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POLYNOMIAL REPRESENTATIVES

OF SCHUBERT CLASSES IN QH∗(G/B)

Augustin-Liviu Mare

Abstract. We show how the quantum Chevalley formula for G/B, as stated
by Peterson and proved rigorously by Fulton and Woodward, combined with
ideas of Fomin, S. I. Gelfand, and Postnikov, leads to a formula which describes
polynomial representatives of the Schubert cohomology classes in the canonical
presentation of QH∗(G/B) in terms of generators and relations. We generalize
in this way results of [FGP].

§1 Introduction

A theorem of Borel [B] describes the cohomology1 ring of the generalized
complex flag manifold G/B as the “co-invariant algebra” of the Weyl group
of G, which is essentially a quotient of a certain polynomial ring. The Schu-
bert cohomology classes (i.e. Poincaré duals of Schubert varieties) are a ba-
sis of H∗(G/B). In order to determine the structure constants of the cup-
multiplication on H∗(G/B) with respect to this basis, we need to describe the
Schubert cohomology classes in Borel’s presentation. According to Bernstein,
I. M. Gelfand, and S. I. Gelfand [BGG], we obtain polynomial representatives of
Schubert classes in Borel’s ring by starting with a representative of the top coho-
mology and then applying successively divided difference operators associated to
the simple roots of G. More details concerning the Bernstein-Gelfand-Gelfand
construction can be found in section 2 of our paper.

When dealing with the (small) quantum cohomology ring QH∗(G/B) we face
a similar situation. There exists a canonical presentation of that ring, again as
a quotient of a polynomial algebra, where the variables are the same as in the
classical case, plus the “quantum variables” q1, . . . , ql. As about the ideal of
relations, it is generated by the “quantum deformations” of the relations from
Borel’s presentation of H∗(G/B) (for more details, see section 3). The Schu-
bert classes are a basis of QH∗(G/B) as a R[q1, . . . , ql]-module. A natural aim
(see the next paragraph) is to describe them in the previous presentation of
QH∗(G/B). Our main result gives a method for obtaining such polynomial rep-
resentatives. It can be described briefly as follows: we start with an arbitrary
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polynomial representing the Schubert class σw in Borel’s description (e.g. by
using the B-G-G construction); this is transformed into a polynomial represent-
ing σw in the canonical description of QH∗(G/B) after successive applications
of divided difference operators, multiplications by qj ’s and integer numbers and
additions. The precise formula is stated in Theorem 3.6 (also see Lemma 3.4 and
relation (5) in order to understand the notations). For G = SL(n, C), the same
result was proved by Fomin, S. Gelfand, and Postnikov [FGP]. The main ingredi-
ent of our proof is a result of D. Peterson [P] (we call it the “quantum Chevalley
formula,” since Chevalley obtained a similar result for the cup-multiplication
on H∗(G/B)) which describes the quantum multiplication by degree 2 Schubert
classes.

Finally, a few words should be said about the importance of our result. The
standard presentation of QH∗(G/B) mentioned above is explicitly determined
by Kim [K] (see also [M]). Our description could be relevant for finding the
structure constants of the quantum multiplication with respect to the basis con-
sisting of Schubert classes, which would lead immediately to the Gromov-Witten
invariants of G/B. The efficiency of this strategy depends very much on the in-
put: we dispose of the choice of polynomial representatives of Schubert classes
in Borel’s ring and this has to be made judiciously (see again [FGP], as well as
Billey and Haiman [BH] and Fomin and Kirillov [FK]).

§2 The Bernstein-Gelfand-Gelfand construction

The main object of study of this paper is the generalized complex flag manifold
G/B, where G is a connected, simply connected, semisimple, complex Lie group
and B ⊂ G a Borel subgroup. Let t be the Lie algebra of a maximal torus of a
compact real form of G and Φ ⊂ t∗ the corresponding set of roots. The negative
of the Killing form restricted to t gives an inner product 〈 , 〉. To any root α
corresponds the coroot

α∨ :=
2α

〈α, α〉

which is an element of t, by using the identification of t and t∗ induced by 〈 , 〉. If
{α1, . . . , αl} is a system of simple roots then {α∨

1 , . . . , α∨
l } is a system of simple

coroots. Consider {λ1, . . . , λl} ⊂ t∗ the corresponding system of fundamental
weights, which are defined by λi(α∨

j ) = δij . To any positive root α we assign
the reflection sα of (t, 〈 , 〉) about the hyperplane kerα. The Weyl group W is
generated by all reflections sα, α ∈ Φ+: it is actually generated by a smaller
set, namely by the simple reflections s1 = sα1 , . . . , sl = sαl

. To any w ∈
W corresponds a length, l(w), which is the smallest number of factors in a
decomposition of w as a product of simple reflections.

