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COMPACTIFICATIONS OF SYMMETRIC

AND LOCALLY SYMMETRIC SPACES

Armand Borel and Lizhen Ji

§1. Introduction

In this Note, G is a connected non-compact linear real semisimple Lie group,
K a maximal compact subgroup of G, and Γ an arithmetically defined not co-
compact subgroup of G (assumed then to be defined over Q). Recall that K
is the fixed point set of a Cartan involution, X = G/K is a complete, simply
connected Riemannian manifold with non-positive curvature, and any such sym-
metric space without euclidean factor can be obtained in this way. We will also
consider more generally pseudoriemannian symmetric spaces Y = G/H (4.3,
§§5, 6, 7), where H is the noncompact fixed point set of an involution of G. The
noncompact locally symmetric space Γ\X = Γ\G/K (§§8, 9) has finite volume
with respect to an invariant metric.

We are concerned with various compactifications of the spaces G/K, G/H,
Γ\G/K and Γ\G. Our purpose here is to announce some new results or new
points of view, in particular a uniform construction of most of known compact-
ifications of both symmetric and locally symmetric spaces, to be included in a
comprehensive exposition [BJ4]. An extended survey is given in [BJ3] and a
number of proofs in [BJ1] or [BJ2].

By a compactification of X or Y is meant a compact G-space with finitely
many orbits containing the given space as an open orbit. There are two main
cases depending on whether the space is dense or not, but the compactification
is smooth in the latter case. There is a similar division for the compactifications
of Γ\X.

A method often used to compactify X, to be referred to as the embedding
method, is to embed X equivariantly into a compact G-space and take the clo-
sure. In that case, it is clear that the compactification is a compact Hausdorff
G-space and the problem is to investigate what has been added on the boundary.
Examples are the Satake compactifications of X (3.1), the Furstenberg compact-
ifications of X (not reviewed here), the De Concini-Procesi wonderful compact-
ification X̄W

c of Xc = Gc/Kc (5.1) or more generally of Gc/Hc (§7) and the
embedding of Γ\G, for Γ maximal, in the space of closed subgroups of G (9.5).
Of particular interest is the set of real points of the wonderful compactification
(5.2, 5.3) and its comparison with the Oshima-Sekiguchi X̄OS compactification
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(6.5). We shall also emphasize another procedure, the “attachment method”,
which can in fact be used to define most compactifications considered here.
Roughly speaking, it consists in defining a priori some pieces of the boundary,
usually (though not always) parametrized by parabolic subgroups. One has then
to show that these pieces combine to define a compact Hausdorff G-space. Of-
ten, the Hausdorff property is the most difficult to establish. Examples are the
conic (geodesic) or Martin compactifications of X (3.5), the Satake compactifica-
tions of Γ\X (8.2), the Borel-Serre and reductive Borel-Serre compactifications
of Γ\X (8.3, 8.4) or of Γ\G (9.1, 9.2) and an alternate definition of the maximal
Satake compactification of X (3.2, 3.3).

In these compactifications, except for X̄c(R), the initial space is dense and the
compactification has in general singularities. The first constructions of smooth
analytic compactifications are due to Oshima [O] and Oshima–Sekiguchi [OS].
Their motivation was to supply a framework for the proof, by means of dif-
ferential systems with regular singularities, of the Helgason conjecture on joint
eigenfunctions of invariant differential operators for G/K, and of its general-
izations to G/H. Besides their method, we shall also use the self-gluing of
manifolds with corners (a procedure initiated by R. Melrose) and the investi-
gation of real points of the De Concini and Procesi wonderful compactification.
The latter gives a direct construction of the analytic structure of the Oshima
and the Oshima-Sekiguchi compactifications.

§2. Preliminaries

We assume familiarity with the structure theory of semisimple real Lie groups
and recall some notation. A maximal compact subgroup K is fixed and θ is the
Cartan involution of G with respect to K.

