EXISTENCE OF IRREDUCIBLE \mathbb{R} -REGULAR ELEMENTS IN ZARISKI-DENSE SUBGROUPS

GOPAL PRASAD AND ANDREI S. RAPINCHUK

Let G be a connected semisimple algebraic group defined over the field \mathbb{R} of real numbers. An element x of $G(\mathbb{R})$ is called \mathbb{R} -regular if the number of eigenvalues, counted with multiplicity, of modulus 1 of $\operatorname{Ad} x$ is minimum possible. (If G is \mathbb{R} -anisotropic, i.e., the group $G(\mathbb{R})$ is compact, every element of $G(\mathbb{R})$ is \mathbb{R} -regular.) The existence of \mathbb{R} -regular elements in an arbitrary subsemigroup Γ of $G(\mathbb{R})$ which is Zariski-dense in G was proved by Y. Benoist and F. Labourie [3] using Oseledet's multiplicative ergodic theorem, and then reproved by the first-named author [15] by a direct argument. Recently G.A. Margulis and G.A. Soifer asked us a question, which arose in their joint work with H. Abels on the Auslander problem, about the existence of \mathbb{R} -regular elements with some special properties. The purpose of this note is to answer their question in the affirmative. Before formulating the result, we recall (cf. [16], Remark 1.6(1)) that an \mathbb{R} -regular element x is necessarily semisimple, so if in addition it is regular, then $T := Z_G(x)^\circ$ is a maximal torus; moreover, x belongs to T (see [4], Corollary 11.12).

Theorem 1. Let G be a connected semisimple real algebraic group. Then any Zariski-dense subsemigroup Γ of $G(\mathbb{R})$ contains a regular \mathbb{R} -regular element x such that the cyclic subgroup generated by it is a Zariski-dense subgroup of the maximal torus $T := Z_G(x)^{\circ}$.

Remark 1. Let Γ , x and $T = Z_G(x)^\circ$ be as in Theorem 1. Let T_s (resp., T_a) be the maximal \mathbb{R} -split (resp., \mathbb{R} -anisotropic) subtorus of T. Then $T = T_s \cdot T_a$ (an almost direct product), T_s is a maximal \mathbb{R} -split torus of G since x is \mathbb{R} -regular (see [16], Lemma 1.5), and $T_a(\mathbb{R}) \simeq (\mathbb{R}/\mathbb{Z})^r$, where $r = \dim T_a$. There is a positive integer d such that $x^d = y \cdot z$ with $y \in T_s(\mathbb{R})$ and $z \in T_a(\mathbb{R})$. Then the cyclic group C generated by z is dense in T_a in the Zariski-topology and since $T_a(\mathbb{R})$ is a compact Lie group, C is actually dense in $T_a(\mathbb{R})$ in the usual compact Hausdorff topology on the latter. Thus, in particular, if $G(\mathbb{R})$ is compact, then any dense subsemigroup contains a $Kronecker\ element$, i. e. an element such that the closure of the subsemigroup generated by it is a maximal torus.

Also, since the cyclic subgroup generated by x is dense in T in the Zariski-topology, $Z_G(x) = Z_G(T) = T$. Thus the centralizer of x is connected.

Received March 14, 2002.

Revised version received July 9, 2002.

Remark 2. Let Γ , x and $T = Z_G(x)$ be as in Theorem 1. Assume, in addition, that Γ is a subgroup. Then the subset $\{\gamma x^n \gamma^{-1} \mid \gamma \in \Gamma, n \in \mathbb{Z} - \{0\}\}$, which consists of \mathbb{R} -regular elements with the properties described in Theorem 1, is Zariski-dense in G. To see this note that the cyclic subgroup generated by x is dense in T and, as is well-known, the union of the conjugates of T under a Zariski-dense subset (of G) is Zariski-dense in G.

The proof of Theorem 1 uses the result of [15], some facts about \mathbb{R} -regular elements established in [16] and suitable generalizations of our recent results about irreducible tori [17]. We recall that a torus T defined over a field K is called K-irreducible if it does not contain any proper K-subtori, and a regular semisimple element $x \in G(K)$, where G is a semisimple K-group, K-irreducible if the torus $T = Z_G(x)^{\circ}$ is K-irreducible. To handle arbitrary semisimple groups, these notions need to be generalized as follows.

Let G be a connected semisimple algebraic group defined over a field K. Then $G = G^{(1)} \cdots G^{(s)}$, an almost direct product of connected K-simple groups $G^{(i)}$ (cf. [19]). Given a maximal torus T of G, we let $T^{(i)}$ denote the maximal torus $T \cap G^{(i)}$ of $G^{(i)}$, for any $i = 1, \ldots, s$. We say that a maximal K-torus T of G is Kquasi-irreducible if it does not contain any K-subtori other than those which are almost direct product of some of the $T^{(i)}$'s. Furthermore, a regular semisimple element $x \in G(K)$ will be called K-quasi-irreducible if the torus $T = Z_G(x)^{\circ}$ is K-quasi-irreducible, and x will be called K-quasi-irreducible anisotropic if, in addition, T is anisotropic over K. We also say that an element $x \in G$ is without components of finite order if in some (equivalently, any) decomposition $x = x_1 \cdots x_s$ with $x_i \in G^{(i)}$, all the x_i 's have infinite order. (Of course, if G is absolutely, or even K-, simple, then the notions of K-irreducibility and K-quasiirreducibility for maximal K-tori of G and regular semisimple elements of G(K)coincide, and elements without components of finite order are simply elements of infinite order.) It is easy to see that a K-quasi-irreducible element $x \in G(K)$, which is without components of finite order, generates a Zariski-dense subgroup of the corresponding torus $T = Z_G(x)$.

We now observe that without loss of generality the subsemigroup Γ in Theorem 1 can be assumed to be finitely generated, hence contained in G(K), where K is a suitable finitely generated subfield of \mathbb{R} over which G is defined; therefore, we see that Theorem 1 is a consequence of the following.

