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EXISTENCE OF IRREDUCIBLE R-REGULAR ELEMENTS IN
ZARISKI-DENSE SUBGROUPS

Gopal Prasad and Andrei S. Rapinchuk

Let G be a connected semisimple algebraic group defined over the field R of
real numbers. An element x of G(R) is called R-regular if the number of eigen-
values, counted with multiplicity, of modulus 1 of Adx is minimum possible. (If
G is R-anisotropic, i.e., the group G(R) is compact, every element of G(R) is R-
regular.) The existence of R-regular elements in an arbitrary subsemigroup Γ of
G(R) which is Zariski-dense in G was proved by Y. Benoist and F. Labourie [3]
using Oseledet’s multiplicative ergodic theorem, and then reproved by the first-
named author [15] by a direct argument. Recently G.A. Margulis and G.A. Soifer
asked us a question, which arose in their joint work with H. Abels on the Aus-
lander problem, about the existence of R-regular elements with some special
properties. The purpose of this note is to answer their question in the affirma-
tive. Before formulating the result, we recall (cf. [16], Remark 1.6(1)) that an
R-regular element x is necessarily semisimple, so if in addition it is regular, then
T := ZG(x)◦ is a maximal torus; moreover, x belongs to T (see [4], Corollary
11.12).

Theorem 1. Let G be a connected semisimple real algebraic group. Then any
Zariski-dense subsemigroup Γ of G(R) contains a regular R-regular element x
such that the cyclic subgroup generated by it is a Zariski-dense subgroup of the
maximal torus T := ZG(x)◦.

Remark 1. Let Γ, x and T = ZG(x)◦ be as in Theorem 1. Let Ts (resp., Ta) be
the maximal R-split (resp., R-anisotropic) subtorus of T . Then T = Ts · Ta (an
almost direct product), Ts is a maximal R-split torus of G since x is R-regular
(see [16], Lemma 1.5), and Ta(R) � (R/Z)r, where r = dimTa. There is a
positive integer d such that xd = y · z with y ∈ Ts(R) and z ∈ Ta(R). Then the
cyclic group C generated by z is dense in Ta in the Zariski-topology and since
Ta(R) is a compact Lie group, C is actually dense in Ta(R) in the usual compact
Hausdorff topology on the latter. Thus, in particular, if G(R) is compact, then
any dense subsemigroup contains a Kronecker element, i. e. an element such that
the closure of the subsemigroup generated by it is a maximal torus.

Also, since the cyclic subgroup generated by x is dense in T in the Zariski-
topology, ZG(x) = ZG(T ) = T . Thus the centralizer of x is connected.
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Remark 2. Let Γ, x and T = ZG(x) be as in Theorem 1. Assume, in addition,
that Γ is a subgroup. Then the subset {γxnγ−1 | γ ∈ Γ, n ∈ Z − {0}}, which
consists of R-regular elements with the properties described in Theorem 1, is
Zariski-dense in G. To see this note that the cyclic subgroup generated by x
is dense in T and, as is well-known, the union of the conjugates of T under a
Zariski-dense subset (of G) is Zariski-dense in G.

The proof of Theorem 1 uses the result of [15], some facts about R-regular
elements established in [16] and suitable generalizations of our recent results
about irreducible tori [17]. We recall that a torus T defined over a field K is
called K-irreducible if it does not contain any proper K-subtori, and a regular
semisimple element x ∈ G(K), where G is a semisimple K-group, K-irreducible
if the torus T = ZG(x)◦ is K-irreducible. To handle arbitrary semisimple groups,
these notions need to be generalized as follows.

Let G be a connected semisimple algebraic group defined over a field K. Then
G = G(1) · · ·G(s), an almost direct product of connected K-simple groups G(i)