2.1. The Lie algebra of a real Lie group G, H, K, . . . is denoted by the cor-
responding l.c. Gothic letter g, h, k, . . . . Let a be a Cartan subalgebra of the
symmetric pair (G, K), i.e. a maximal commutative subalgebra of the orthogo-
nal complement s to k in g, (with respect to the Killing form). Let A = exp a

and Φ = Φ(G, A) be the set of roots of G with respect to A. The value of α ∈ Φ
on a ∈ A is denoted aα. As usual

(1) gα := {X ∈ g | Ad a · X = aα · X}
(and a non-trivial character β of A is a root if and only if gβ �= 0). If P is a
parabolic subgroup, we let P = NP · AP · MP be its Langlands decomposition
: NP is the unipotent radical of P , AP · MP = Z(AP ) the centralizer of AP

in G and also the Levi subgroup of P stable under θ, AP the exponential of
the intersection of s with the center of the Lie algebra of Z(A) and MP the
direct complement of AP in Z(AP ) stable under θ. Let KP = K ∩ MP . It is a
maximal compact subgroup of MP and XP = MP /KP is the symmetric space
of noncompact type of MP . Since G = P · K, the projection G → X induces a
surjective map

(2) µP : NP × AP × XP → X
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which is an isomorphism of smooth manifolds.

2.2. We fix an ordering on Φ and let ∆ be the set of simple roots. Let N be the
connected group with Lie algebra n = ⊕α>0gα. For any subset J of ∆, let
AJ = (

⋂
α∈J ker α)o, where o refers to the identity component, and PJ =

Z(AJ) · N . The PJ are the standard parabolic subgroups and any parabolic
subgroup is conjugate to one and only one PJ . The Langlands decomposition of
PJ is denoted PJ = NJ · AJ · NJ . If J = ∅ we write simply P∅ = N · A · M . In
this case, M is the biggest compact subgroup of Z(A).

2.3. Given a parabolic subgroup P , we let Φ(P, AP ) denote the set of weights of
AP in nP , with respect to the adjoint representation. They are positive integral
linear combinations of a subset ∆(P, AP ) of cardinality dimAP , called the simple
elements of Φ(P, AP ). [If P = PJ , these are the restrictions of the elements of
∆ − J .] For t > 0, we let
(3)

AP,t = {a ∈ AP | aα ≥ t, α ∈ Φ(P, AP )} = {a ∈ AP | aα ≥ t, α ∈ ∆(P, AP )}.

For bounded sets U ⊂ NP and V ⊂ XP , the image of U ×AP,t × V under µP is
called a Siegel set in X, with respect to P , to be denoted SP,U,t,V .

§3. Satake compactifications and an alternative construction

Compactifications of X were constructed first by I. Satake [S1] (as a tool to
obtain compactifications of Γ\X [S2], see 8.2 below) and later other compacti-
fications were introduced. See [GJT] or [BJ3] for an exposition. In this section
we concentrate on the compactifications of Satake.

3.1. For simplicity we assume G to be simple and recall first Satake’s definition.
Given a finite dimensional complex vector space V , let HV be the space of non-
zero hermitian forms on V and P (HV ) = HV /R∗ the associated real projective
space. Let now ρ : G → GL(V ) be a finite dimensional non-trivial irreducible
smooth representation of G in GL(V ). It is always possible to find a positive
definite hermitian metric on V such that ρ(x) is unitary (resp. hermitian) if
x ∈ K (resp. x ∈ S = exp s). Then the map g �→ ρ(g) · ρ(g)∗, where ∗ refers to
the adjoint, yields an embedding of X into P (HV ). The closure of ρ(X) is the
compactification X̄S

ρ of X associated to ρ [S1]. Up to isomorphism, it depends
only on the set I of simple roots not orthogonal to the highest weight λρ of ρ
and will also be denoted X̄S

I . If I ⊂ I ′, the compactification X̄S
I′ dominates X̄S

I ,
in the sense that the identity map X → X extends to a continuous surjective
map X̄S

I → X̄S
I′ . In particular, if I = ∆, then X̄S

I dominates all other Satake
compactifications, and is called the maximal Satake compactification, to be de-
noted X̄S

m. For J ⊂ ∆, let KJ = K ∩ MJ . It is maximal compact in MJ . Let
QJ = NJ · AJ · KJ . Then the G-orbits in X̄S

m are the quotients OJ = G/QJ :

(1) X̄S
m =

∐

J⊂∆

OJ .
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(If J = ∆, then PJ = G and KJ = K.) The orbit OJ is fibered over G/PJ with
fibers isomorphic to XJ = MJ/KJ , called the “boundary components”.