Theorem 2. Let K be a finitely generated subfield of \mathbb{R} , and G be a connected semisimple algebraic K-group. Then any finitely generated subsemigroup Γ of G(K) which is Zariski-dense in G contains a Zariski-dense set of \mathbb{R} -regular K-quasi-irreducible anisotropic elements without components of finite order.

One of the ingredients of the proof of Theorem 2 is the following refinement (with a different proof) of Theorem 1 of [17]. We observe that this refinement is valid for an arbitrary semisimple group defined over an infinite field (of any characteristic) while the result in [17] was established only for absolutely almost simple groups over global fields.

Theorem 3. Let G be a connected semisimple algebraic group defined over an infinite field K, r be the number of nontrivial conjugacy classes in the absolute Weyl group of G. Furthermore, let S be a set of r nontrivial inequivalent nonarchimedean valuations of K such that for every $v \in S$, the completion K_v is locally compact and splits G. Then

- (i) for each $v \in S$, we can choose a maximal K_v -torus T_v of G so that any K-torus T which is conjugate to T_v under an element of $G(K_v)$, for all $v \in S$, is K-quasi-irreducible and anisotropic over K;
- (ii) there exists an open subset U of $G_S := \prod_{v \in S} G(K_v)$ with the following properties:
 - (a) U intersects every open subgroup of G_S , and for any element $x = (x_v)$ of U, all the x_v 's are elements without components of finite order;
 - (b) $\delta_S^{-1}(\delta_S(G(K)) \cap U)$, where $\delta_S \colon G(K) \to G_S$ is the diagonal embedding, consists of K-quasi-irreducible anisotropic elements.

First, we need to fix some notations and conventions. Given a maximal torus T of G, we let $\Phi(G,T)$ denote the root system of G with respect to T. As usual, we will identify the absolute Weyl group $W(G,T) = N_G(T)/T$ with a normal subgroup of Aut $\Phi(G,T)$. For $x\in W(G,T)$, we let [x] denote the conjugacy class of x in W(G,T), and for a subset X of W(G,T), we let [X] denote the collection of conjugacy classes [x] with $x \in X$ (in particular, [W(G,T)] is the set of all conjugacy classes in W(G,T)). Next, given two maximal tori T_1, T_2 and an element $g \in G$ such that $T_2 = gT_1g^{-1}$, we let ι_g denote the isomorphism from Aut $\Phi(G, T_1)$ to Aut $\Phi(G, T_2)$ induced by Int g. We notice that given another $g' \in G$ with the property $T_2 = g'T_1(g')^{-1}$, we have $g'g^{-1} \in N_G(T_2)$ and $\iota_{g'} =$ Int $w \circ \iota_q$, where w is the class of $g'g^{-1}$ in $W(G,T_2)$; in particular, there is a well-defined bijection $\iota_{T_1,T_2} \colon [W(G,T_1)] \to [W(G,T_2)]$ satisfying the standard properties: $\iota_{T,T} = \mathrm{id}, \ \iota_{T_1,T_2} = \iota_{T_2,T_1}^{-1}, \ \mathrm{and} \ \iota_{T_1,T_3} = \iota_{T_2,T_3} \circ \iota_{T_1,T_2}.$ Finally, if a maximal torus T is defined over a field $L \supset K$, we will denote by L_T its minimal splitting field over L and by $\mathfrak{G}(T,L)$ the corresponding Galois group $\operatorname{Gal}(L_T/L)$. Since G is semisimple, $\Phi(G,T)$ generates the character group X(T), and therefore the action of $\mathfrak{G}(T,L)$ on $\Phi(G,T)$ allows one to identify it with a subgroup of Aut $\Phi(G,T)$.

Proof of Theorem 3(i). Let $\pi: \widetilde{G} \to G$ be the simply connected cover of G defined over K, where π is a central isogeny. By our assumption, for each $v \in S$, the group G, and hence also its simply connected cover \widetilde{G} , splits over K_v and therefore, \widetilde{G} possesses a maximal torus \widetilde{C}_v which is defined and split over K_v . According to a theorem of A. Grothendieck (see [5], Theorem 7.9, and also [8] for the characteristic zero case), the K-variety \widetilde{T} of maximal tori of \widetilde{G} is a K-rational homogeneous space of \widetilde{G} , hence has the weak approximation property (see [14], Proposition 7.3). Since the orbit $\widetilde{G}(K_v) \cdot \widetilde{C}_v$ (which coincides with the $\widetilde{G}(K_v)$ -conjugacy class of \widetilde{C}_v) is open in $\widetilde{T}(K_v)$ for all $v \in S$, by the weak

approximation property of \widetilde{T} there exists a maximal K-torus \widetilde{T}_0 of \widetilde{G} which splits over K_v for all $v \in S$. Set $T_0 = \pi(\widetilde{T}_0)$.

We fix a bijection between S and the set of nontrivial conjugacy classes in $W(G, T_0)$ and for $v \in S$, we will denote the corresponding conjugacy class by c_v . We have the following:

Lemma 1. For each $v \in S$, there exists a maximal K_v -torus T_v of G such that $c_v \in \iota_{T_v,T_0}([\mathfrak{G}(T_v,K_v) \cap W(G,T_v)]).$

