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POLYNOMIAL REPRESENTATIVES
OF SCHUBERT CLASSES IN QH*(G/B)

AUGUSTIN-LIVIU MARE

ABSTRACT. We show how the quantum Chevalley formula for G/B, as stated
by Peterson and proved rigorously by Fulton and Woodward, combined with
ideas of Fomin, S.I. Gelfand, and Postnikov, leads to a formula which describes
polynomial representatives of the Schubert cohomology classes in the canonical
presentation of QH*(G/B) in terms of generators and relations. We generalize
in this way results of [FGP].

§1 Introduction

A theorem of Borel [B] describes the cohomology! ring of the generalized
complex flag manifold G/B as the “co-invariant algebra” of the Weyl group
of G, which is essentially a quotient of a certain polynomial ring. The Schu-
bert cohomology classes (i.e. Poincaré duals of Schubert varieties) are a ba-
sis of H*(G/B). In order to determine the structure constants of the cup-
multiplication on H*(G/B) with respect to this basis, we need to describe the
Schubert cohomology classes in Borel’s presentation. According to Bernstein,
I. M. Gelfand, and S.I. Gelfand [BGG], we obtain polynomial representatives of
Schubert classes in Borel’s ring by starting with a representative of the top coho-
mology and then applying successively divided difference operators associated to
the simple roots of G. More details concerning the Bernstein-Gelfand-Gelfand
construction can be found in section 2 of our paper.

When dealing with the (small) quantum cohomology ring QH*(G/B) we face
a similar situation. There exists a canonical presentation of that ring, again as
a quotient of a polynomial algebra, where the variables are the same as in the
classical case, plus the “quantum variables” ¢i,...,q;. As about the ideal of
relations, it is generated by the “quantum deformations” of the relations from
Borel’s presentation of H*(G/B) (for more details, see section 3). The Schu-
bert classes are a basis of QH*(G/B) as a R]q1, ... ,¢]-module. A natural aim
(see the next paragraph) is to describe them in the previous presentation of
QH*(G/B). Our main result gives a method for obtaining such polynomial rep-
resentatives. It can be described briefly as follows: we start with an arbitrary
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polynomial representing the Schubert class o, in Borel’s description (e.g. by
using the B-G-G construction); this is transformed into a polynomial represent-
ing 0, in the canonical description of QH*(G/B) after successive applications
of divided difference operators, multiplications by ¢;’s and integer numbers and
additions. The precise formula is stated in Theorem 3.6 (also see Lemma 3.4 and
relation (5) in order to understand the notations). For G = SL(n,C), the same
result was proved by Fomin, S. Gelfand, and Postnikov [FGP]. The main ingredi-
ent of our proof is a result of D. Peterson [P] (we call it the “quantum Chevalley
formula,” since Chevalley obtained a similar result for the cup-multiplication
on H*(G/B)) which describes the quantum multiplication by degree 2 Schubert
classes.

Finally, a few words should be said about the importance of our result. The
standard presentation of QH*(G/B) mentioned above is explicitly determined
by Kim [K] (see also [M]). Our description could be relevant for finding the
structure constants of the quantum multiplication with respect to the basis con-
sisting of Schubert classes, which would lead immediately to the Gromov-Witten
invariants of G/B. The efficiency of this strategy depends very much on the in-
put: we dispose of the choice of polynomial representatives of Schubert classes
in Borel’s ring and this has to be made judiciously (see again [FGP], as well as
Billey and Haiman [BH] and Fomin and Kirillov [FK]).

§2 The Bernstein-Gelfand-Gelfand construction

The main object of study of this paper is the generalized complex flag manifold
G/ B, where G is a connected, simply connected, semisimple, complex Lie group
and B C G a Borel subgroup. Let t be the Lie algebra of a maximal torus of a
compact real form of G and ® C t* the corresponding set of roots. The negative
of the Killing form restricted to t gives an inner product ( , ). To any root «

corresponds the coroot

2
aV =

(o, a)

which is an element of t, by using the identification of t and t* induced by ( , ). If
{a1,...,a;} is a system of simple roots then {ay, ..., } is a system of simple
coroots. Consider {A1,..., N} C t* the corresponding system of fundamental
weights, which are defined by )\i(ajv) = 0;;. To any positive root a we assign
the reflection s, of (t,(, )) about the hyperplane ker a. The Weyl group W is
generated by all reflections s,, o € ®T: it is actually generated by a smaller
set, namely by the simple reflections s; = s4,,...,51 = S4,- To any w €
W corresponds a length, [(w), which is the smallest number of factors in a
decomposition of w as a product of simple reflections.