If I �= ∆, the compactification X̄S
I has a similar description, but J runs only

through certain subsets of ∆ and XJ is replaced by a suitable direct factor, to
be denoted here X ′

J , or X ′
P if P is not standard.

3.2. We now sketch another way to define X̄S
m by the attachment method (see

[BJ2] for details). Start from a set X̃ which is the union of X and of boundary
faces e(P ), where e(P ) is isomorphic to XP . By definition, a sequence of points
yj ∈ X converges to z ∈ e(P ) if the following conditions are fulfilled: yj can be
written in the form

(2) yj = kj · µP (nj , aj , zj) (kj ∈ K, nj ∈ NP , aj ∈ AP , zj ∈ XP )

so that kj → 1, aα → ∞ for all α ∈ ∆(P, AP ), a−1
j · nj · aj → 1, and zj → z.

Moreover, if P1 ⊂ P2, then e(P1) is to be contained in the closure of e(P2)
and the definition of convergent sequences in e(P2) to points of e(P1) is similar,
using relative Langlands decompositions. It is then proved that X̃ is a compact
Hausdorff G-space, isomorphic to X̄S

m. In (2), the representation of yj is not
unique, and, accordingly, the Hausdorff property is not obvious, but follows from
the separation property in Proposition 3.3 below. Fix on NP a left-invariant
metric d and, for ε > 0, let B(ε) be the ball of radius ε in NP with center at
the identity. A generalized Siegel set SP,ε,t,V , where V is as in 2.3, is the image
under µP of

{(n, a, z) ∈ NP × AP × XP | a ∈ AP,t, z ∈ V, a−1na ∈ B(ε)}.

The chief separation property is then given by the

3.3 Proposition. Fix two distinct proper parabolic subgroups P1, P2 and a
neighborhood C of 1 in K such that k · P1 · k−1 �= P2 for k ∈ C. Then for
ε sufficiently small and t sufficiently large

(3) k · SP1,ε,t,V1 ∩ SP2,ε,t,V2 = ∅

for all k ∈ C.

As the name indicates, the generalized Siegel sets include the Siegel sets (2.3).
Proposition 3.3 is a generalization for generalized Siegel sets over R of a sep-
aration property of Siegel sets (usually associated to parabolic Q-subgroups)
familiar in reduction theory.

3.4. It is known that all Satake compactifications are homeomorphic to closed
balls [J1], but X̄S

m has two further interesting structures. First, the boundary
admits a natural structure of simplicial complex dual to the Tits building of
parabolic subgroups [GJT]. Second, and more importantly here, it is a manifold
with corners. A manifold with corners M , of dimension n, rank rk(M) = r
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is a stratified space. The boundary is the union of the strata of codimension
j, 1 ≤ j ≤ r. The boundary faces are the closures of the strata. A point on
a boundary face of codimension j has a fundamental system of neighborhoods
homeomorphic to Rn−j ×R

j
≥0, where R

j
≥0 denotes the closed quadrant in Rj of

points with coordinates ≥ 0.
There are further properties we do not recall (see [BS] or [BJ3]).
Embed A in R∆ (euclidean space with coordinates labeled by ∆) by mapping

a to the points with coordinates a−α(α ∈ ∆). Let Ā be its closure. It is the
closed quadrant R∆

≥0. Then it can be seen that X̄S
m has charts of the form

N− × Ā, where N− is the connected group with Lie algebra n− = ⊕α<0gα. We
shall see below (4.2, 5.5) that it admits a structure of analytic G-space.