Proof. The central isogeny $\pi \colon \widetilde{G} \to G$ induces an isomorphism

$$\bar{\pi} \colon W(\widetilde{G}, \widetilde{T}_0) \to W(G, T_0).$$

Let \tilde{c}_v be the conjugacy class in $W(\widetilde{G}, \widetilde{T}_0)$ such that $\bar{\pi}(\tilde{c}_v) = c_v$, and $x \in$ $W(\widetilde{G},\widetilde{T}_0)$ be a representative of \widetilde{c}_v . Since \widetilde{T}_0 splits over K_v , \widetilde{G}/K_v and the torus \widetilde{T}_0/K_v are obtained respectively from a Chevalley group-scheme over \mathbb{Z} and a split-torus \mathbb{Z} -subscheme by base change $\mathbb{Z} \to K_v$. From this we see that there exists a finite subgroup \mathcal{N} of $N_0(K_v)$, where $N_0 = N_{\tilde{G}}(T_0)$, that contains representatives of all elements of $W(\widetilde{G}, \widetilde{T}_0)$. Let $y \in \mathcal{N}$ be a representative of x. The homomorphism $\zeta \colon \widehat{\mathbb{Z}} \to \widetilde{N}_0(K_v)$ defined by $\zeta(1) = y$ can be thought of as a continuous 1-cocycle on the group $Gal(K_v^{ur}/K_v)$ with values in $\widetilde{N}_0(K_v^{ur})$, where K_v^{ur} is the maximal unramified extension of K_v (we recall that being locally compact, K_v is either a finite extension of the field \mathbb{Q}_p of p-adic numbers or it is the field of Laurent power series in one variable over a finite field, and therefore there exists an isomorphism $\widehat{\mathbb{Z}} \simeq \operatorname{Gal}(K_v^{\mathrm{ur}}/K_v)$ sending 1 to the Frobenius automorphism φ), and hence also as a continuous 1-cocycle on $\mathfrak{G}_v := \operatorname{Gal}(K_v^{\mathfrak{s}}/K_v)$ with values in $N_0(K_v^{\mathfrak{s}})$, where $K_v^{\mathfrak{s}}$ is a separable closure of K_v containing K_v^{ur} . Since $H^1(K_v, G) = \{1\}$ (Kneser [10] for characteristic zero and Bruhat-Tits [7] for general local fields with perfect residue field of cohomological dimension ≤ 1), there exists $g \in \widetilde{G}(K_v^{\mathfrak{s}})$ such that $\zeta(\gamma) = g^{-1}\gamma(g)$ for all $\gamma \in \mathfrak{G}_v$. We claim that the torus $T_v := \pi(g\widetilde{T}_0g^{-1})$ is defined over K_v and has the required property. Obviously, it suffices to show that $\widetilde{T}_v := g\widetilde{T}_0g^{-1}$ is defined over K_v and

(1)
$$\tilde{c}_v \in \iota_{T_v, T_0}([\mathfrak{G}(\widetilde{T}_v, K_v) \cap W(\widetilde{G}, \widetilde{T}_v)]).$$

By our construction, \widetilde{T}_v is defined over $K_v^{\mathfrak{s}}$, and besides, for any $\gamma \in \mathfrak{G}_v$ one has

$$\gamma(\widetilde{T}_v) = \gamma(g)\widetilde{T}_0\gamma(g)^{-1} = g(g^{-1}\gamma(g))\widetilde{T}_0(g^{-1}\gamma(g))^{-1}g^{-1} = g\widetilde{T}_0g^{-1} = \widetilde{T}_v$$

as $g^{-1}\gamma(g) = \zeta(\gamma) \in \widetilde{N}_0(K_v^{\mathfrak{s}})$, implying that \widetilde{T}_v is in fact defined over K_v ([4], AG 14.4). To prove (1), we will consider the action of an arbitrary $\gamma \in \mathcal{G}_v$ on $\Phi(\widetilde{G}, \widetilde{T}_v)$, and compute the corresponding action of $\iota_{g^{-1}}(\gamma)$ on $\Phi(\widetilde{G}, \widetilde{T}_0)$. Let $\alpha_0 \in \Phi(\widetilde{G}, \widetilde{T}_0)$, and let $\alpha \in \Phi(\widetilde{G}, \widetilde{T}_v)$ be defined by the formula $\alpha(t) = \alpha_0(g^{-1}tg)$. Since \widetilde{T}_0 is K_v -split, and hence α_0 is defined over K_v , for any $t \in \widetilde{T}_0(K_v^{\mathfrak{s}})$ we obtain the following

$$\iota_{g^{-1}}(\gamma)(\alpha_0)(t) = \gamma(\alpha)(gtg^{-1}) = \gamma(\alpha(\gamma^{-1}(g)\gamma^{-1}(t)\gamma^{-1}(g)^{-1}))$$

$$= \gamma(\alpha_0((g^{-1}\gamma^{-1}(g))\gamma^{-1}(t)(\gamma^{-1}(g)^{-1}g))) = \alpha_0((g^{-1}\gamma(g))^{-1}t(g^{-1}\gamma(g))),$$
 i.e. $\iota_{g^{-1}}(\gamma)(\alpha_0) = \bar{\zeta}(\gamma)(\alpha_0)$, where $\bar{\zeta}(\gamma)$ is the image of $\zeta(\gamma)$ in $W(\widetilde{G}, \widetilde{T}_0)$. Thus, $\iota_{g^{-1}}(\mathfrak{G}(\widetilde{T}_v, K_v)) = \operatorname{Im} \bar{\zeta}$. In particular, $x = \bar{\zeta}(\varphi) \in \iota_{g^{-1}}(\mathfrak{G}(\widetilde{T}_v, K_v))$, and (1) follows. The proof of Lemma 1 is complete.

For all $v \in S$, we fix a maximal K_v -torus T_v of G as in the preceding lemma. To prove Theorem 3, let T be a maximal K-torus of G such that for every v in S, there exists a $g_v \in G(K_v)$ so that $T = g_v^{-1}T_vg_v$; the existence of such a T follows from the weak approximation property of the K-variety T of maximal tori of G. Then $\iota_{g_v}(\mathfrak{G}(T,K_v)) = \mathfrak{G}(T_v,K_v)$, so it follows from Lemma 1 that

$$c_v \in \iota_{T_v, T_0}([\mathfrak{G}(T_v, K_v) \cap W(G, T_v)]) = \iota_{T_v, T_0}(\iota_{T, T_v}([\mathfrak{G}(T, K_v) \cap W(G, T)]))$$
$$= \iota_{T, T_0}([\mathfrak{G}(T, K_v) \cap W(G, T)]) \subset \iota_{T, T_0}([\mathfrak{G}(T, K) \cap W(G, T)]).$$

Thus, if $g \in G$ is chosen so that $T_0 = gTg^{-1}$, then the subgroup $\iota_g(\mathfrak{G}(T,K) \cap W(G,T))$ of (the finite group) $W(G,T_0)$ meets every conjugacy class of the latter. However, conjugates of a *proper* subgroup of a finite group cannot fill up the group, so we conclude that

$$\iota_g(\mathfrak{G}(T,K)\cap W(G,T))=W(G,T_0),$$

and therefore $\mathfrak{G}(T,K)\supset W(G,T)$. This obviously implies that T is anisotropic over K.