There are two different ways to describe H*(G/B): On the one hand, we can
take B~ C G the Borel subgroup opposite to B and assign to each w € W the
Schubert, variety C,, = B~.w, which has real codimension 2/(w); its Poincaré
dual o, is an element of H?(*)(G/B); the set 7,,, w € W is a basis of H*(G/B).
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On the other hand, let us consider the symmetric algebra S(t*), which consists of
polynomial functions on t. A theorem of Borel says that the ring homomorphism
S(t*) — H*(G/B) induced by \; — oy, 1 < i < [, is surjective; moreover it
induces the ring isomorphism

(1) H*(G/B) ~ R\ /Iy,

where Iy is the ideal of S(t*) = R[\1,...,\] = R[)\] generated by the W-
invariant polynomials of strictly positive degree.

One is looking for a Giambelli type formula, which connects these two de-
scriptions by assigning to each Schubert cycle ., a polynomial representative in
the quotient ring R[A]/Iy,. We are going to sketch the construction of such poly-
nomials, as performed by Bernstein, I. M. Gelfand, and S.I. Gelfand in [BGG].
It relies on the following facts:

e H*(G/B) and R[\]/Iw are generated as rings by os,, respectively \;,
1< <,

e we have a formula of Chevalley which gives the matrix of the cup multi-
plication by o, on H*(G/B) with respect to the basis {0, : w € W},

e there is another, “very similar”, formula, which involves the divided dif-
ference operators A,,, w € W (see below) on the polynomial ring R[A].

The following result was proved by Chevalley [Ch] (see also Fulton and Wood-
ward [FW]).

Lemma 2.1. (Chevalley’s formula). For any 1 <i <1 and any w € W we have

O, 0w = Z (@) ows,, -

acedt l(wsq)=l(w)+1

To each positive root « we assign the divided difference operator A, on the
ring R[\] (the latter being just the symmetric ring S(t*), it admits a natural
action of the Weyl group W):

If w is an arbitrary element of W, take w = s;, ...s;, a reduced expression and
then set
Ay = Aq,, O"‘OAaik-

One can show (see for instance [Hi|) that the definition does not depend on the
choice of the reduced expression. The operators obtained in this way have the

following property:
Ay, if H(ww') =1(w) 4+ I(w')
0, otherwise.

(2) Ay oAy = {

The importance of those operators for our present context is revealed by the
similarity of the following formula with Lemma 2.1:
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Lemma 2.2. (Hiller [Hi]) If A} denotes the operator of multiplication by \; on
R[A], then for any w € W we have

Ap X —wNw A, = > Xi(8Y) Ay -
Bedt l(wsg)=l(w)—1

Let wq be the longest element of W. The polynomial

1
CwOI:W H «

aEdTt

is homogeneous, of degree I(wp) and has the property that A, c,, = 1. But
[(wp) is at the same time the complex dimension of G/B, and it can be easily
shown that the class of ¢, in R[A]/Iw generates the top cohomology of G/B.
To any w € W we assign ¢, := Ay—14,Cw, Which is a homogeneous polynomial
of degree [(w) satisfying

0

{ Cop—1, if L(wv™!) =1(w) —1(v)
AyCy = .
0, otherwise

for any v € W (see (2)). In particular, if [(v) = l[(w), then A, (cy) = dypw. Since
A, leaves Iy invariant, it induces an operator on R[A|/Iy which also satisfies
Ay([ew]) = Opw, provided that [(v) = l(w). Because dimR[\ /Iy = |W]|, it
follows that the classes [c,], w € W, are a basis of R[A]/Iyw. We can easily
determine any of the coefficients a, from

)‘i [Cw] = Z Ay [C’U]v

() =l(w)+1

by applying A, on both sides and using Lemma 2.2. It follows that

(3) Ailew| = Z Ai(@?)[ews., -

aedt l(wsq)=l(w)+1

From A, (A\j) = d;;, 1 < 4,5 <[, we deduce that c¢;;, = X\;. We just have to
compare (3) with Lemma 2.1 to conclude:

Theorem 2.3. (Bernstein, I. M. Gelfand, and S.I. Gelfand [BGG]) Let [cy,]
be the image of 0., by the identification H*(G/B) = R[\]|/Iw indicated above.
Then the map oy — [cw] = Ay -1, [Cuwy) IS @ Ting isomorphism.