3.5. Other examples of the attachment method are given in 8.2, 8.3 and 8.4. As
is already indicated in [BJ2] and will be shown in [BJ4], most other compactifica-
tions described in [GJT] (conic, Martin, Karpelevic) can be handled in this way.
Basically, the procedure is the same as in 3.2, but the choices of the boundary
faces e(P ) will vary. For instance e(P ) is equal to a

+
P (∞) (resp. a

+
P (∞) × XP )

for the conic (resp. Martin) compactification, where a
+
P (∞) may be identified

with the intersection of a positive chamber with the unit sphere in aP . This
is in particular convenient to see how they are related to one another, e.g. to
show that the Martin compactification is the least common refinement of the
maximal Satake compactification and of the conic compactification, and to see
how compactifications of locally symmetric spaces are related to compactifica-
tions of symmetric spaces when only boundary faces e(P ) of rational parabolic
subgroups P are used.

§4. The Oshima compactification of X and
the self-gluing of a manifold with corners

4.1 A partition of euclidean space ([O], [OS], also reproduced in [BJ3]).
As before, we consider the euclidean space R∆ with coordinates labeled by ∆,
and let {tα} be the coordinates of t ∈ R∆.

The signature sgn(t) of t ∈ R is by definition equal to 0 if t = 0, to t/|t|
otherwise. Thus, it belongs to {±1, 0}. A signature ε on ∆ is a map of ∆ into
{±1, 0}. Its support s(ε) is the set of α on which it is not zero. It is proper
if s(ε) = ∆. We let E(∆) and Eo(∆) be respectively the set of signatures and
proper signatures on ∆. For J ⊂ ∆, an element of E(J) will be identified with
the signature of ∆ with support contained in J , which is equal to ε on J . For
t ∈ R∆, the signature εt is defined by εt(α) = sgn(tα). We also write s(t) for
s(εt). If ε ∈ E(∆), let

(1) R∆,ε = {t ∈ R∆ | sgn(t) = ε}.

It is an open quadrant in RJ
(
J = s(ε)

)
and the R∆,ε form a partition of R∆

into 3r subsets.
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4.2. Oshima has constructed a compactification of X, to be denoted here X̄O,
which is a compact smooth analytic G-space. The open orbits are 2r copies of X.
The union of the non-open orbits consists of r smooth closed hypersurfaces with
transversal intersections (the real analogue of a divisor with normal crossings).
Altogether, X̄O is the union of 3r orbits, of which only one, isomorphic to G/Pφ,
is closed. We recall briefly its definition. First define a map a : R∆ → A by the
rule

(2) a(t) = exp−
∑

α∈s(t)

|ln(tα)|α∨,

(where α∨ is the coroot corresponding to α). Then, by definition X̄O is the
quotient of G × R∆ by the equivalence relation

(3) (g, t) ∼ (g′, t′) ⇐⇒ (i) εt = εt′ and (ii) g ·a(t) ·Qs(t) = g′ ·a(t′) ·Qs(t′) in G.

(See 3.1 for Qs(t). Note that s(t) ⊂ ∆, and that s(t) = s(t′) by (i).)
The G-action is defined by left-translations on the first factor. It is easily

seen that the closure of an open orbit is isomorphic to X̄S
m.

4.3. The space X̄S
m is a manifold with corners (3.4) and the corner structure is

in a way the same as that of the positive closed quadrant R∆. This allows one
to give a direct construction of X̄O. We sketch it.

Given two signatures ε, ε′, we write ε ⊂ ε′ if s(ε) ⊂ s(ε′) and ε′ coincide with
ε on s(ε). For δ ∈ Eo(∆), let Eδ(∆) be the set of ε such that ε ⊂ δ. Clearly, such
an ε is completely characterized by its support, which is arbitrary, therefore

(∗) the map ε �→ s(ε) defines a bijection between Eδ(∆) and the set of subsets
of ∆.