There are two different ways to describe H∗(G/B): On the one hand, we can
take B− ⊂ G the Borel subgroup opposite to B and assign to each w ∈ W the
Schubert variety C̄w = B−.w, which has real codimension 2l(w); its Poincaré
dual σw is an element of H2l(w)(G/B); the set σw, w ∈ W is a basis of H∗(G/B).
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On the other hand, let us consider the symmetric algebra S(t∗), which consists of
polynomial functions on t. A theorem of Borel says that the ring homomorphism
S(t∗) → H∗(G/B) induced by λi 	→ σsi , 1 ≤ i ≤ l, is surjective; moreover it
induces the ring isomorphism

(1) H∗(G/B) � R[λ]/IW ,

where IW is the ideal of S(t∗) = R[λ1, . . . , λl] = R[λ] generated by the W -
invariant polynomials of strictly positive degree.

One is looking for a Giambelli type formula, which connects these two de-
scriptions by assigning to each Schubert cycle σw a polynomial representative in
the quotient ring R[λ]/IW . We are going to sketch the construction of such poly-
nomials, as performed by Bernstein, I. M. Gelfand, and S. I. Gelfand in [BGG].
It relies on the following facts:

• H∗(G/B) and R[λ]/IW are generated as rings by σsi , respectively λi,
1 ≤ i ≤ l,

• we have a formula of Chevalley which gives the matrix of the cup multi-
plication by σsi on H∗(G/B) with respect to the basis {σw : w ∈ W},

• there is another, “very similar”, formula, which involves the divided dif-
ference operators ∆w, w ∈ W (see below) on the polynomial ring R[λ].

The following result was proved by Chevalley [Ch] (see also Fulton and Wood-
ward [FW]).

Lemma 2.1. (Chevalley’s formula). For any 1 ≤ i ≤ l and any w ∈ W we have

σsi
σw =

∑
α∈Φ+,l(wsα)=l(w)+1

λi(α∨)σwsα
.

To each positive root α we assign the divided difference operator ∆α on the
ring R[λ] (the latter being just the symmetric ring S(t∗), it admits a natural
action of the Weyl group W ):

∆α(f) =
f − sαf

α

If w is an arbitrary element of W , take w = si1 . . . sik
a reduced expression and

then set
∆w = ∆αi1

◦ · · · ◦ ∆αik
.

One can show (see for instance [Hi]) that the definition does not depend on the
choice of the reduced expression. The operators obtained in this way have the
following property:

(2) ∆w ◦ ∆w′ =
{

∆ww′ , if l(ww′) = l(w) + l(w′)
0, otherwise.

The importance of those operators for our present context is revealed by the
similarity of the following formula with Lemma 2.1:
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Lemma 2.2. (Hiller [Hi]) If λ∗
i denotes the operator of multiplication by λi on

R[λ], then for any w ∈ W we have

∆wλ∗
i − wλ∗

i w
−1∆w =

∑
β∈Φ+,l(wsβ)=l(w)−1

λi(β∨)∆wsβ
.

Let w0 be the longest element of W . The polynomial

cw0 :=
1

|W |
∏

α∈Φ+

α

is homogeneous, of degree l(w0) and has the property that ∆w0cw0 = 1. But
l(w0) is at the same time the complex dimension of G/B, and it can be easily
shown that the class of cw0 in R[λ]/IW generates the top cohomology of G/B.
To any w ∈ W we assign cw := ∆w−1w0cw0 which is a homogeneous polynomial
of degree l(w) satisfying

∆vcw =
{

cwv−1 , if l(wv−1) = l(w) − l(v)
0, otherwise

for any v ∈ W (see (2)). In particular, if l(v) = l(w), then ∆v(cw) = δvw. Since
∆w leaves IW invariant, it induces an operator on R[λ]/IW which also satisfies
∆v([cw]) = δvw, provided that l(v) = l(w). Because dim R[λ]/IW = |W |, it
follows that the classes [cw], w ∈ W , are a basis of R[λ]/IW . We can easily
determine any of the coefficients av from

λi[cw] =
∑

l(v)=l(w)+1

av[cv],

by applying ∆v on both sides and using Lemma 2.2. It follows that

(3) λi[cw] =
∑

α∈Φ+,l(wsα)=l(w)+1

λi(α∨)[cwsα
].