The polynomial ¢, = Ay -1,,Cw, being a representative of the Schubert cy-

cle 0, in R[A]/Iw, is a solution of the classical (i.e. non-quantum) Giambelli
problem for G/B.
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83 Quantization map

Additively, the quantum cohomology QH*(G/B) of G/B is just H*(G/B) ®
Rlg1, ... ,q], where [ is the rank of G and ¢1,...,q are some variables. The
multiplication o is uniquely determined by R[g]-linearity and the general formula

Oy OO0y = Z qd Z <O'u|0'v’0'w0w>d0'w7

d=(dy,...,d)>0  wEW

u,v € W, where ¢ denotes qfl ... qld’. The coefficient (o, |0y |0wew)d is the
Gromov-Witten invariant, which counts the number of holomorphic curves ¢ :
CP! — G/B such that ¢,([CP1]) = d in H3(G/B) and ¢(0), ¢(1) and ¢(o0) are
in general translates of the Schubert varieties dual to oy, 0y, respectively oy w-
It turns out that this number can be nonzero and finite only if [(u)+1(v) = I(w)+
222:1 d;; if it is infinity, we set (0y|0y|Twow)a = 0. The ring (QH*(G/B), o) is
commutative and associative (for more details about quantum cohomology we
refer the reader to Fulton and Pandharipande [FP]).

One can show that the quantum cohomology ring of G/B is generated by
H?(G/B)®R[q,...,q],ie byq,...,q,\,...,\. To determine the ideal of
relations, we only have to take any of the fundamental W-invariant polynomials
u;, 1 <14 <1— as generators of the ideal Iy of relations in H*(G/B) — and find
its “quantum deformation” R;. The latter is a polynomial in R[g, A], uniquely
determined by:

(a) the relation R;(q1,... ,q,05,0,...,05°) =0 holds in QH*(G/B),
(b) the component of R; free of ¢ is u,.

If I}, denotes the ideal of R[g, \] generated by Ry, ... , R;, then we have the ring
isomorphism

(4) QH™(G/B) ~R[q, N/ I

The challenge is now to solve the “quantum Giambelli problem”: via the iso-
morphism (4), find a polynomial representative in R[g, A]/I{}, for each Schubert
class o, w € W. We can actually use Theorem 2.3 in order to rephrase the
problem as follows: Describe (the image of [¢,,] via) the map

Rlg, /(I @ Rlq)) = R/ Iw ® Rg] =
H*(G/B) ®Rlg] = QH"(G/B) = Rlg, A/ I%, .

Note that the latter is an isomorphism of R[g]-modules, but not of algebras;
following [FGP], we call it the quantization map. So the main goal of our paper
is to give a presentation of the quantization map. For G = SL(n,C), the problem
has been solved by Fomin, Gelfand, and Postnikov [FGP]. We are going to extend
their result to an arbitrary semisimple Lie group G.
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As in the non-quantum case, we will essentially rely on the Chevalley formula,
this time in its quantum version: the formula was obtained by D. Peterson in
[P] (for more details, see section 10 of Fulton and Woodward [FW]). If o¥ is a
positive coroot, we consider its height

\av\ =mi+...+my,
where the positive integers myq,... ,m; are given by o = miay + ... + myay’.
We also put

\
(0%

@ =" g

Theorem 3.1. (Quantum Chevalley Formula; Peterson [P], Fulton and Wood-
ward [FW]) In (QH*(G/B),o) one has

Vv
L 00y = 05,0y + E (@)™ o, -
l(wse)=l(w)—2|aV|+1

Os

The following inequality can be found in Peterson’s notes [P], as well as in
Brenti, Fomin, and Postnikov [BFP]. For the sake of completeness, we will give
our own proof of it.

Lemma 3.2. For any positive root o we have 1(s,) < 2| | — 1.