Let now X̃ be the disjoint union of spaces OJ,ε, where ε has support
J (J ⊂ ∆). For δ ∈ Eo(∆), let X̃(δ) be the union of the OJ,ε (ε ⊂ δ). The remark
(∗) above shows the existence of a canonical bijection of X̃(δ) onto X̄S

m. We use
it to endow X̃(δ) with the topology of X̄S

m. Let δ, δ′ ∈ Eo(∆). The intersection
X̃(δ)∩ X̃(δ′) is the union of the OJ,ε where ε runs through Eδ(∆)∩Eδ′(∆). The
topologies induced by those of X̃(δ) and X̃(δ′) on their intersection are therefore
the same. We then endow X̃ with the sum of the topologies of the X̃(δ). It is
easily seen that a neighborhood of x ∈ OJ,ε is the union of the X̃(δ) (δ ⊃ ε) and
that x is a smooth point on it.

4.4. Let M be a manifold with corners of rank r, as in 3.1. Call boundary
hypersurfaces the closures of the strata of codimension one. Assume they are
embedded (no self-intersection) and that the set HM of boundary hypersurfaces
has a finite partition

(4) HM =
∐

1≤j≤N

Hj ,
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where the elements of Hj are disjoint. Such a partition obviously exists if M
is compact. If not, it is assumed. Of course N ≥ r. R. Melrose has given an
inductive procedure to glue a certain number q (2r ≤ q ≤ 2N ) of copies of M
along the Hj to get a manifold (cf. [BJ1], [BJ3]). We are concerned here only
with cases where r = N . Then 2r copies are glued by a procedure similar to the
one used above, in which the strata play the role of the OJ . In the case of X̄S

m,
each Hj consists of one element, the closure of O∆−{α}, (α ∈ ∆).

§5. The wonderful compactification of Gc/Kc and its real points

5.1. Given a connected complex semisimple group Q and the fixed point set R
of an involution of Q, C. De Concini and C. Procesi have constructed a so-called
wonderful compactification of Q/R, to be denoted (Q/R)W , which is a smooth
projective variety [CP1], [CP2].

Two definitions are given in [CP1]. One is the closure of the orbit of r in the
Grassmannian of dim r subspaces of q, acted upon via the adjoint representation.
Another one is a definition in terms of linear representations which may be
viewed as a complex analogue of Satake’s procedure.

In this section, we concentrate on the case where Q = Gc and R = Kc are the
complexifications of G and K and let Xc = Gc/Kc. It follows from [CP1] that
X̄W

c is a smooth projective irreducible variety, in which Xc is Zariski open, with
complement the union of r divisors with normal crossings. Its orbit structure is
a complexification of the one of X̄S

m:

(1) X̄W
c =

∐

J⊂∆

OJ,c, where OJ,c = Gc/QJ,c,

the complex codimension of OJ,c being Card (∆−J). The groups Gc and Kc are
defined over R, hence so is X̄W

c . It follows from [W] that X̄W
c (R) is a smooth real

projective variety, on which G operates with finitely many orbits. The subgroups
QJ,c are also defined over R and so are the OJ,c. We have

(2) X̄W
c (R) =

∐

J⊂∆

OJ,c(R).

Our goal is to describe the right hand side. To this effect, we need some prepa-
ration.

5.2 The real forms Kε of Kc (cf. [OS1]). An extended signature ε̃ is a
signature on Φ = Φ(G, A) such that

(3) ε̃(α) = ε̃(−α) ε̃(α + β) = ε̃(α)ε̃(β).

It is therefore completely determined by its restriction to ∆ and any signature ε
on ∆ extends uniquely to one ε̃ on Φ. It is proper if and only ε is proper. Given
a proper signature ε, define a linear bijective map θε of g onto itself by the rule

(4) θε = θ on m ⊕ a, θε(x) = ε(β) · θ(x) (x ∈ gβ , β ∈ Φ).
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It is easily checked to be an involutive automorphism of g. Let then

(5) Kε = Gθε .