From ∆si(λj) = δij , 1 ≤ i, j ≤ l, we deduce that csi = λi. We just have to
compare (3) with Lemma 2.1 to conclude:

Theorem 2.3. (Bernstein, I. M. Gelfand, and S. I. Gelfand [BGG]) Let [cw0 ]
be the image of σw0 by the identification H∗(G/B) = R[λ]/IW indicated above.
Then the map σw 	→ [cw] := ∆w−1w0 [cw0 ] is a ring isomorphism.

The polynomial cw = ∆w−1w0cw0 being a representative of the Schubert cy-
cle σw in R[λ]/IW , is a solution of the classical (i.e. non-quantum) Giambelli
problem for G/B.
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§3 Quantization map

Additively, the quantum cohomology QH∗(G/B) of G/B is just H∗(G/B)⊗
R[q1, . . . , ql], where l is the rank of G and q1, . . . , ql are some variables. The
multiplication ◦ is uniquely determined by R[q]-linearity and the general formula

σu ◦ σv =
∑

d=(d1,... ,dl)≥0

qd
∑

w∈W

〈σu|σv|σw0w〉dσw,

u, v ∈ W , where qd denotes qd1
1 . . . qdl

l . The coefficient 〈σu|σv|σw0w〉d is the
Gromov-Witten invariant, which counts the number of holomorphic curves ϕ :
CP 1 → G/B such that ϕ∗([CP 1]) = d in H2(G/B) and ϕ(0), ϕ(1) and ϕ(∞) are
in general translates of the Schubert varieties dual to σu, σv, respectively σw0w.
It turns out that this number can be nonzero and finite only if l(u)+l(v) = l(w)+
2

∑l
i=1 di; if it is infinity, we set 〈σu|σv|σw0w〉d = 0. The ring (QH∗(G/B), ◦) is

commutative and associative (for more details about quantum cohomology we
refer the reader to Fulton and Pandharipande [FP]).

One can show that the quantum cohomology ring of G/B is generated by
H2(G/B)⊗R[q1, . . . , ql], i.e. by q1, . . . , ql, λ1, . . . , λl. To determine the ideal of
relations, we only have to take any of the fundamental W -invariant polynomials
ui, 1 ≤ i ≤ l — as generators of the ideal IW of relations in H∗(G/B) — and find
its “quantum deformation” Ri. The latter is a polynomial in R[q, λ], uniquely
determined by:

(a) the relation Ri(q1, . . . , ql, σs1◦, . . . , σsl
◦) = 0 holds in QH∗(G/B),

(b) the component of Ri free of q is ui.
If Iq

W denotes the ideal of R[q, λ] generated by R1, . . . , Rl, then we have the ring
isomorphism

(4) QH∗(G/B) � R[q, λ]/Iq
W .

The challenge is now to solve the “quantum Giambelli problem”: via the iso-
morphism (4), find a polynomial representative in R[q, λ]/Iq

W for each Schubert
class σw, w ∈ W . We can actually use Theorem 2.3 in order to rephrase the
problem as follows: Describe (the image of [cw] via) the map

R[q, λ]/(IW ⊗ R[q]) = R[λ]/IW ⊗ R[q]
∼=−→

H∗(G/B) ⊗ R[q] = QH∗(G/B)
∼=−→ R[q, λ]/Iq

W .

Note that the latter is an isomorphism of R[q]-modules, but not of algebras;
following [FGP], we call it the quantization map. So the main goal of our paper
is to give a presentation of the quantization map. For G = SL(n, C), the problem
has been solved by Fomin, Gelfand, and Postnikov [FGP]. We are going to extend
their result to an arbitrary semisimple Lie group G.