Now, to prove that T is K-quasi-irreducible, we observe that each of the K-simple components $G^{(i)}$ of G can in turn be decomposed further into an almost direct product of connected absolutely almost simple groups: $G^{(i)} = G_1^{(i)} \cdots G_{t_i}^{(i)}$, where the subgroups $G_j^{(i)}$, $j=1,\ldots,t_i$, are transitively permuted by the absolute Galois group $\mathcal{G}=\mathrm{Gal}(K^{\mathfrak{s}}/K)$, where $K^{\mathfrak{s}}$ is a separable closure of K. Since G splits over K_T , all of its connected absolutely almost simple normal subgroups are defined over K_T , so this permutation action of \mathcal{G} factors through $\mathcal{G}(T,K)$. Let $T^{(i)}=T\cap G^{(i)}$, $T^{(i)}_j=T\cap G^{(i)}_j$ and $\Phi^{(i)}_j=\Phi(G^{(i)}_j,T^{(i)}_j)$. Consider $V:=X(T)\otimes_{\mathbb{Z}}\mathbb{Q}$. Let $V^{(i)}_j$ denote the subspace of V spanned by $\Phi^{(i)}_j$ and $V^{(i)}$ be the (direct) sum of the $V^{(i)}_j$ for $j=1,\ldots,t_i$. We claim that any $\mathcal{G}(T,K)$ -invariant subspace Y of V is the direct sum of some of the $V^{(i)}$'s. Indeed, since

$$V = \bigoplus_{i=1}^{s} \bigoplus_{j=1}^{t_i} V_j^{(i)} \quad \text{and} \quad W(G, T) = \prod_{i=1}^{s} \prod_{j=1}^{t_i} W(G_j^{(i)}, T_j^{(i)}),$$

the facts that 1) $W(G_j^{(i)}, T_j^{(i)})$ acts on $V_j^{(i)}$ irreducibly for all i and j, and 2) $\mathcal{G}(T,K)$ contains W(G,T), imply that Y is the direct sum of some of the $V_j^{(i)}$'s. However, for any fixed i, as $\mathcal{G}(T,K)$ acts transitively on the set of the $V_j^{(i)}$'s our claim follows. If now T' is a K-subtorus of T, then the subspace $Y:=\mathrm{Ker}(X(T) \xrightarrow{\mathrm{res}} X(T')) \otimes_{\mathbb{Z}} \mathbb{Q}$ is of the form $Y=\oplus_{i\in I} V^{(i)}$ for some $I\subset\{1,\ldots,s\}$, and hence T' is an almost direct product of the T_i 's for $i\in\{1,\ldots,s\}-I$, as claimed.

Proof of Theorem 3(ii). For each $v \in S$, we let R_v denote the set of regular elements in $T_v(K_v)$ and consider the map

$$\psi_v \colon G(K_v) \times R_v \to G(K_v), \quad \psi_v(g, x) = gxg^{-1}.$$

It follows from the implicit function theorem that ψ_v is an open map. For $i=1,\ldots,s$, we let $\theta^{(i)}:G^{(i)}\to\overline{G}^{(i)}$ be the natural central isogeny to the adjoint group $\overline{G}^{(i)}$ of $G^{(i)}$, and let $\theta\colon G\to\overline{G}^{(1)}\times\cdots\times\overline{G}^{(s)}$ denote the resulting central isogeny. Furthermore, for $v\in S$, we let $T_v^{(i)}=T_v\cap G^{(i)}, \overline{T}_v^{(i)}=\theta^{(i)}(T_v^{(i)}),$ and pick an open torsion-free subgroup $\overline{\Sigma}_v^{(i)}$ of $\overline{T}_v^{(i)}(K_v)$. Set

$$\Sigma_v = \theta^{-1}(\overline{\Sigma}_v^{(1)} \times \cdots \times \overline{\Sigma}_v^{(s)}),$$

and consider the open subset $U_v := \psi_v(G(K_v), R_v \cap \Sigma_v)$ of $G(K_v)$. Given an open subgroup Ω_v of $G(K_v)$, the v-adically open subgroup $\Omega_v \cap \Sigma_v$ of $T_v(K_v)$ intersects the Zariski-open subset R_v (cf. [14], Lemma 3.2), and therefore $U_v \cap \Omega_v \neq \emptyset$. We claim moreover that any $x_v \in U_v$ is without components of finite order. To prove this claim, after replacing x_v by a conjugate, we may assume that $x_v \in R_v \cap \Sigma_v$. If $x_v = x_v^{(1)} \cdots x_v^{(s)}$ with $x_v^{(i)} \in G^{(i)}$, then

$$\theta(x_v) = (\theta^{(1)}(x_v^{(1)}), \dots, \theta^{(s)}(x_v^{(s)})) \in \overline{\Sigma}_v^{(1)} \times \dots \times \overline{\Sigma}_v^{(s)}.$$

Now if for some $i, x_v^{(i)}$ has finite order, then since $\overline{\Sigma}_v^{(i)}$ is torsion-free, we obtain that $\theta^{(i)}(x_v^{(i)}) = 1$, and therefore, $x_v^{(i)} \in Z(G^{(i)})$. But then x_v is not regular, a contradiction. It follows that $U := \prod_{v \in S} U_v$ satisfies condition (a).

Finally, if $\delta_S(x) \in \delta_S(G(K)) \cap U$, then x is regular semisimple and the torus $T = Z_G(x)^\circ$ is $G(K_v)$ -conjugate to T_v for all $v \in S$. So, by (i), T is K-quasi-irreducible and anisotropic. This completes the proof of Theorem 3.