It can be shown to be a real form of Kc.
By construction Kε contains M and is stable under θ, hence the restriction

of θ to Kε is a Cartan involution and a is a Cartan subalgebra of the pseu-
doriemannian symmetric pair (G, Kε). Since Kε contains M , conjugation of Kε

under N (A) amounts to conjugation under W and it makes sense to speak of
wKε. On the other hand, W operates on E(Φ) by the rule

(6) w(ε)(β) = ε(w−1 · β) (β ∈ Φ).

Clearly, wKε = Kw(ε). Using Galois cohomology, one can show

(7) (Gc/Kc)(R) =
∐

ε∈Eo(Φ)/W

G/Kε.

This can be repeated for the symmetric pair (MJ , KJ) with Cartan subgroup
AJ equal to the exponential of mJ ∩ a, whose Weyl group WJ is generated by
the reflections sα (α ∈ J). One gets

(8) (MJ,c/KJ,c)(R) =
∐

ε∈Eo(J)/WJ

MJ/KJ,ε.

However, from the fact that G → (Gc/PJ,c)(R) is surjective, one deduces a
natural identification between the G-orbits in OJ,c(R) and the MJ -orbits in
(MJ,c/KJ,c)(R) so that (2), (7), (8) provide a description of X̄W

c (R).

5.3 Remark. The group Kε introduced in (5) is not exactly the one so denoted
in [OS1], which is in general a subgroup of finite index of the present Kε (see
6.1). The group Kε is generated by the identity component Ko

ε of Kε and the
subgroup Uε of elements in W leaving ε stable, or, more correctly, by Ko

ε and the
inverse image of Uε in N (A). Similarly, KJ,ε, where ε has support J is generated
by its identity component and the stability group UJ,ε of ε in WJ .

5.4 Example. Let G = SLn(R), K = SOn. Then the Kε are the special
orthogonal groups of non-degenerate quadratic forms on Rn of arbitrary index
(or sometimes finite extensions of them). The space X̄W

c is called in [CGMP] the
space of complete quadrics. A point represents a flag in Cn endowed with non-
degenerate quadrics on the successive quotients. Similarly, the points in X̄W

c (R)
represent flags in Rn endowed with non-degenerate real quadrics (or quadratic
forms up to a factor in R∗) on the successive quotients.

5.5. The action of G on X̄W
c (R) is algebraic, in particular analytic. On the

other hand, one sees from 3.1(1) and (7), (8) above that the closure of X in
X̄W

c (R) (identified to the orbit of the origin) is X̄S
m, whence a structure of real

analytic G-space on the latter. These analytic structures on the pieces X̃(δ)
in 4.3 combine to define an analytic G-space structure on X̃. This provides an
alternate proof of Oshima’s theorem in [O].
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5.6 Remark. Some of the spaces X̄W
c (R) also occur in [EL], from a completely

different point of view.

§6. The Oshima-Sekiguchi compactification
and comparison with X̄W

c (R)

6.1. Let ε ∈ E(∆) and ε̃ ∈ E(Φ) its extension to Φ (5.2). It can be shown that
s(ε̃) consists of the roots of MJ with respect to AJ where J = Jε is the support
of ε. [OS1] introduces further a subgroup

(1) Wε = 〈sα, ε(α) = 1, α ∈ ΦJ〉 (ΦJ := Φ(MJ , AJ))

of WJ and a canonical set of representatives WJ(ε) of WJ/Wε ([OS1], 2.4). The
group KJ,ε they define, to be denoted here K∗

J,ε, is generated by Ko
J,ε and the

subgroup WJ,ε of WJ defined by (1). We also set

Q∗
J,ε = K∗

J,ε · AJ · NJ and O∗
J,ε = G/Q∗

J,ε.

6.2. We assume again that G is simple over R. Then Φ is irreducible. If it is not
reduced, it is of type BCr. [OS1] denotes by W ′ the subgroup of W generated
by the reflections to the roots in Φ which are neither properly multipliable or
divisible in Φ. It is of type Dr. If Φ is reduced, let W ′ = W . It is shown in
[OS1], see 2.5(iii) that W (ε) ⊂ W ′, hence W (ε) is also a set of representatives
of W ′

J/W ′
ε, where ′ refers to intersection with W ′.