(cf. [19]). Given a maximal torus T of G, we let T (i) denote the maximal torus
T∩G(i) of G(i), for any i = 1, . . . , s. We say that a maximal K-torus T of G is K-
quasi-irreducible if it does not contain any K-subtori other than those which are
almost direct product of some of the T (i)’s. Furthermore, a regular semisimple
element x ∈ G(K) will be called K-quasi-irreducible if the torus T = ZG(x)◦

is K-quasi-irreducible, and x will be called K-quasi-irreducible anisotropic if,
in addition, T is anisotropic over K. We also say that an element x ∈ G is
without components of finite order if in some (equivalently, any) decomposition
x = x1 · · ·xs with xi ∈ G(i), all the xi’s have infinite order. (Of course, if G is
absolutely, or even K-, simple, then the notions of K-irreducibility and K-quasi-
irreducibility for maximal K-tori of G and regular semisimple elements of G(K)
coincide, and elements without components of finite order are simply elements
of infinite order.) It is easy to see that a K-quasi-irreducible element x ∈ G(K),
which is without components of finite order, generates a Zariski-dense subgroup
of the corresponding torus T = ZG(x).

We now observe that without loss of generality the subsemigroup Γ in Theo-
rem 1 can be assumed to be finitely generated, hence contained in G(K), where
K is a suitable finitely generated subfield of R over which G is defined; therefore,
we see that Theorem 1 is a consequence of the following.

Theorem 2. Let K be a finitely generated subfield of R, and G be a connected
semisimple algebraic K-group. Then any finitely generated subsemigroup Γ of
G(K) which is Zariski-dense in G contains a Zariski-dense set of R-regular K-
quasi-irreducible anisotropic elements without components of finite order.

One of the ingredients of the proof of Theorem 2 is the following refinement
(with a different proof) of Theorem 1 of [17]. We observe that this refinement
is valid for an arbitrary semisimple group defined over an infinite field (of any
characteristic) while the result in [17] was established only for absolutely almost
simple groups over global fields.
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Theorem 3. Let G be a connected semisimple algebraic group defined over an
infinite field K, r be the number of nontrivial conjugacy classes in the absolute
Weyl group of G. Furthermore, let S be a set of r nontrivial inequivalent nonar-
chimedean valuations of K such that for every v ∈ S, the completion Kv is
locally compact and splits G. Then

(i) for each v ∈ S, we can choose a maximal Kv-torus Tv of G so that any
K-torus T which is conjugate to Tv under an element of G(Kv), for all
v ∈ S, is K-quasi-irreducible and anisotropic over K;

(ii) there exists an open subset U of GS :=
∏

v∈S G(Kv) with the following
properties:
(a) U intersects every open subgroup of GS , and for any element x = (xv)

of U, all the xv’s are elements without components of finite order;
(b) δ−1

S (δS(G(K))∩U), where δS : G(K)→ GS is the diagonal embedding,
consists of K-quasi-irreducible anisotropic elements.

First, we need to fix some notations and conventions. Given a maximal torus
T of G, we let Φ(G, T ) denote the root system of G with respect to T . As usual,
we will identify the absolute Weyl group W (G, T ) = NG(T )/T with a normal
subgroup of Aut Φ(G, T ). For x ∈ W (G, T ), we let [x] denote the conjugacy
class of x in W (G, T ), and for a subset X of W (G, T ), we let [X] denote the
collection of conjugacy classes [x] with x ∈ X (in particular, [W (G, T )] is the set
of all conjugacy classes in W (G, T )). Next, given two maximal tori T1, T2 and
an element g ∈ G such that T2 = gT1g

−1, we let ιg denote the isomorphism from
Aut Φ(G, T1) to Aut Φ(G, T2) induced by Int g. We notice that given another
g′ ∈ G with the property T2 = g′T1(g′)−1, we have g′g−1 ∈ NG(T2) and ιg′ =
Int w ◦ ιg, where w is the class of g′g−1 in W (G, T2); in particular, there is a
well-defined bijection ιT1,T2 : [W (G, T1)] → [W (G, T2)] satisfying the standard
properties: ιT,T = id, ιT1,T2 = ι−1

T2,T1
, and ιT1,T3 = ιT2,T3 ◦ ιT1,T2 . Finally, if

a maximal torus T is defined over a field L ⊃ K, we will denote by LT its
minimal splitting field over L and by G(T, L) the corresponding Galois group
Gal(LT /L). Since G is semisimple, Φ(G, T ) generates the character group X(T ),
and therefore the action of G(T, L) on Φ(G, T ) allows one to identify it with a
subgroup of Aut Φ(G, T ).