Remark 3. For $v \in S$, let \mathcal{O}_v be the ring of integers in K_v . As \widetilde{T}_0 , and hence \widetilde{G} , splits over K_v , \widetilde{G}/K_v and \widetilde{T}_0/K_v are obtained respectively from a Chevalley group-scheme \widetilde{G}_v over \mathbb{Z} and a split-torus \mathbb{Z} -subscheme of \widetilde{G}_v by base change $\mathbb{Z} \to \mathcal{O}_v \hookrightarrow K_v$. From this we can see that the subgroup \mathcal{N} in the proof of Lemma 1 can be chosen inside $\widetilde{N}_0(\mathcal{O}_v) := \widetilde{N}_0(K_v) \cap \widetilde{G}_v(\mathcal{O}_v)$. Then ζ can be thought of as a continuous 1-cocycle on $\widehat{\mathbb{Z}} \simeq \operatorname{Gal}(K_v^{\operatorname{ur}}/K_v)$ with values in $\widetilde{G}_v(\mathcal{O}_v^{\operatorname{ur}})$, where $\mathcal{O}_v^{\operatorname{ur}}$ is the ring of integers of K_v^{ur} , and instead of using the triviality of $H^1(K_v, \widetilde{G})$, we can use the triviality of $H^1(K_v^{\operatorname{ur}}/K_v, \widetilde{G}_v(\mathcal{O}_v^{\operatorname{ur}}))$, which easily follows from Lang's theorem on the triviality of Galois cohomology of connected algebraic groups over finite fields, see Theorem 6.8 of [14].

Remark 4. If K is a global field, then given any finite set V_0 of places of K, using, for example, Tchebotarev's Density Theorem, one can find a set S of r nonarchimedean places outside V_0 (where r is the same as in the statement of Theorem 3) such that G splits over K_v for all $v \in S$. For every $v \in S$, we choose a maximal K_v -torus T_v of G so that the assertion of Lemma 1 holds, and let T_0 be a maximal K-torus of G which is $G(K_v)$ -conjugate to T_v for each $v \in S$

(the existence of such a T_0 follows from the weak approximation property of the K-variety T of maximal tori of G). Now for any maximal K-torus T of G which is $G(K_v)$ -conjugate to T_0 for all $v \in S$, $G(T,K) \supset W(G,T)$ (see the proof of Theorem 3(i)), hence such a T is K-quasi-irreducible and anisotropic over K, yielding a generalization, and an alternative proof, of Theorem 1(i) of [17].

Another ingredient of the proof of Theorem 2 is the following proposition which is a variant of Proposition 1 of [18]. For the reader's convenience we give the full proof although it is similar to the argument given in [18].

Proposition 1. Let K be a finitely generated field of characteristic zero, $\mathcal{R} \subset K$ be a finitely generated subring. Then there exists an infinite set Π of primes such that for each $p \in \Pi$ there exists an embedding $\varepsilon_p \colon K \hookrightarrow \mathbb{Q}_p$ with the property $\varepsilon_p(\mathcal{R}) \subset \mathbb{Z}_p$.

Proof. Pick a transcendence basis $\{s_1, \ldots, s_l\}$ of \mathcal{K} over \mathbb{Q} , and let $\mathcal{A} = \mathbb{Z}[s_1, \ldots, s_l]$, $\mathcal{L} = \mathbb{Q}(s_1, \ldots, s_l)$. Furthermore, pick an element $\alpha \in \mathcal{K}$ so that $\mathcal{K} = \mathcal{L}[\alpha]$, let f(x) denote the minimal monic polynomial of α over \mathcal{L} , and set $\mathcal{B} = \mathcal{A}[\alpha]$. Since \mathcal{R} is finitely generated, there exists a nonzero $a \in \mathcal{A}$ with the following properties:

(2)
$$\mathcal{R} \subset \mathcal{B}\left[\frac{1}{a}\right] \quad \text{and} \quad f(x) \in \mathcal{A}\left[\frac{1}{a}\right][x].$$

As f(x) is prime to its derivative f'(x), there exist polynomials u(x), $v(x) \in \mathcal{A}[x]$ such that

(3)
$$u(x)f(x) + v(x)f'(x) = b$$

for some nonzero $b \in \mathcal{A}$. Set $c = ab \in \mathcal{A}$ (= $\mathbb{Z}[s_1, \ldots, s_l]$) and choose $z_1, \ldots, z_l \in \mathbb{Z}$ so that $c_0 := c(z_1, \ldots, z_l) \neq 0$. Let $\nu : \mathcal{A} \to \mathbb{Z}$ be the homomorphism specializing s_i to z_i , and F be the splitting field over \mathbb{Q} of $g(x) := f^{\nu}(x)$. It follows from the Tchebotarev Density Theorem that the set of primes

$$\Pi := \{ p \mid F \subset \mathbb{Q}_p \text{ and } p \not\mid c_0 \}$$

is infinite (this, in fact, can also be proved by an elementary argument). We claim that Π is as required.