762 AUGUSTIN-LIVIU MARE

As in the non-quantum case, we will essentially rely on the Chevalley formula,
this time in its quantum version: the formula was obtained by D. Peterson in
[P] (for more details, see section 10 of Fulton and Woodward [FW]). If α∨ is a
positive coroot, we consider its height

|α∨| = m1 + . . . + ml,

where the positive integers m1, . . . , ml are given by α∨ = m1α
∨
1 + . . . + mlα

∨
l .

We also put
qα∨

= qm1
1 . . . qml

l .

Theorem 3.1. (Quantum Chevalley Formula; Peterson [P], Fulton and Wood-
ward [FW]) In (QH∗(G/B), ◦) one has

σsi ◦ σw = σsiσw +
∑

l(wsα)=l(w)−2|α∨|+1

λi(α∨)qα∨
σwsα .

The following inequality can be found in Peterson’s notes [P], as well as in
Brenti, Fomin, and Postnikov [BFP]. For the sake of completeness, we will give
our own proof of it.

Lemma 3.2. For any positive root α we have l(sα) ≤ 2|α∨| − 1.

Proof. We prove the lemma by induction on l(sα). If l(sα) = 1, then α, as
well as α∨, is simple, so |α∨| = 1. Let now α be a positive, non-simple root.
There exists a simple root β such that α(β∨) > 0 (otherwise we would be led to
α(α∨) ≤ 0). Consequently, β(α∨) is a strictly positive number, too, hence

sα(β) = β − β(α∨)α

must be a negative root. Also

sβsα(β) = (α(β∨)β(α∨) − 1)β − β(α∨)α

is a negative root. By Lemma 3.3, chapter 1 of [Hi], we have l(sβsαsβ) =
l(sα) − 2. Because

sβ(α)∨ = sβ(α∨) = α∨ − β(α∨)β∨,

we have |sβ(α)∨| = |α∨| − β(α∨). By the induction hypothesis we conclude:

l(sα) = l(sβsαsβ)+2 ≤ 2|sβ(α)∨|−1+2 = 2|α∨|−1+2(1−β(α∨)) ≤ 2|α∨|−1.

�
Denote by Φ̃+ the set of all positive roots α with the property l(sα) =

2|α∨| − 1. The following operators

(5) Λi = λi +
∑

α∈Φ̃+

λi(α∨)qα∨
∆sα
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on R[q, λ], 1 ≤ i ≤ l have been considered by Peterson in [P]. His key observation
is that we have

(6) Λi[cw] = λi[cw] +
∑

l(wsα)=l(w)−2|α∨|+1

λi(α∨)qα∨
[cwsα ],

the right hand side being, by the quantum Chevalley formula, just λi ◦ [cw]. In
order to justify (6), we only have to say that if w ∈ W and α is a positive root
with l(wsα) = l(w) − 2|α∨| + 1, then, by Lemma 3.2, α must be in Φ̃+.

From the associativity of the quantum product ◦ it follows that any two Λi

and Λj commute as operators on (R[λ]/IW )⊗R[q]. In fact the following stronger
result (also stated by Peterson in [P]) holds:

Lemma 3.3. The operators Λ1, . . . ,Λl on R[q, λ] commute.

Proof. Put w = sα in Lemma 2.2 and obtain:

∆sα
λ∗

i = (λ∗
i − λi(α∨)α∗)∆sα

+
∑

γ∈Φ+,l(sαsγ)=l(sα)−1

λi(γ∨)∆sαsγ
.

It follows

ΛjΛi =(λjλi)∗ +
∑

α∈Φ̃+

λi(α∨)qα∨
λ∗

j∆sα

+
∑

α∈Φ̃+

λj(α∨)qα∨
λ∗

i ∆sα −
∑

α∈Φ̃+

λj(α∨)λi(α∨)qα∨
α∗∆sα

+
∑

α∈Φ̃+,γ∈Φ+,l(sαsγ)=l(sα)−1

λj(α∨)λi(γ∨)qα∨
∆sαsγ

+
∑

α,β∈Φ̃+,l(sαsβ)=l(sα)+l(sβ)

λj(α∨)λi(β∨)qα∨+β∨
∆sαsβ

.