6.3. The compactification of X introduced in [OS1], to be denoted here X̄OS ,
is by definition the quotient of M = G×R∆ ×W ′ by an equivalence relation ∼,
where (g, t, w) is equivalent to (g′, t′, w′) if and only if

(i) w(εt) = w′(εt′), (ii) w−1·w′ ∈ W (ε), (iii) g·a(t)·Q∗
t ·w−1 = g′·a(t′)·Q∗

t′ ·w′−1,

the G-action being defined by left translations on the first factor.
[We have written Q∗

t for Q∗
Jt,εt

. Note that (i) implies wQ∗
t = w′

Q∗
t′ , so that

(iii) makes sense in G.]

6.4. By the main theorem 2.7 of [OS1], X̄OS is a compact Hausdorff analytic
G-space. The G-orbits are isomorphic to the O∗

J,ε. There are |W ′| closed orbits
isomorphic to G/Pφ, and |W ′| open orbits isomorphic to X. The number of
orbits isomorphic to O∗

J,ε

(
ε ∈ Eo(J)

)
is equal to |W | |Wε|−1.

Define an action ◦u of u ∈ W ′ on G × R∆ × W ′ by translation on the last
factor:

(2) (g, t, w) ◦ u = (g, t, u−1 · w).

This provides a right action of W ′ which is compatible with ∼, as is easily seen.
It therefore defines a right action of W ′ on X̄OS , which obviously commutes
with G.
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6.5 Theorem. The action just defined of W ′ on X̄OS is free, and the quotient
X̄OS/W ′ is naturally isomorphic to X̄W

c (R).

We only sketch some steps of the proof. It is first deduced from the definition
of ∼ that the given action of W ′ on X̄OS is free. The group WJ,ε (see 6.1)
is normal in the subgroup UJ,ε defined in 5.3, so that the quotient Uj,ε/WJ,ε

acts freely via right translations on O∗
J,ε, with quotient OJ,ε. From that remark

and 5.2 (7), (8) follows the existence of a bijection between the orbits of G on
X̄OS/W ′ and on X̄W

c (R), which is an isomorphism on each orbit. But we need
a natural equivariant isomorphism.

Let M1 be the subspace G × R∆ × {1} of M (see 6.3). It is stable under the
equivalence relation ∼. The restriction to M1 of ∼ is defined by (i) and (iii) and
is completely analogous to Oshima’s definition (4.2). The quotient X̃ = M1/ ∼
is an open subset of X̄OS which consists of 3r orbits, but it is not compact,
(which is why W ′ had to be used). On the other hand, X̄W

c can also be defined
similarly as a quotient of Gc ×Cn by an equivalence relation similar to ∼ ([Sp],
§4). It is then possible to define a map of G×R∆ onto G×Rr which is compatible
with the two equivalence relations and yields the desired isomorphism.

§7. Compactification of G/H

7.1. In this section, H is the fixed point set of an involution σ �= 1 of G (it
could also be of finite index in such a subgroup). We assume K chosen so that
θ commutes with σ, which is always possible. We have then the orthogonal
decompositions

(1) g = k ⊕ s = h ⊕ q,

where s and q are the (−1)-eigenspaces of θ and σ respectively. There exists a
Cartan subalgebra aι of g such that

aθ = aι ∩ s, aσ = aι ∩ q aθ,σ = aι ∩ s ∩ q

are maximal abelian subalgebras in s, q and s ∩ q. Any two such are conjugate
under K ∩ H. To avoid repetitions, let us introduce the set