Proof. We prove the lemma by induction on [(sy). If I(s,) = 1, then «, as
well as aV, is simple, so |@V| = 1. Let now « be a positive, non-simple root.
There exists a simple root § such that a(8Y) > 0 (otherwise we would be led to
a(aY) <0). Consequently, 3(a") is a strictly positive number, too, hence

sa(B) =B — Bla)a
must be a negative root. Also
sasa(B) = (a(B)B(a’) = 1)B — B(a”)a

is a negative root. By Lemma 3.3, chapter 1 of [Hi], we have I(sgs.S3) =
[(sa) — 2. Because

sp(a)” = sp(a”) =a” = p(a’)F",

we have [sg(a)¥| = |a¥| — B(a"). By the induction hypothesis we conclude:

[a—y

l(sq) =1(spsasp)+2 < 2|85(a)\/] —1+2=2la’|-1+2(1-8(a")) < 2|a"| -

Denote by ®1 the set of all positive roots a with the property l(sa) =
2|aY| — 1. The following operators

(5) A=+ Y Ni(aV)g A,

acdt
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on R[g, A], 1 <i <[ have been considered by Peterson in [P]. His key observation
is that we have

(6) Ai[cw] = Ai[cw} + Z )‘i(av)qav [CwsaL
l(wsq)=l(w)—2|aV|+1

the right hand side being, by the quantum Chevalley formula, just A; o [¢,,]. In
order to justify (6), we only have to say that if w € W and « is a positive root
with [(wsa) = [(w) — 2|a¥| + 1, then, by Lemma 3.2, @ must be in ®+.

From the associativity of the quantum product o it follows that any two A;
and A; commute as operators on (R[A]/Iw) ®R]q]. In fact the following stronger
result (also stated by Peterson in [P]) holds:

Lemma 3.3. The operators Ay, ... ,A; on R[g, \] commute.

Proof. Put w = s, in Lemma 2.2 and obtain:

Asa)\j: = ()\;k - )\i(OéV)Oé*)Asa + Z /\i(’yv)ASQS'y'
YEDT,I(sasy)=l(sa)—1

It follows

AjAy =AD"+ D Ai(a¥)g™ NA,,

acdt
+ Z )\j(a\/)qoﬁ/\;‘Asa — Z )\j(aV)Ai(QV>ana*Asa
acdt acd+
+ 2 (@A )g™ B,
aedt yedt (505 )=l(50)—1
+ Z )\j(av)Ai(ﬂv)qav+ﬁvAsasg-

a,B€dt I(sqs5)=l(sa)+1(sp)

Denote by 3;; the sum of the last two sums: the rest is obviously invariant by
interchanging ¢ < j.

Let us return to the Bernstein-Gelfand-Gelfand construction described in the
first section: Fix ¢, € R[A] such that [c,,,] = 0w, and then set c,, = Ay —14, Cuwy
w € W their classes modulo Iy are a basis of R[A]/Iy. As we said earlier, from
the associativity of the quantum product we deduce that A;A;[c,] is symmetric
in ¢ and j, for any w € W. In particular, ¥;;[cy,,] is symmetric in i and j.
Because [(wov) = l(wg) — I(v) for any v € W, we have

Xij [Cuwo] = Z Aj (av))‘i('YV)qa [Cwosysa]
a€dt,1(s454)=l(s0)—1

+ Z )‘j(av)Ai(ﬁv)qa o [chSgsa]~
@,B€dt I(sas5)=l(54)+1(sp)
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The latter reproduces exactly the expression of ;; itself: {[c,]: w € W} (ac-
tually {[cygw-1] 1 w € W}) are linearly independent, exactly like the operators
{Ay :w e W} So %;; is symmetric in ¢ and j and the lemma is proved. 0

The next result is a generalization of Lemma 5.3 of [FGP].

Lemma 3.4. The map ¢ : R[g,\] — R|q, \] given by

fref(A, .0 A)(D)

is an Rlqg|-linear isomorphism. If f € Rlq,\| has degree d with respect to
A,y . .., N\, then we can express ¥v=1(f) as follows

@ =(1)7- (5)pr e e (0 et + 0t

where ((f), ceey (dfl) are the binomial coefficients.
Proof. The degrees of elements of R[g, A\] we are going to refer to here are taken
only with respect to A1,..., ;. First, ¢ is injective, because if g € R[q, A] has
the property that g(Aq1,...,A;)(1) = 0, then obviously g must be 0. In order
to prove both surjectivity and the formula for 1»~!, we notice that the operator
I — 1) lowers the degree of a polynomial by at least one, so if f is a polynomial
of degree d, then (I —)?(f) = 0. O

The next result is a direct consequence of the quantum Chevalley formula.