Proof of Theorem 3(i). Let π : G̃ → G be the simply connected cover of G
defined over K, where π is a central isogeny. By our assumption, for each v ∈ S,

the group G, and hence also its simply connected cover G̃, splits over Kv and
therefore, G̃ possesses a maximal torus C̃v which is defined and split over Kv.
According to a theorem of A. Grothendieck (see [5], Theorem 7.9, and also [8]
for the characteristic zero case), the K-variety T̃ of maximal tori of G̃ is a K-
rational homogeneous space of G̃, hence has the weak approximation property
(see [14], Proposition 7.3). Since the orbit G̃(Kv) · C̃v (which coincides with
the G̃(Kv)-conjugacy class of C̃v) is open in T̃ (Kv) for all v ∈ S, by the weak
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approximation property of T̃ there exists a maximal K-torus T̃0 of G̃ which
splits over Kv for all v ∈ S. Set T0 = π(T̃0).

We fix a bijection between S and the set of nontrivial conjugacy classes in
W (G, T0) and for v ∈ S, we will denote the corresponding conjugacy class by
cv. We have the following:

Lemma 1. For each v ∈ S, there exists a maximal Kv-torus Tv of G such that
cv ∈ ιTv,T0([G(Tv, Kv) ∩W (G, Tv)]).

Proof. The central isogeny π : G̃→ G induces an isomorphism

π̄ : W (G̃, T̃0)→W (G, T0).

Let c̃v be the conjugacy class in W (G̃, T̃0) such that π̄(c̃v) = cv, and x ∈
W (G̃, T̃0) be a representative of c̃v. Since T̃0 splits over Kv, G̃/Kv and the
torus T̃0/Kv are obtained respectively from a Chevalley group-scheme over Z

and a split-torus Z-subscheme by base change Z → Kv. From this we see that
there exists a finite subgroup N of Ñ0(Kv), where Ñ0 = NG̃(T̃0), that contains
representatives of all elements of W (G̃, T̃0). Let y ∈ N be a representative of x.

The homomorphism ζ : Ẑ→ Ñ0(Kv) defined by ζ(1) = y can be thought of as a
continuous 1-cocycle on the group Gal(Kur

v /Kv) with values in Ñ0(Kur
v ), where

Kur
v is the maximal unramified extension of Kv (we recall that being locally

compact, Kv is either a finite extension of the field Qp of p-adic numbers or it is
the field of Laurent power series in one variable over a finite field, and therefore
there exists an isomorphism Ẑ � Gal(Kur

v /Kv) sending 1 to the Frobenius au-
tomorphism ϕ), and hence also as a continuous 1-cocycle on Gv := Gal(Ks

v/Kv)
with values in Ñ0(Ks

v), where Ks
v is a separable closure of Kv containing Kur

v .
Since H1(Kv, G̃) = {1} (Kneser [10] for characteristic zero and Bruhat-Tits [7]
for general local fields with perfect residue field of cohomological dimension � 1),
there exists g ∈ G̃(Ks

v) such that ζ(γ) = g−1γ(g) for all γ ∈ Gv. We claim that
the torus Tv := π(gT̃0g

−1) is defined over Kv and has the required property.
Obviously, it suffices to show that T̃v := gT̃0g

−1 is defined over Kv and

c̃v ∈ ιT̃v,T̃0
([G(T̃v, Kv) ∩W (G̃, T̃v)]).(1)

By our construction, T̃v is defined over Ks
v , and besides, for any γ ∈ Gv one has

γ(T̃v) = γ(g)T̃0γ(g)−1 = g(g−1γ(g))T̃0(g−1γ(g))−1g−1 = gT̃0g
−1 = T̃v

as g−1γ(g) = ζ(γ) ∈ Ñ0(Ks
v), implying that T̃v is in fact defined over Kv ([4],

AG 14.4). To prove (1), we will consider the action of an arbitrary γ ∈ Gv

on Φ(G̃, T̃v), and compute the corresponding action of ιg−1(γ) on Φ(G̃, T̃0). Let
α0 ∈ Φ(G̃, T̃0), and let α ∈ Φ(G̃, T̃v) be defined by the formula α(t) = α0(g−1tg).
Since T̃0 is Kv-split, and hence α0 is defined over Kv, for any t ∈ T̃0(Ks

