
and dist(Γ′, A) ≥ λ2 = (ε/2 − β)/a. If β < ε(8a2 + 2)−1, then λ1 < λ2/4
and Lemmas 2.2 and 2.3 are applicable to U ′, Γ′ and λ = 1

2 (λ1 + λ2/4).
3◦. By (1.14) and (2.14), for every y ∈ U, z ∈ Γ,

(2.17) k(y, z) ≥ C dist(y, ∂D)|y − z|−d

≥ C dist(y, ∂U)|y − z|−d ≥ C

a
dist(y′, ∂U)|y′ − z′|−d
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where y′ = ψx(y), z′ = ψx(z). If ν′ is the image of ν ∈ P(Γ) under ψx,
then ∫

Γ

f [ψx(z)]ν(dz) =
∫

Γ′
f(z′)ν′(dz′)

for every positive measurable function f . In particular,∫
Γ

|y′ − ψx(z)|−dν(dz) =
∫

Γ′
|y′ − z′|−dν′(dz′).(2.18)

By (2.17) and (2.18),∫
Γ

k(y, z)ν(dz) ≥ C dist(y′, ∂U ′)
∫

Γ′
|y′ − z′|−dν′(dz′).

If y′ ∈ Bλ, then, by Lemma 2.2, dist(y′, ∂U ′) = r(y′) and we have

hν(y) =
∫

Γ

k(y, z)ν(dz) ≥ C

∫
Γ′

r(y′)|y′ − z′|−dν′(dz′) = Cĥν′ [ψx(y)].(2.19)

By (2.14), dist(y, ∂D) ≥ dist(y, ∂U) ≥ C dist(y′, ∂U ′) and therefore
(1.3) and (2.19) imply

H(ν) =
∫

D

dist(y, ∂D)hν(y)αdy ≥ C

∫
U

dist(ψx(y), ∂U ′)ĥν′ [ψx(y)]αdy(2.20)

Note that ∫
U ′

f(y′)dy′ =
∫

U

f [ψx(y)]Jx(y)dy

and, if f ≥ 0, then, by (2.15),∫
U ′

f(y′)dy′ ≤ b

∫
U

f [ψx(y)]dy.

By taking f(y′) = dist(y′, ∂U ′)ĥν′(y′)α, we get from (2.20)

H(ν) ≥ C

∫
U ′

dist(y′, ∂U ′)ĥν′(y′)αdy′.

By Lemma 2.2, U ′ ⊃ Bλ and dist(y′, ∂U ′) = r(y′) on Bλ. Hence

H(ν) ≥ C

∫
Bλ

r(y′)ĥν′(y′)αdy′ = CĤ(ν′, Bλ).

By Lemma 2.3, this implies H(ν) ≥ CĤ(ν′) and Cap(Γ) ≤ CĈap(Γ′). The
bound Cap(Γ) ≤ C diam(Γ)γ follows from Lemma 2.1 and (2.14).
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3. Lower bound for Capx

3.1. Put
δ(x) = dist(x,Γ), D1 = {x ∈ D : δ(x) < ρ(x)/2}, D2 = D \ D1;

Hx(ν, B) =
∫

B

g(x, y)hν(y)αdy for B ⊂ D
(3.1)

and let

Ux = {y ∈ D : |x − y| < δ(x)/2}, Vx = {y ∈ D : |x − y| ≥ δ(x)/2}.(3.2)

Theorem 1.2 follows from the following three lemmas.

Lemma 3.1. For all Γ, all ν ∈ P(Γ) and all x ∈ D,

Hx(ν, Vx) ≤ Cϕ(x)H(ν).(3.3)

Proof. By (1.14), for all ν ∈ P(Γ) and all y ∈ Vx,

hν(y) =
∫

Γ

k(y, z)ν(dz) ≤ Cρ(y)
∫

Γ

|y − z|−dν(dz) ≤ Cϕ(x)

and, by (1.18),

Hx(ν, Vx) ≤ Cρ(x)
∫

Vx

ρ(y)|x − y|−dhν(y)αdy ≤ Cϕ(x)H(ν).

Lemma 3.2. For all Γ, all ν ∈ P(Γ) and all x ∈ D1,

Hx(ν, Ux) ≤ Cϕ(x)H(ν).(3.4)

Proof. By the Harnack’s inequality, if h is harmonic in D and if |x − y|/ρ(x) ≤
r < 1, then

1 − r

(1 + r)d−1
hν(x) ≤ hν(y) ≤ 1 + r

(1 − r)d−1
hν(x)

(see, e.g. [GT98], Problem 2.61). If x ∈ D1, then this inequality holds with
r = 1/4 for all y ∈ Ux. Therefore

Hx(ν, Ux) ≤ Cdhν(x)α

∫
Ux

g(x, y)dy(3.5)

and

H(ν) ≥ Cdhν(x)α

∫
Ux

ρ(y)dy.(3.6)

where Cd depends only on d. By (1.17),∫
Ux

g(x, y)dy ≤ Cρ(x)
∫

Ux

|x − y|1−ddy ≤ Cδ(x)ρ(x).(3.7)

Since ρ(y) ≥ ρ(x)/2 for y ∈ Ux, we have∫
Ux

ρ(y)dy ≥ 1
2
ρ(x)

∫
Ux

dy = Cdρ(x)δ(x)d.(3.8)
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Since δρ ≤ ϕρδd/2, bound (3.4) follows from (3.5)–(3.8).

Lemma 3.3. For all Γ, all ν ∈ P(Γ) and all x ∈ D2,

Hx(ν, Ux) ≤ Cϕ(x)θ(x)−γ+H(ν)(3.9)

where

θ(x) = dist(x,Γ)/ diam(Γ).

Proof. If diam(Γ) = λ, then, by (1.2), and Theorem 1.1,

H(ν)−1/α ≤ Cap(Γ) ≤ Cλγ+/α.

Hence,

H(ν) ≥ Cλ−γ+.(3.10)

If x ∈ D2 and y ∈ Ux, then δ(y) ≥ δ(x) − |x − y| > δ(x)/2 and ρ(y) ≤
ρ(x) + |x − y| ≤ 2δ(x) + δ(x)/2 = 5δ(x)/2. For all z ∈ Γ, y ∈ Ux, |y − z| ≥
|z − x| − |y − x| ≥ δ(x)/2 and, by (1.14),

k(y, z) ≤ Cρ(y)|y − z|−d ≤ Cδ(x)1−d.

Therefore hν(y) ≤ Cδ(x)1−d and, by (1.17),

Hx(ν, Ux) ≤ Cρ(x)δ(x)(1−d)α

∫
Ux

|x − y|1−ddy ≤ Cϕ(x)δ(x)−γ .(3.11)

If γ < 0, then δ(x)−γ ≤ diam(D)−γ = C. If γ ≥ 0, then γ = γ+. Hence, the
bound (3.9) follows from (3.10) and (3.11).

3.2. Proof of Theorem 1.2. Since Hx(ν) = Hx(ν, Vx) + Hx(ν, Ux), we get
from Lemmas 3.1–3.3 that

Hx(ν) ≤ C (1 ∨ θ(x)−γ+)ϕ(x)H(ν)

for all Γ, all ν ∈ P(Γ) and all x ∈ D. By (1.2) and (1.8), this implies

Capx(Γ) ≥ C(1 ∨ θ(x)γ+)ϕ(x)−1 Cap(Γ)(3.12)

for all Γ and all x ∈ D. If α is subcritical, then γ < 0 and (3.12) implies (1.10).
If α is supercritical, then γ ≥ 0 and (1.11) holds under the condition (1.12).
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