Indeed, suppose $p \in \Pi$. Then by our construction all roots of g(x) belong to \mathbb{Q}_p ; moreover, since $c_0 \in \mathbb{Z}_p^{\times}$, the coefficients of g(x) belong to \mathbb{Z}_p by (2), and therefore the roots actually belong to \mathbb{Z}_p . Since \mathbb{Z}_p is uncountable, there exist elements $t_1, \ldots, t_l \in \mathbb{Z}_p$ which are algebraically independent over \mathbb{Q} and satisfy the congruences $t_i \equiv z_i \pmod{p}$ for all $i = 1, \ldots, l$. Let $\varepsilon \colon \mathcal{L} \to \mathbb{Q}_p$ be the embedding sending s_i to t_i . We claim that $h(x) := f^{\varepsilon}(x)$ splits over \mathbb{Z}_p into linear factors. For this, we first observe that $\varepsilon(c) \equiv c_0 \pmod{p}$, implying that $\varepsilon(c) \in \mathbb{Z}_p^{\times}$, and therefore $h(x) \in \mathbb{Z}_p[x]$ in view of (2). Moreover, for the canonical homomorphism $\mathbb{Z}_p \to \mathbb{Z}_p/p\mathbb{Z}_p =: \mathbb{F}_p$, $z \mapsto \bar{z}$, one has $\bar{h}(x) = \bar{g}(x)$, hence by the above, $\bar{h}(x)$ splits over \mathbb{F}_p into linear factors. On the other hand, it follows from (3) that

$$\overline{u^{\varepsilon}}(x)\overline{h}(x) + \overline{v^{\varepsilon}}(x)\overline{h}'(x) = \overline{\varepsilon(b)} \neq \overline{0},$$

which implies that $\bar{h}(x)$ is prime to its derivative $\bar{h}'(x)$, and so it does not have multiple roots. Invoking Hensel's Lemma, we now conclude that h(x) splits over \mathbb{Z}_p into linear factors, as was claimed. It follows that for any extension $\tilde{\varepsilon} \colon \mathcal{K} \to \overline{\mathbb{Q}_p}$ (= an algebraic closure of \mathbb{Q}_p) of ε , one has $\tilde{\varepsilon}(\mathcal{K}) \subset \mathbb{Q}_p$. Furthermore, as $\tilde{\varepsilon}(\alpha)$ is a root of h(x), and, on the other hand, all the roots of h(x) belong to \mathbb{Z}_p , we obtain that $\tilde{\varepsilon}(\alpha) \in \mathbb{Z}_p$, i.e. $\tilde{\varepsilon}(\mathcal{B}) \subset \mathbb{Z}_p$. Since by our construction $\varepsilon(a) \in \mathbb{Z}_p^{\times}$, it follows from (2) that $\tilde{\varepsilon}(\mathcal{R}) \subset \mathbb{Z}_p$. Thus, $\varepsilon_p := \tilde{\varepsilon}$ is an embedding which has all of the required properties.

We shall view G as a K-subgroup of \mathbf{GL}_n in terms of a fixed embedding. For a subring R of a commutative K-algebra C, in the sequel G(R) will denote the group $G(C) \cap GL_n(R)$.

For the proof of Theorem 2, we also need the following:

Lemma 2. Let G be a semisimple algebraic group defined over a field K of characteristic zero, and let \mathcal{R} be a subring of K. Given a finite set S of distinct primes and a system of embeddings $\varepsilon_p \colon K \hookrightarrow \mathbb{Q}_p$ with the property $\varepsilon_p(\mathcal{R}) \subset \mathbb{Z}_p$, one for each $p \in S$, we let $\delta_S \colon G(K) \hookrightarrow G_S$ denote the embedding induced by the ε_p 's. Then for any subsemigroup Γ of $G(\mathcal{R})$, which is Zariski-dense in G, the closure of $\delta_S(\Gamma)$ in G_S is open.

Proof. Given a subset X of G(K), let $\overline{X}^{(S)}$ denote the closure of $\delta_S(X)$ in G_S . Also, for an individual $p \in S$, we let $\delta_p \colon G(K) \hookrightarrow G(\mathbb{Q}_p)$ denote the embedding induced by ε_n and will use $\overline{X}^{(p)}$ to denote the closure of $\delta_n(X)$ in $G(\mathbb{Q}_n)$. Since a closed subsemigroup of a profinite group is in fact a subgroup (simply because the set of natural numbers \mathbb{N} is dense in the profinite completion \mathbb{Z} of \mathbb{Z}), we have $\overline{\Gamma}^{(S)} = \overline{\Delta}^{(S)} \ (\subset \prod_{p \in S} G(\mathbb{Z}_p)), \text{ where } \Delta \text{ is the subgroup of } G(\mathcal{R}) \text{ generated by } \Gamma,$ so we may assume from the outset that Γ is a subgroup. A standard argument (going back to Platonov's proof [13] of the strong approximation property) shows that $H(p) := \overline{\Gamma}^{(p)}$ is open in $G(\mathbb{Q}_p)$, for every $p \in S$. Indeed, let $G = \mathcal{G}^{(1)} \cdots \mathcal{G}^{(l)}$ be a decomposition of G as an almost direct product of its \mathbb{Q}_p -simple factors. Then the Lie algebra \mathfrak{g} of G is the direct sum of the Lie algebras $\mathfrak{g}^{(i)}$ of $\mathcal{G}^{(i)}$, $i=1,\ldots,l.$ Moreover, since $\mathcal{G}^{(i)}$ is \mathbb{Q}_p -simple, the algebra $\mathfrak{g}_{\mathbb{Q}_p}^{(i)}$ does not have any proper ideals. Now, by the p-adic analogue of Cartan's theorem on closed subgroups (see [6], Ch. III, $\S 8$, $n^{\circ} 2$, Thm. 2), H(p) is a p-adic Lie group. Let $\mathfrak{h}(p)$ denote its Lie algebra. Since Γ is Zariski-dense in G, $\mathfrak{h}(p)$ is an ideal of $\mathfrak{g}_{\mathbb{O}_n}$ (cf. [14], Proposition 3.4), and therefore $\mathfrak{h}(p) = \bigoplus_{i \in I} \mathfrak{g}_{\mathbb{Q}_p}^{(i)}$ for some subset $I \subset$ $\{1,\ldots,l\}$. If we assume that there is an $i\in\{1,\ldots,l\}-I$, then $F:=H(p)\cap\widehat{\mathcal{G}}^{(i)}$, where $\widehat{\mathcal{G}}^{(i)} = \mathcal{G}^{(1)} \cdots \mathcal{G}^{(i-1)} \mathcal{G}^{(i+1)} \cdots \mathcal{G}^{(l)}$, has the same Lie algebra as H(p), hence is open in H(p). But being a closed subgroup of $G(\mathbb{Z}_p)$, the subgroup H(p) is compact, so $[H(p):F]<\infty$, and hence $[\Gamma:\Gamma\cap\widehat{\mathcal{G}}^{(i)}]<\infty$. This contradicts the fact that Γ is Zariski-dense in G, proving that in fact $\mathfrak{h}(p) = \mathfrak{g}_{\mathbb{Q}_p}$, and therefore H(p) is open in $G(\mathbb{Q}_p)$, as claimed.