v) we
obtain the following

ιg−1(γ)(α0)(t) = γ(α)(gtg−1) = γ(α(γ−1(g)γ−1(t)γ−1(g)−1))
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= γ(α0((g−1γ−1(g))γ−1(t)(γ−1(g)−1g))) = α0((g−1γ(g))−1t(g−1γ(g))),

i.e. ιg−1(γ)(α0) = ζ̄(γ)(α0), where ζ̄(γ) is the image of ζ(γ) in W (G̃, T̃0). Thus,
ιg−1(G(T̃v, Kv)) = Im ζ̄. In particular, x = ζ̄(ϕ) ∈ ιg−1(G(T̃v, Kv)), and (1)
follows. The proof of Lemma 1 is complete.

For all v ∈ S, we fix a maximal Kv-torus Tv of G as in the preceding lemma.
To prove Theorem 3, let T be a maximal K-torus of G such that for every v in
S, there exists a gv ∈ G(Kv) so that T = g−1

v Tvgv; the existence of such a T
follows from the weak approximation property of the K-variety T of maximal
tori of G. Then ιgv

(G(T, Kv)) = G(Tv, Kv), so it follows from Lemma 1 that

cv ∈ ιTv,T0([G(Tv, Kv) ∩W (G, Tv)]) = ιTv,T0(ιT,Tv ([G(T, Kv) ∩W (G, T )]))

= ιT,T0([G(T, Kv) ∩W (G, T )]) ⊂ ιT,T0([G(T, K) ∩W (G, T )]).
Thus, if g ∈ G is chosen so that T0 = gTg−1, then the subgroup ιg(G(T, K) ∩
W (G, T )) of (the finite group) W (G, T0) meets every conjugacy class of the
latter. However, conjugates of a proper subgroup of a finite group cannot fill up
the group, so we conclude that

ιg(G(T, K) ∩W (G, T )) = W (G, T0),

and therefore G(T, K) ⊃ W (G, T ). This obviously implies that T is anisotropic
over K.

Now, to prove that T is K-quasi-irreducible, we observe that each of the
K-simple components G(i) of G can in turn be decomposed further into an
almost direct product of connected absolutely almost simple groups: G(i) =
G

(i)
1 · · ·G(i)

ti
, where the subgroups G

(i)
j , j = 1, . . . , ti, are transitively permuted

by the absolute Galois group G = Gal(Ks/K), where Ks is a separable closure of
K. Since G splits over KT , all of its connected absolutely almost simple normal
subgroups are defined over KT , so this permutation action of G factors through
G(T, K). Let T (i) = T ∩G(i), T

(i)
j = T ∩G

(i)
j and Φ(i)

j = Φ(G(i)
j , T

(i)
j ). Consider

V := X(T ) ⊗Z Q. Let V
(i)
j denote the subspace of V spanned by Φ(i)

j and V (i)

be the (direct) sum of the V
(i)
j for j = 1, . . . , ti. We claim that any G(T, K)-

invariant subspace Y of V is the direct sum of some of the V (i)’s. Indeed, since

V =
s⊕

i=1

ti⊕
j=1

V
(i)
j and W (G, T ) =

s∏
i=1

ti∏
j=1

W (G(i)
j , T

(i)
j ),

the facts that 1) W (G(i)
j , T

(i)
j ) acts on V

(i)
j irreducibly for all i and j, and 2)

G(T, K) contains W (G, T ), imply that Y is the direct sum of some of the V
(i)
j ’s.

However, for any fixed i, as G(T, K) acts transitively on the set of the V
(i)
j ’s

our claim follows. If now T ′ is a K-subtorus of T , then the subspace Y :=
Ker(X(T ) res−→ X(T ′))⊗Z Q is of the form Y = ⊕i∈IV

(i) for some I ⊂ {1, . . . , s},
and hence T ′ is an almost direct product of the Ti’s for i ∈ {1, . . . , s} − I, as
claimed.
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Proof of Theorem 3(ii). For each v ∈ S, we let Rv denote the set of regular
elements in Tv(Kv) and consider the map

ψv : G(Kv)×Rv → G(Kv), ψv(g, x) = gxg−1.