Denote by Σij the sum of the last two sums: the rest is obviously invariant by
interchanging i ↔ j.

Let us return to the Bernstein-Gelfand-Gelfand construction described in the
first section: Fix cw0 ∈ R[λ] such that [cw0 ] = σw0 and then set cw = ∆w−1w0cw0 ,
w ∈ W ; their classes modulo IW are a basis of R[λ]/IW . As we said earlier, from
the associativity of the quantum product we deduce that ΛjΛi[cw] is symmetric
in i and j, for any w ∈ W . In particular, Σij [cw0 ] is symmetric in i and j.
Because l(w0v) = l(w0) − l(v) for any v ∈ W , we have

Σij [cw0 ] =
∑

α∈Φ̃+,l(sαsγ)=l(sα)−1

λj(α∨)λi(γ∨)qα∨
[cw0sγsα

]

+
∑

α,β∈Φ̃+,l(sαsβ)=l(sα)+l(sβ)

λj(α∨)λi(β∨)qα∨+β∨
[cw0sβsα

].
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The latter reproduces exactly the expression of Σij itself: {[cw] : w ∈ W} (ac-
tually {[cw0w−1 ] : w ∈ W}) are linearly independent, exactly like the operators
{∆w : w ∈ W}. So Σij is symmetric in i and j and the lemma is proved. �

The next result is a generalization of Lemma 5.3 of [FGP].

Lemma 3.4. The map ψ : R[q, λ] → R[q, λ] given by

f 	→ f(Λ1, . . . ,Λl)(1)

is an R[q]-linear isomorphism. If f ∈ R[q, λ] has degree d with respect to
λ1, . . . , λl, then we can express ψ−1(f) as follows

ψ−1(f) =
I − (I − ψ)d

ψ
(f)

=
(

d

1

)
f −

(
d

2

)
ψ(f) + . . . + (−1)d−2

(
d

d − 1

)
ψd−2(f) + (−1)d−1ψd−1(f),(7)

where
(
d
1

)
, . . . ,

(
d

d−1

)
are the binomial coefficients.

Proof. The degrees of elements of R[q, λ] we are going to refer to here are taken
only with respect to λ1, . . . , λl. First, ψ is injective, because if g ∈ R[q, λ] has
the property that g(Λ1, . . . ,Λl)(1) = 0, then obviously g must be 0. In order
to prove both surjectivity and the formula for ψ−1, we notice that the operator
I − ψ lowers the degree of a polynomial by at least one, so if f is a polynomial
of degree d, then (I − ψ)d(f) = 0. �

The next result is a direct consequence of the quantum Chevalley formula.

Proposition 3.5. For any of the generators R1, . . . , Rl of the ideal Iq
W , ψ(Ri)

is2 an R[q]-linear combination of elements of IW , the free term with respect to
q1, . . . , ql being ui. Hence ψ(Iq

W ) = IW ⊗ R[q] and ψ gives rise to a bijection

ψ : R[q, λ]/Iq
W → R[q, λ]/(IW ⊗ R[q]).

Proof. We just have to use the fact that

λi1 ◦ . . . ◦ λik
= Λi1 . . .Λik

(1) mod IW ⊗ R[q]

so that

ψ(Ri) mod IW ⊗ R[q] = Ri(q1, . . . , ql,Λ1, . . . ,Λl)(1) mod IW ⊗ R[q]

= Ri(q1, . . . , ql, λ1◦, . . . , λl◦)
= 0.

�
Our polynomial representatives of Schubert classes in QH∗(G/B) are de-

scribed by the following theorem, which is the central result of the paper. The
proof is governed by the same ideas that have been used in the non-quantum
case (see section 2).

2In view of Theorem 5.5 of [FGP], we could actually expect to have ψ(Ri) = ui.
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Theorem 3.6. The quantization map R[q, λ]/(IW ⊗ R[q]) → R[q, λ]/Iq
W is just

ψ−1. More precisely, if w ∈ W has length l(w) = l, then the class of cw in
R[q, λ]/(IW ⊗ R[q]) is mapped to the class of

I − (I − ψ)l

ψ
(cw) =

(
l

1

)
cw −

(
l

2

)
ψ(cw) + . . . + (−1)l−2

(
l

l − 1

)
ψl−2(cw) + (−1)l−1ψl−1(cw)

in R[q, λ]/Iq
W , where ψ has been defined in Lemma 3.4.