Proposition 3.5. For any of the generators Ry, ..., Ry of the ideal I}, V(R;)
is? an R[q|-linear combination of elements of Iy, the free term with respect to
q1,--.,q being u;. Hence Y(I{,) = Iw @ R[q] and ¢ gives rise to a bijection

¥ Rlg, A/ Iy, — Rlg, A]/(Iw @ R]q]).

Proof. We just have to use the fact that
Xiy ©...0 N, = A .. Ay, (1) mod Iy @ Rg]
so that
Y(R;) mod Iy @ R[q] = Ri(q1,--. ,q, A1, .., A)(1) mod Iy @ R[g]
= Ri(q1,--- sq1; A\10,... , \0)
=0.
O

Our polynomial representatives of Schubert classes in QH*(G/B) are de-
scribed by the following theorem, which is the central result of the paper. The
proof is governed by the same ideas that have been used in the non-quantum
case (see section 2).

2In view of Theorem 5.5 of [FGP], we could actually expect to have ¥(R;) = u;.



POLYNOMIAL REPRESENTATIVES OF SCHUBERT CLASSES IN QH*(G/B) 765

Theorem 3.6. The quantization map R[g, \]/(Iw @ Rlq]) — Rlg, A/}, is just
=Y. More precisely, if w € W has length [(w) = I, then the class of c, in
Rlg, \]/(Iw @ R]g]) is mapped to the class of

I—(—w),
()

<i> Cw — (é>¢(6w) + .4 (=12 <l _l 1>¢l—2(cw) (=) ()

in R[q, \]/I{:,, where 1 has been defined in Lemma 3.4.

Proof. For any polynomial f € R[g, A], we denote by [f], [f], its classes modulo
Iw ® Rlq], respectively modulo I{},. By the definition of ¢, the polynomial
w =1 Y(cy) is determined by

Cw(A1y o A1) = .
We take into account (6), where A;[c,] is the same as

[Ai(cw)] = [Ai(Cw (A1, s A)(1)] = P([Nicw]q)-

Because [c,] = 9([¢,]4) for any v € W and the map v is bijective, it follows that
in R[g, A]/ I}, we have

Mewlg= D AilaY)[ews,]q + > Ai(@¥)q® [ewsalg-

l(wsq)=l(w)+1 l(wsq)=l(w)—2|aV|+1

As R[g|-algebras, both QH*(G/B) and R[g, A]/I}}, are generated by their
degree 2 elements; this is why their structure is uniquely determined by the bases
{ow : w € W}, respectively {[¢,] : w € W} and the matrices of multiplication
by os,, respectively A\;, 1 <4 < [. Since ¢5;, = \;, 1 < ¢ < [, it follows from
Theorem 3.1 and relation (8) that the map

QH*(G/B) — Rlq, A]/I}}, given by oy, — ¢y, w € W

is an isomorphism of algebras and the proof is finished. O

Example. We will illustrate our main result by giving concrete solutions to the
quantum Giambelli problem for G/B, where G is simple of type Bsy. This is the
first interesting case, different from A,, and for which ®+ # ®T. We will use the
following presentation of the root system: if x1,xs are an orthogonal coordinate
system of the plane and eq, es the unit direction vectors of the coordinate axes,
then

- the simple roots are o := x1 and s := 9 — T71.

- the positive roots are ay, a9, a3 := a1 + as = 29 and a4 = 201 + ag =

xr1 + x9.
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- the positive coroots are af = 2e1, ay = es —e1, ay = 2e3 = of + 23
and af = e +ex =) +ay.
- the fundamental weights A1, Ao are determined by

I :2)\1 —)\2

To = A2

- the simple reflections are s; : (z1,22) — (—x1,22) and s : (z1,22) —

(x9,71). The generators of Iy are obviously z? + 22 and x2x3.

- following [FK], we can obtain polynomial representatives of Schubert

classes in R[zy, 22]/ (2?2 + 22, 2223) as indicated in the following table:
w Cuw
W = 81528152 (1)1 — $2)3($1 + $2>/16
5295182 —1132(.%1 — $2)($1 + .%2)/4
818281 —(LEl —.%'2)2($1 +.’L’2)/8
5281 (z1 + 22)%/4
5182 —(z1 — x2) (1 + 22) /4
52 T2
S1 (.%'1 + 1'2)/2

Note that we have started the B-G-G algorithm with ¢, which differs from
aiasazay/8 by a multiple of 2% + 3.