It follows from the implicit function theorem that ψv is an open map. For
i = 1, . . . , s, we let θ(i) : G(i) → G

(i)
be the natural central isogeny to the

adjoint group G
(i)

of G(i), and let θ : G→ G
(1)× · · · ×G

(s)
denote the resulting

central isogeny. Furthermore, for v ∈ S, we let T
(i)
v = Tv∩G(i), T

(i)

v = θ(i)(T (i)
v ),

and pick an open torsion-free subgroup Σ
(i)

v of T
(i)

v (Kv). Set

Σv = θ−1(Σ
(1)

v × · · · × Σ
(s)

v ),

and consider the open subset Uv := ψv(G(Kv), Rv∩Σv) of G(Kv). Given an open
subgroup Ωv of G(Kv), the v-adically open subgroup Ωv∩Σv of Tv(Kv) intersects
the Zariski-open subset Rv (cf. [14], Lemma 3.2), and therefore Uv∩Ωv �= ∅. We
claim moreover that any xv ∈ Uv is without components of finite order. To prove
this claim, after replacing xv by a conjugate, we may assume that xv ∈ Rv ∩Σv.

If xv = x
(1)
v · · ·x(s)

v with x
(i)
v ∈ G(i), then

θ(xv) = (θ(1)(x(1)
v ), . . . , θ(s)(x(s)

v )) ∈ Σ
(1)

v × · · · × Σ
(s)

v .

Now if for some i, x
(i)
v has finite order, then since Σ

(i)

v is torsion-free, we obtain
that θ(i)(x(i)

v ) = 1, and therefore, x
(i)
v ∈ Z(G(i)). But then xv is not regular, a

contradiction. It follows that U :=
∏

v∈S Uv satisfies condition (a).

Finally, if δS(x) ∈ δS(G(K)) ∩ U, then x is regular semisimple and the torus
T = ZG(x)◦ is G(Kv)-conjugate to Tv for all v ∈ S. So, by (i), T is K-quasi-
irreducible and anisotropic. This completes the proof of Theorem 3.

Remark 3. For v ∈ S, let Ov be the ring of integers in Kv. As T̃0, and hence
G̃, splits over Kv, G̃/Kv and T̃0/Kv are obtained respectively from a Chevalley
group-scheme G̃v over Z and a split-torus Z-subscheme of G̃v by base change
Z→ Ov ↪→ Kv. From this we can see that the subgroupN in the proof of Lemma
1 can be chosen inside Ñ0(Ov) := Ñ0(Kv)∩G̃v(Ov). Then ζ can be thought of as
a continuous 1-cocycle on Ẑ � Gal(Kur

v /Kv) with values in G̃v(Our
v ), where Our

v

is the ring of integers of Kur
v , and instead of using the triviality of H1(Kv, G̃), we

can use the triviality of H1(Kur
v /Kv, G̃v(Our

v )), which easily follows from Lang’s
theorem on the triviality of Galois cohomology of connected algebraic groups
over finite fields, see Theorem 6.8 of [14].

Remark 4. If K is a global field, then given any finite set V0 of places of K,
using, for example, Tchebotarev’s Density Theorem, one can find a set S of r
nonarchimedean places outside V0 (where r is the same as in the statement of
Theorem 3) such that G splits over Kv for all v ∈ S. For every v ∈ S, we choose
a maximal Kv-torus Tv of G so that the assertion of Lemma 1 holds, and let
T0 be a maximal K-torus of G which is G(Kv)-conjugate to Tv for each v ∈ S
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(the existence of such a T0 follows from the weak approximation property of the
K-variety T of maximal tori of G). Now for any maximal K-torus T of G which
is G(Kv)-conjugate to T0 for all v ∈ S, G(T, K) ⊃ W (G, T ) (see the proof of
Theorem 3(i)), hence such a T is K-quasi-irreducible and anisotropic over K,
yielding a generalization, and an alternative proof, of Theorem 1(i) of [17].

Another ingredient of the proof of Theorem 2 is the following proposition
which is a variant of Proposition 1 of [18]. For the reader’s convenience we give
the full proof although it is similar to the argument given in [18].

Proposition 1. Let K be a finitely generated field of characteristic zero, R ⊂ K
be a finitely generated subring. Then there exists an infinite set Π of primes such
that for each p ∈ Π there exists an embedding εp : K ↪→ Qp with the property
εp(R) ⊂ Zp.