Proof. For any polynomial f ∈ R[q, λ], we denote by [f ], [f ]q its classes modulo
IW ⊗ R[q], respectively modulo Iq

W . By the definition of ψ, the polynomial
ĉw := ψ−1(cw) is determined by

ĉw(Λ1, . . . ,Λl)(1) = cw.

We take into account (6), where Λi[cw] is the same as

[Λi(cw)] = [Λi(ĉw(Λ1, . . . ,Λl)(1))] = ψ([λiĉw]q).

Because [cv] = ψ([ĉv]q) for any v ∈ W and the map ψ is bijective, it follows that
in R[q, λ]/Iq

W we have
(8)

λi[ĉw]q =
∑

l(wsα)=l(w)+1

λi(α∨)[ĉwsα ]q +
∑

l(wsα)=l(w)−2|α∨|+1

λi(α∨)qα∨
[ĉwsα ]q.

As R[q]-algebras, both QH∗(G/B) and R[q, λ]/Iq
W are generated by their

degree 2 elements; this is why their structure is uniquely determined by the bases
{σw : w ∈ W}, respectively {[ĉw] : w ∈ W} and the matrices of multiplication
by σsi , respectively λi, 1 ≤ i ≤ l. Since ĉsi = λi, 1 ≤ i ≤ l, it follows from
Theorem 3.1 and relation (8) that the map

QH∗(G/B) → R[q, λ]/Iq
W given by σw 	→ ĉw, w ∈ W

is an isomorphism of algebras and the proof is finished. �
Example. We will illustrate our main result by giving concrete solutions to the
quantum Giambelli problem for G/B, where G is simple of type B2. This is the
first interesting case, different from An and for which Φ̃+ �= Φ+. We will use the
following presentation of the root system: if x1, x2 are an orthogonal coordinate
system of the plane and e1, e2 the unit direction vectors of the coordinate axes,
then

- the simple roots are α1 := x1 and α2 := x2 − x1.
- the positive roots are α1, α2, α3 := α1 + α2 = x2 and α4 := 2α1 + α2 =

x1 + x2.
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- the positive coroots are α∨
1 = 2e1, α∨

2 = e2 − e1, α∨
3 = 2e2 = α∨

1 + 2α∨
2

and α∨
4 = e1 + e2 = α∨

1 + α∨
2 .

- the fundamental weights λ1, λ2 are determined by

x1 = 2λ1 − λ2

x2 = λ2

- the simple reflections are s1 : (x1, x2) 	→ (−x1, x2) and s2 : (x1, x2) 	→
(x2, x1). The generators of IW are obviously x2

1 + x2
2 and x2

1x
2
2.

- following [FK], we can obtain polynomial representatives of Schubert
classes in R[x1, x2]/(x2

1 + x2
2, x

2
1x

2
2) as indicated in the following table:

w cw

——————– ——————————–
w0 = s1s2s1s2 (x1 − x2)3(x1 + x2)/16
s2s1s2 −x2(x1 − x2)(x1 + x2)/4
s1s2s1 −(x1 − x2)2(x1 + x2)/8
s2s1 (x1 + x2)2/4
s1s2 −(x1 − x2)(x1 + x2)/4
s2 x2

s1 (x1 + x2)/2

Note that we have started the B-G-G algorithm with cw0 which differs from
α1α2α3α4/8 by a multiple of x2

1 + x2
2.

Theorem 2.6 will allow us to describe the quantization map without know-
ing anything about the ideal Iq

W of quantum relations. But for the sake of
completeness we will also obtain the two generators of Iq

W , by using the the-
orem of Kim as presented in our paper [M]. We have to consider the Hamil-
tonian system which consists of the standard 4-dimensional symplectic manifold
(R4, dr1 ∧ ds1 + dr2 ∧ ds2) with the Hamiltonian function

E(r, s) =
2∑

i,j=1

〈α∨
i , α∨

j 〉rirj +
2∑

i=1

e−2si = (2r1 − r2)2 + r2
2 + e−2s1 + e−2s2 .