Now, let $H = \overline{\Gamma}^{(S)}$. It suffices to show that

(4)
$$H \cap G(\mathbb{Q}_p)$$
 is open in $G(\mathbb{Q}_p)$,

for all $p \in S$. If $\pi_p \colon G_S \to G(\mathbb{Q}_p)$ is the projection corresponding to p, then $\pi_p(H) = H(p)$. Since H(p) possesses an open pro-p subgroup, it follows that for a Sylow pro-p subgroup \mathcal{H}_p of H, the subgroup $\pi_p(\mathcal{H}_p)$ is open in H(p), hence also in $G(\mathbb{Q}_p)$. But $\pi_q(\mathcal{H}_p)$ is finite for any $q \neq p$, so $\mathcal{H}_p \cap G(\mathbb{Q}_p)$ is open in \mathcal{H}_p , and (4) follows.

Remark 5. The strong approximation theorem of Nori and Weisfeiler (see [11], [20], and also [12]) provides a substantially more precise information about the closure of Γ , but the (almost obvious) assertion of Lemma 2 is sufficient for our purpose.

Proof of Theorem 2. Since Γ is finitely generated, there exists a finitely generated ated subring \mathcal{R} of K such that $\Gamma \subset G(\mathcal{R}) = G \cap GL_n(\mathcal{R})$. Fix a maximal K-torus T of G, and let L denote the splitting field of T over K. Let r be the number of nontrivial conjugacy classes of the Weyl group W(G,T). Using Proposition 1, one can find a set S consisting of r distinct rational primes such that for each $p \in S$, there exists an embedding $\varepsilon_p \colon L \hookrightarrow \mathbb{Q}_p$ so that $\varepsilon_p(\mathcal{R}) \subset \mathbb{Z}_p$. Let v_p denote the restriction of the p-adic valuation to $K \simeq \varepsilon_p(K)$ (in the sequel, we will make no distinction between p and v_p ; in particular, we will think of S also as the set of all the v_p 's). Then $K_{v_p} = \mathbb{Q}_p$ and G splits over K_{v_p} , for all $p \in S$. This means that Theorem 3 applies in our set-up, and we let U denote the open subset of G_S given by assertion (ii) of that theorem. Now if G is \mathbb{R} -isotropic, by [15], Γ contains an \mathbb{R} -regular element y, and then by Lemma 3.5 of [16], there exists a nonempty Zariski-open subset W of G (W can clearly be assumed to be defined over K) such that for any $x \in G(\mathbb{R}) \cap W$, the element xy^m is \mathbb{R} -regular for all sufficiently large m. If G is anisotropic over \mathbb{R} , we let y=1 and W=G. Let $W_S = \prod_{v \in S} W(K_v) \subset G_S.$

Let δ_S be as in the preceding lemma and H be the closure of $\delta_S(\Gamma)$ in G_S . According to Lemma 2, H is open. Hence by property (a) of U described in Theorem 3(ii), $H \cap U \neq \emptyset$. It follows that $X := H \cap U \cap W_S$ is a nonempty open subset of H, and $\delta_S(\Gamma) \cap X$ is dense in X. Let x be an element of Γ such that $\delta_S(x) \in X$. There exists an open normal subgroup Ω of $\prod_{p \in S} G(\mathbb{Z}_p)$, of index, say, d, such that

$$\delta_S(x)\Omega \subset U.$$

For all large positive integers m, say for $m \ge s(x)$, the element xy^{dm} is \mathbb{R} -regular. Since $\delta_S(y)^d \in \Omega$, it follows from (5) that $\delta_S(xy^{dm}) \in \delta_S(\Gamma) \cap U$, so by Theorem 3, xy^{dm} is a \mathbb{R} -regular K-quasi-irreducible anisotropic element without components of finite order. The Zariski-closure of the set $\{xy^{dm} \mid m \ge s(x)\}$ clearly contains x. As x was an arbitrary element of Γ such that $\delta_S(x) \in X$, and the set of such elements is a Zariski-dense subset of G, we conclude that the subset of

 Γ consisting of all \mathbb{R} -regular K-quasi-irreducible anisotropic elements without components of finite order is Zariski-dense in G. This proves Theorem 2. \square

Remark 6. Let K and G be as in Theorem 2 and Γ be a finitely generated Zariski-dense subgroup of G(K). Let L, S, for $p \in S$, ε_p , H, U and X be as in the proof of Theorem 2 and δ_S be as in Lemma 2. We fix an element x of Γ such that $\delta_S(x) \in X$. Let Ω be an open normal subgroup of $\prod_{p \in S} G(\mathbb{Z}_p)$ as in the proof of Theorem 2 and let $\Delta = \delta_S^{-1}(\delta_S(\Gamma) \cap \Omega)$. As H is compact, Δ has finite index in Γ , hence it is Zariski-dense in G. By Theorem 6.8 of [1], there exists a finite subset M of Δ such that for every $g \in G(\mathbb{R})$ at least one of the elements γg , $\gamma \in M$, is \mathbb{R} -regular. Let Q be the set of \mathbb{R} -regular elements in $x\Delta$. Then we have $x\Delta = M^{-1}Q$.

Clearly,

$$\delta_S(x\Delta) \subset \delta_S(x)\Omega \subset U$$
,

and hence, every element of $x\Delta$ is K-quasi-irreducible anisotropic and none of them have components of finite order. This implies the following strengthening of Theorem 2:

The subgroup Γ is the union of finitely many translates of the subset consisting of all \mathbb{R} -regular K-quasi-irreducible anisotropic elements which do not have components of finite order.