Proof. Pick a transcendence basis {s1, . . . , sl} of K over Q, and let A =
Z[s1, . . . , sl], L = Q(s1, . . . , sl). Furthermore, pick an element α ∈ K so that
K = L[α], let f(x) denote the minimal monic polynomial of α over L, and set
B = A[α]. Since R is finitely generated, there exists a nonzero a ∈ A with the
following properties:

R ⊂ B
[
1
a

]
and f(x) ∈ A

[
1
a

]
[x].(2)

As f(x) is prime to its derivative f ′(x), there exist polynomials u(x), v(x) ∈ A[x]
such that

u(x)f(x) + v(x)f ′(x) = b(3)

for some nonzero b ∈ A. Set c = ab ∈ A (= Z[s1, . . . , sl]) and choose z1, . . . , zl ∈
Z so that c0 := c(z1, . . . , zl) �= 0. Let ν : A → Z be the homomorphism special-
izing si to zi, and F be the splitting field over Q of g(x) := fν(x). It follows
from the Tchebotarev Density Theorem that the set of primes

Π := { p | F ⊂ Qp and p � | c0 }
is infinite (this, in fact, can also be proved by an elementary argument). We
claim that Π is as required.

Indeed, suppose p ∈ Π. Then by our construction all roots of g(x) belong
to Qp; moreover, since c0 ∈ Z×

p , the coefficients of g(x) belong to Zp by (2),
and therefore the roots actually belong to Zp. Since Zp is uncountable, there
exist elements t1, . . . , tl ∈ Zp which are algebraically independent over Q and
satisfy the congruences ti ≡ zi(mod p) for all i = 1, . . . , l. Let ε : L → Qp be
the embedding sending si to ti. We claim that h(x) := fε(x) splits over Zp into
linear factors. For this, we first observe that ε(c) ≡ c0(mod p), implying that
ε(c) ∈ Z×

p , and therefore h(x) ∈ Zp[x] in view of (2). Moreover, for the canonical
homomorphism Zp → Zp/pZp =: Fp, z �→ z̄, one has h̄(x) = ḡ(x), hence by the
above, h̄(x) splits over Fp into linear factors. On the other hand, it follows from
(3) that

uε(x)h̄(x) + vε(x)h̄′(x) = ε(b) �= 0̄,
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which implies that h̄(x) is prime to its derivative h̄′(x), and so it does not have
multiple roots. Invoking Hensel’s Lemma, we now conclude that h(x) splits
over Zp into linear factors, as was claimed. It follows that for any extension
ε̃ : K → Qp (= an algebraic closure of Qp) of ε, one has ε̃(K) ⊂ Qp. Furthermore,
as ε̃(α) is a root of h(x), and, on the other hand, all the roots of h(x) belong
to Zp, we obtain that ε̃(α) ∈ Zp, i.e. ε̃(B) ⊂ Zp. Since by our construction
ε(a) ∈ Z×

p , it follows from (2) that ε̃(R) ⊂ Zp. Thus, εp := ε̃ is an embedding
which has all of the required properties.

We shall view G as a K-subgroup of GLn in terms of a fixed embedding. For
a subring R of a commutative K-algebra C, in the sequel G(R) will denote the
group G(C) ∩GLn(R).

For the proof of Theorem 2, we also need the following:

Lemma 2. Let G be a semisimple algebraic group defined over a field K of
characteristic zero, and let R be a subring of K. Given a finite set S of distinct
primes and a system of embeddings εp : K ↪→ Qp with the property εp(R) ⊂ Zp,
one for each p ∈ S, we let δS : G(K) ↪→ GS denote the embedding induced by the
εp’s. Then for any subsemigroup Γ of G(R), which is Zariski-dense in G, the
closure of δS(Γ) in GS is open.