The first integrals of motion of the system are E and — by inspection — the
function

F (r, s) = (2r1 − r2)2r2
2 + r2

2e
−2s1 − (2r1 − r2)r2e

−2s2 + 2e−2s1e−2s2 +
1
4
(e−2s2)2.

By the main result of [M], the quantum relations are obtained from E, respec-
tively F , by the formal replacements:

2r1 − r2 	→ x1, r2 	→ x2

e−2s1 	→ −〈α∨
1 , α∨

1 〉q1 = −4q1, e
−2s2 	→ −〈α∨

2 , α∨
2 〉q2 = −2q2.
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In conclusion, Iq
W is the ideal of R[q1, q2, x1, x2] generated by

x2
1 + x2

2 − 4q1 − 2q2 = 0 and x2
1x

2
2 − 4q1x

2
2 + 2q2x1x2 + 16q1q2 + q2

2 .

Now, we will determine explicitly the image of each Schubert class σw, w ∈ W
via the isomorphism

QH∗(G/B) � R[q1, q2, x1, x2]/Iq
W .

The place of the operators Λ1,Λ2 is taken by X1, X2 where

Xi = xi + xi(α∨
1 )q1∆s1 + xi(α∨

2 )q2∆s2 + xi(α∨
4 )q1q2∆s1∆s2∆s1 , i = 1, 2.

More precisely, we have

X1 = x1 + 2q1∆s1 − q2∆s2 + q1q2∆s1∆s2∆s1

and
X2 = x2 + q2∆s2 + q1q2∆s1∆s2∆s1 .

Rather than using the formula for ψ−1 given by (7), it seems more convenient
to determine ĉw := ψ−1(cw) ∈ R[q1, q2, x1, x2] by the definition of ψ, i.e. from
the condition

ĉw(X1, X2)(1) = cw(x1, x2).

We will explain the details just for the case w = w0, which is the most illustrative
one. The polynomial we are looking for has the form ĉw0 = cw0 + q1a1 + q2a2 +
b1q

2
1 + b2q

2
2 + b3q1q2, where a1, a2 are homogeneous polynomials of degree 2 in

x1, x2 and b1, b2, b3 are constant. The condition that determines a1, a2, b1, b2, b3

is

cw0(X1, X2)(1) + q1a1(X1, X2)(1) + q2a2(X1, X2)(1) + b1q
2
1 + b2q

2
2 + b3q1q2

= cw0(x1, x2).(9)

The first step is to compute cw0(X1, X2)(1) and determine a1 and a2. Using

∆s1(f) =
f(x1, x2) − f(−x1, x2)

x1
and ∆s2(f) =

f(x1, x2) − f(x2, x1)
x2 − x1

,

f ∈ R[x1, x2] we obtain

cw0(X1, X2)(1) = cw0(x1, x2)+
1
8
q1(3x2

1−4x1x2 +x2
2)+

1
4
q2(x2

1−x2
2)+q2

1 +q1q2.

Since the coefficients of q1, respectively q2 in the left hand side of (9) must
vanish, we deduce:

a1 = −1
8
(3x2

1 − 4x1x2 + x2
2), a2 = −1

4
(x2

1 − x2
2).
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The second step is to compute a1(X1, X2)(1) and a2(X1, X2)(1) and deter-
mine b1, b2 and b3. We take into account that

X1 − X2 = x1 − x2 + 2q1∆s1 − 2q2∆s2

and find

a1(X1, X2)(1) = −1
8
(X1 − X2)(3x1 − x2) = a1(x1, x2) −

3
2
q1 − q2

a2(X1, X2)(1) = −1
4
(X1 − X2)(x1 + x2) = a2(x1, x2) − q1.

Coming back to (9), we deduce

b1 =
1
2
, b2 = 0, b3 = 1,

hence

ĉw0 = cw0 −
1
8
q1(3x2

1 − 4x1x2 + x2
2) −

1
4
q2(x2

1 − x2
2) +

1
2
q2
1 + q1q2.

The other ĉw, w ∈ W , can be obtained by similar computations. They are
described in the following table:

w ĉw − cw

——– ——————————–
s2s1s2 q1x2

s1s2s1
1
2 (x1 − x2)q1 + 1

2 (x1 + x2)q2

s2s1 −q1

s1s2 q1

s2 0
s1 0
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