Theorem 2.6 will allow us to describe the quantization map without know-
ing anything about the ideal I}j, of quantum relations. But for the sake of
completeness we will also obtain the two generators of I, by using the the-
orem of Kim as presented in our paper [M]. We have to consider the Hamil-
tonian system which consists of the standard 4-dimensional symplectic manifold
(R*,dry A dsy + dra A dss) with the Hamiltonian function

2 2
E(r,s) = Z (o, oz}/>’r’ﬂ’j + 26_25" = (2r; —ro)? + 12 d e 2 o722,
ij=1 i—1

The first integrals of motion of the system are F and — by inspection — the
function

1
F(r,s) = (2r1 —ra)?r2 + 12725 — (2] — 1ry)roe™ 252 4 272517252 1 1(6_282)2.

By the main result of [M], the quantum relations are obtained from E, respec-
tively F', by the formal replacements:

27‘1 —To = 21,72 = X2

e 2 s —(af, ) )1 = —4q1, e 32— —(ay, a3 )qa = —2¢o.
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In conclusion, Ij, is the ideal of R[g1, g2, z1, z2] generated by
2, .2 _ 2,2 2 2
x7 + 25 —4q1 — 292 = 0 and x7x5 — 4q125 + 2qex122 + 16q192 + ¢5.

Now, we will determine explicitly the image of each Schubert class o,,, w € W
via the isomorphism

QH*(G/B) ~Rlq1,q2, x1,22]/ L}y
The place of the operators Ay, As is taken by Xy, Xo where
Xi =z + () )1 Ag, + zi(ay) g2, + zi(ay )q1geAs, Ay, Ay, 1=1,2.
More precisely, we have
X1 =121+ 210 — ©2As, + 10205, A5, Ay,
and

Xo=x2+ QQA32 + Q1Q2A31A32As1'

Rather than using the formula for 1~ given by (7), it seems more convenient
to determine ¢, := ¥ "!(cy,) € Rlqg1, g2, 71, 2] by the definition of 1, i.e. from
the condition

Cw (X1, X2)(1) = ey (x1, 22).

We will explain the details just for the case w = wyg, which is the most illustrative
one. The polynomial we are looking for has the form ¢,,, = ¢y, + q101 + q2a2 +
b1G3 + baqs + b3q1q2, where a1, as are homogeneous polynomials of degree 2 in
x1,29 and by, by, by are constant. The condition that determines aq, as, b1, bo, by
is

Cuo (X1, X2)(1) + qra1 (X1, X2)(1) + geaa (X1, X2)(1) + b1g] + b2g5 + b3qiqz
(9) = Cyy (21, X2).

The first step is to compute ¢, (X1, X2)(1) and determine a; and as. Using

f(x1,22) — f(=21,22) and A (f):f(m1,m2)—f(x2,x1)

xr1 To — X1

As (f) =
f € R[z1, z2] we obtain

1 1
Cup (X1, X2)(1) = Cuy (71, 2) + §Q1(3l‘% — 4z +a3) + Z%(ﬁ —23)+ ¢ + q1g-

Since the coefficients of ¢1, respectively ¢ in the left hand side of (9) must
vanish, we deduce:

1 1
ay = —5(33;% —Adzyx0 + 23), ap = —Z(a;% —22).
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The second step is to compute a1 (X7, X2)(1) and az(X7, X5)(1) and deter-
mine by, by and b3. We take into account that

X1 —Xo =21 — 22+ 201 A5, — 2¢2A,,

and find

1 3
a1 (X1, X9)(1) = —g(X1 — X2)(3z1 — x2) = a1(x1,22) — @
1

CLQ(Xl,XQ)(l) = 4(X1 — XQ)(CL’l + .’,172) = az(l'l,l‘z) —q1.

Coming back to (9), we deduce

hence

. 1 1 1
Cuwy = Cup — §q1(3:rf —dxyxy + 23) — Zqz(:v% —z2) + §qf + q1¢2-

The other ¢, w € W, can be obtained by similar computations. They are
described in the following table:

w Cw — Cuw
$25152 q1T2
1 1

S$18281 5(951 - $2)Q1 + 5(331 + x2)q2
S251 —q1

5152 q1

59 0

S1 0
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