Proof. Given a subset X of G(K), let X
(S)

denote the closure of δS(X) in GS .
Also, for an individual p ∈ S, we let δp : G(K) ↪→ G(Qp) denote the embedding

induced by εp and will use X
(p)

to denote the closure of δp(X) in G(Qp). Since
a closed subsemigroup of a profinite group is in fact a subgroup (simply because
the set of natural numbers N is dense in the profinite completion Ẑ of Z), we have
Γ

(S)
= ∆

(S)
(⊂∏

p∈S G(Zp)), where ∆ is the subgroup of G(R) generated by Γ,
so we may assume from the outset that Γ is a subgroup. A standard argument
(going back to Platonov’s proof [13] of the strong approximation property) shows
that H(p) := Γ

(p)
is open in G(Qp), for every p ∈ S. Indeed, let G = G(1) · · · G(l)

be a decomposition of G as an almost direct product of its Qp-simple factors.
Then the Lie algebra g of G is the direct sum of the Lie algebras g(i) of G(i),

i = 1, . . . , l. Moreover, since G(i) is Qp-simple, the algebra g
(i)
Qp

does not have
any proper ideals. Now, by the p-adic analogue of Cartan’s theorem on closed
subgroups (see [6], Ch. III, §8, n◦ 2, Thm. 2), H(p) is a p-adic Lie group. Let
h(p) denote its Lie algebra. Since Γ is Zariski-dense in G, h(p) is an ideal of gQp

(cf. [14], Proposition 3.4), and therefore h(p) = ⊕i∈Ig
(i)
Qp

for some subset I ⊂
{1, . . . , l}. If we assume that there is an i ∈ {1, . . . , l}−I, then F := H(p)∩Ĝ(i),

where Ĝ(i) = G(1) · · · G(i−1)G(i+1) · · · G(l), has the same Lie algebra as H(p), hence
is open in H(p). But being a closed subgroup of G(Zp), the subgroup H(p) is
compact, so [H(p) : F ] <∞, and hence [Γ : Γ ∩ Ĝ(i)] <∞. This contradicts the
fact that Γ is Zariski-dense in G, proving that in fact h(p) = gQp , and therefore
H(p) is open in G(Qp), as claimed.
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Now, let H = Γ
(S)

. It suffices to show that

H ∩G(Qp) is open in G(Qp),(4)

for all p ∈ S. If πp : GS → G(Qp) is the projection corresponding to p, then
πp(H) = H(p). Since H(p) possesses an open pro-p subgroup, it follows that for
a Sylow pro-p subgroup Hp of H, the subgroup πp(Hp) is open in H(p), hence
also in G(Qp). But πq(Hp) is finite for any q �= p, so Hp ∩G(Qp) is open in Hp,
and (4) follows.

Remark 5. The strong approximation theorem of Nori and Weisfeiler (see [11],
[20], and also [12]) provides a substantially more precise information about the
closure of Γ, but the (almost obvious) assertion of Lemma 2 is sufficient for our
purpose.

Proof of Theorem 2. Since Γ is finitely generated, there exists a finitely gener-
ated subring R of K such that Γ ⊂ G(R) = G∩GLn(R). Fix a maximal K-torus
T of G, and let L denote the splitting field of T over K. Let r be the number
of nontrivial conjugacy classes of the Weyl group W (G, T ). Using Proposition 1,
one can find a set S consisting of r distinct rational primes such that for each
p ∈ S, there exists an embedding εp : L ↪→ Qp so that εp(R) ⊂ Zp. Let vp denote
the restriction of the p-adic valuation to K � εp(K) (in the sequel, we will make
no distinction between p and vp; in particular, we will think of S also as the set
of all the vp’s). Then Kvp = Qp and G splits over Kvp , for all p ∈ S. This means
that Theorem 3 applies in our set-up, and we let U denote the open subset of
GS given by assertion (ii) of that theorem. Now if G is R-isotropic, by [15], Γ
contains an R-regular element y, and then by Lemma 3.5 of [16], there exists a
nonempty Zariski-open subset W of G (W can clearly be assumed to be defined
over K) such that for any x ∈ G(R) ∩W, the element xym is R-regular for all
sufficiently large m. If G is anisotropic over R, we let y = 1 and W = G. Let
WS =

∏
v∈S W (Kv) ⊂ GS .