In conclusion, we point out that \mathbb{R} -regular elements are closely related to the so-called proximal elements, which are defined as invertible linear transformations of a finite dimensional vector space, over a nondiscrete locally compact field, which have a unique eigenvalue of maximum absolute value which, in addition, occurs with multiplicity one. We recall that according to Lemma 3.4 of [16] an element $g \in G(\mathbb{R})$ is \mathbb{R} -regular if and only if the element $\rho(g)$ is proximal, where ρ is the representation of $G(\mathbb{R})$ constructed as follows: let $G(\mathbb{R}) = KAN$ be a fixed Iwasawa decomposition, \mathfrak{g} and \mathfrak{n} be the (real) Lie algebras of $G(\mathbb{R})$ and N respectively, and $k = \dim \mathfrak{n}$; let σ denote the representation of $G(\mathbb{R})$ on $\wedge^k \mathfrak{g}$ obtained from the adjoint representation, and let V be the smallest $G(\mathbb{R})$ -submodule of $\wedge^k \mathfrak{g}$ containing the 1-dimensional subspace $\wedge^k \mathfrak{n}$; then ρ is the restriction of σ to V.

Proximal elements were used by H. Furstenberg to analyze the "universal boundary" of a Lie group, and more recently in [2] to investigate the Auslander problem about properly discontinuous groups of affine transformations (not to mention the fact that proximal elements in the nonarchimedean set-up were used by J. Tits in the proof of his celebrated theorem on the existence of free subgroups in nonvirtually solvable linear groups).

Gol'dsheid and Margulis ([9]) have proved that if G is a connected semisimple \mathbb{R} -subgroup of GL(V) such that V is irreducible as a G-module, and $G(\mathbb{R})$ contains a proximal element, then so does any Zariski-dense subsemigroup Γ of $G(\mathbb{R})$ (a more precise result in this direction was obtained in [1]). Using the result of Gol'dsheid-Margulis in place of the result of [15] and an obvious analogue

of Lemma 3.5 of [16] for proximal elements and repeating verbatim the above argument, one obtains the following.

Theorem 4. Let G be a connected semisimple real algebraic subgroup of GL(V) such that V is irreducible as a G-module and $G(\mathbb{R})$ contains a proximal element. Then any Zariski-dense subsemigroup Γ of $G(\mathbb{R})$ contains a regular semisimple proximal element x which generates a Zariski-dense subgroup of the torus $T := Z_G(x)$.

Acknowledgements

Both the authors were supported by grants from NSF and BSF. They thank Margulis and Soifer for their question.

References

- [1] H. Abels, G.A. Margulis, G.A. Soifer, Semigroups containing proximal linear maps, Israel J. Math. 91 (1995), 1–30.
- [2] _____, Properly discontinuous groups of affine transformations with orthogonal linear part, C. R. Acad. Sci. Paris Sér. I Math. 324 (1997), 253–258.
- [3] Y. Benoist, F. Labourie, Sur les difféomorphismes d'Anosov affines à feuilletages stable et instable différentiables, Invent. Math. 111 (1993), 285–308.
- [4] A. Borel, Linear algebraic groups, Second edition. Graduate Texts in Mathematics, 126.
 Springer-Verlag, New York, 1991.
- [5] A. Borel, T. A. Springer, Rationality properties of linear algebraic groups. II, Tohôku Math. J. (2) 20 (1968), 443–497.
- [6] N. Bourbaki, Groupes et algèbres de Lie, Ch. II & III, Hermann, Paris, 1972.
- [7] F. Bruhat, J. Tits, Groupes algèbriques sur un corps local. Chapitre III. Compléments et applications à la cohomologie galoisienne, J. Fac. Sci. Univ. Tokyo, Sec. IA Math. 34 (1987), 671–698.
- [8] C. Chevalley, On algebraic group varieties, J. Math. Soc. Japan 6 (1954), 303–324.
- I. Ya. Gol'dsheid, G. A. Margulis, Lyapunov exponents of a product of random matrices, Russian Math. Surveys 44 (1989), 11–71.
- [10] M. Kneser, Galois-Kohomologie halbeinfacher algebraischer Gruppen über p-adischen Körpern. I, II. Math. Z. 88 (1965), 40-47; 89 (1965), 250-272.
- [11] M. Nori, On subgroups of $GL_n(F_p)$, Invent. Math. 88 (1987), 257–275.
- [12] R. Pink, Strong approximation for Zariski dense subgroups over arbitrary global fields, Comment. Math. Helv. 75 (2000), 608–643.
- [13] V. P. Platonov, The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 1211–1219.
- [14] V. P. Platonov, A. S. Rapinchuk, Algebraic groups and number theory, Academic Press, 1994.
- [15] G. Prasad, R-regular elements in Zariski-dense subgroups, Quart. J. Math. Oxford Ser. (2) 45 (1994), 541–545.
- [16] G. Prasad, M.S. Raghunathan, Cartan subgroups and lattices in semi-simple groups, Ann. of Math. (2) **96** (1972), 296–317.
- [17] G. Prasad, A.S. Rapinchuk, Irreducible tori in semisimple groups, Internat. Math. Res. Notices 2001, 1229–1242.
- [18] _____, Subnormal subgroups of the groups of rational points of reductive algebraic groups, Proc. Amer. Math. Soc. 130 (2002), 2219–2227.

- [19] J. Tits, Classification of algebraic semisimple groups, 1966 Algebraic Groups and Discontinuous Subgroups (Proc. Sympos. Pure Math., Boulder, CO, 1965) pp. 33–62. Amer. Math. Soc., Providence, RI, 1966.
- [20] B. Weisfeiler, Strong approximation for Zariski-dense subgroups of semi-simple algebraic groups, Ann. of Math. (2) 120 (1984), 271–315.

Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, U.S.A. $E\text{-}mail\ address:\ {\tt gprasad@umich.edu}$

Department of Mathematics, University of Virginia, Charlottes ville, VA 22904, U.S.A.

E-mail address: asr3x@weyl.math.virginia.edu