Let δS be as in the preceding lemma and H be the closure of δS(Γ) in GS .
According to Lemma 2, H is open. Hence by property (a) of U described in
Theorem 3(ii), H ∩U �= ∅. It follows that X := H ∩U ∩WS is a nonempty open
subset of H, and δS(Γ) ∩X is dense in X. Let x be an element of Γ such that
δS(x) ∈ X. There exists an open normal subgroup Ω of

∏
p∈S G(Zp), of index,

say, d, such that

δS(x)Ω ⊂ U.(5)

For all large positive integers m, say for m � s(x), the element xydm is R-regular.
Since δS(y)d ∈ Ω, it follows from (5) that δS(xydm) ∈ δS(Γ)∩U, so by Theorem 3,
xydm is a R-regular K-quasi-irreducible anisotropic element without components
of finite order. The Zariski-closure of the set {xydm |m � s(x)} clearly contains
x. As x was an arbitrary element of Γ such that δS(x) ∈ X, and the set of
such elements is a Zariski-dense subset of G, we conclude that the subset of
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Γ consisting of all R-regular K-quasi-irreducible anisotropic elements without
components of finite order is Zariski-dense in G. This proves Theorem 2.

Remark 6. Let K and G be as in Theorem 2 and Γ be a finitely generated
Zariski-dense subgroup of G(K). Let L, S, for p ∈ S, εp, H, U and X be as in
the proof of Theorem 2 and δS be as in Lemma 2. We fix an element x of Γ such
that δS(x) ∈ X. Let Ω be an open normal subgroup of

∏
p∈S G(Zp) as in the

proof of Theorem 2 and let ∆ = δ−1
S (δS(Γ) ∩Ω). As H is compact, ∆ has finite

index in Γ, hence it is Zariski-dense in G. By Theorem 6.8 of [1], there exists a
finite subset M of ∆ such that for every g ∈ G(R) at least one of the elements
γg, γ ∈ M, is R-regular. Let Q be the set of R-regular elements in x∆. Then
we have x∆ = M−1Q.

Clearly,
δS(x∆) ⊂ δS(x)Ω ⊂ U,

and hence, every element of x∆ is K-quasi-irreducible anisotropic and none of
them have components of finite order. This implies the following strengthening
of Theorem 2:

The subgroup Γ is the union of finitely many translates of the subset consist-
ing of all R-regular K-quasi-irreducible anisotropic elements which do not have
components of finite order.

In conclusion, we point out that R-regular elements are closely related to the
so-called proximal elements, which are defined as invertible linear transforma-
tions of a finite dimensional vector space, over a nondiscrete locally compact
field, which have a unique eigenvalue of maximum absolute value which, in ad-
dition, occurs with multiplicity one. We recall that according to Lemma 3.4 of
[16] an element g ∈ G(R) is R-regular if and only if the element ρ(g) is proximal,
where ρ is the representation of G(R) constructed as follows: let G(R) = KAN
be a fixed Iwasawa decomposition, g and n be the (real) Lie algebras of G(R)
and N respectively, and k = dim n; let σ denote the representation of G(R)
on ∧kg obtained from the adjoint representation, and let V be the smallest
G(R)-submodule of ∧kg containing the 1-dimensional subspace ∧kn; then ρ is
the restriction of σ to V.

Proximal elements were used by H. Furstenberg to analyze the “universal
boundary” of a Lie group, and more recently in [2] to investigate the Auslander
problem about properly discontinuous groups of affine transformations (not to
mention the fact that proximal elements in the nonarchimedean set-up were
used by J. Tits in the proof of his celebrated theorem on the existence of free
subgroups in nonvirtually solvable linear groups).

Gol’dsheid and Margulis ([9]) have proved that if G is a connected semisim-
ple R-subgroup of GL(V ) such that V is irreducible as a G-module, and G(R)
contains a proximal element, then so does any Zariski-dense subsemigroup Γ of
G(R) (a more precise result in this direction was obtained in [1]). Using the re-
sult of Gol’dsheid-Margulis in place of the result of [15] and an obvious analogue
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of Lemma 3.5 of [16] for proximal elements and repeating verbatim the above
argument, one obtains the following.

Theorem 4. Let G be a connected semisimple real algebraic subgroup of GL(V )
such that V is irreducible as a G-module and G(R) contains a proximal element.
Then any Zariski-dense subsemigroup Γ of G(R) contains a regular semisimple
proximal element x which generates a Zariski-dense subgroup of the torus T :=
ZG(x).
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