Σ = {ι, θ, σ, (θ, σ)}

For each Λ ∈ Σ, we have a root system ΦΛ = ΦΛ(g, aΛ). In particular Φι is
the absolute root system, Φθ the root system of the pair (G, K). We choose
compatible orderings so that simple roots map to simple roots (or zero) under
the obvious restriction maps, and let ∆Λ be the corresponding sets of simple
roots. The standard Λ-relevant parabolic subgroups of Gc are defined in terms
of subsets of ∆Λ, as in the case of θ (see 2.2) and the conjugates of the standard Λ-
relevant parabolic subgroups are the Λ-relevant parabolic subgroups of Gc. The
ι relevant parabolic subgroups are just all parabolic subgroups, the standard θ-
relevant parabolic subgroups are all the standard parabolic subgroups which are
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defined over R. For details on these various root systems and their relationships
see [OS1], [OS2], [Sp1], [Sp2] and references given there. The notation Σ, Λ is
introduced in [BJ3], §14.

Real forms Hε of Hc

(
ε ∈ Eo(∆(θ,σ)

)
are defined in the same way as the Kε

(see 5.2), with a replaced by aθ,σ and θ by σ ([BJ3], 11.2).

7.2. Let Y = G/H. The wonderful compactification Ȳ W
c is described as in 5.1

in terms of standard σ-relevant parabolic subgroups. It is a smooth projective
variety in which Yc is open and its complement is the union of rσ = dim aσ

smooth divisors with normal crossings.
The projective variety Ȳ W

c is defined over R and we can consider its set of
real points Ȳ W

c (R). It follows from 1.8 in [OS1] that if an orbit of Gc contains
real points, then the underlying standard parabolic subgroup is also θ-relevant,
so that these orbits are parametrized by the subsets of ∆(θ,σ) and the corners
in Ȳ W

c (R) have rank equal to the dimension of aθ,σ. This yields in particular
an analytic structure of G-space on the closure of Y , which is a manifold with
corners. The space Yc(R) is again a union of orbits G/Hε, and similarly for
the non-open orbits in Ȳ W

c (R). A precise parameterization analogous to 5.2(7),
(8) in the case θ = σ is likely, but has not yet been established. Also to be
investigated is its relation to the closure of Y in a compactification of G/H
defined and studied by T. Oshima [O2], a generalization of X̄O in which all
open orbits are isomorphic to G/H.

§8. Compactifications of Γ\X
We now assume that G = G(R)o, where G is a linear algebraic group defined

over the field Q of rational numbers and Γ ⊂ G(Q) is a non-cocompact arithmetic
subgroup of G. We review briefly various known compactifications of Γ\X, all
obtained by the attachment method.

8.1. A Q-group will be denoted by a bold face capital letter and its group of
real points by the corresponding ordinary capital letter.

Let P be a parabolic Q-subgroup of G,NP its unipotent radical, LP = P/NP

and πP : P → LP the natural projection. It maps any Levi subgroup of P
isomorphically onto LP. We let

(1) P = NP · MP · AP

be the Langlands decomposition of P relative to Q. Here, AP is the unique
θ-stable lift of S(R)o, where S is a maximal central Q-split torus of LP and MP

the unique θ-stable lift of MP(R), where MP is the intersection of the kernels
of the squares of the rational Q-characters of LP. Thus MP · AP is the unique
θ-stable Levi subgroup of P , and is the centralizer of AP. The subgroup MP ·NP

of P contains all arithmetic or compact subgroups of P . This decomposition is
closely related to the Langlands decomposition P = NP · MP · AP of P viewed
as a real group (2.1). In fact, NP = NP , the group AP is contained in AP and



736 ARMAND BOREL AND LIZHEN JI

πP (AP /AP) is the identity component of the group of real points of the biggest
central Q-anisotropic Q-torus of LP. Accordingly, MP is the product of MP by
a subgroup isomorphic to AP /AP.

Let XP = MP/(K ∩ MP). In analogy with 2.1(2), the projection G → X
induces an isomorphism of smooth manifolds

(2) µP : NP × XP × AP
∼→ X.

It is of course closely related to 2.1(2). In fact XP is the product of XP by a
flat space isomorphic to AP /AP.

8.2. To define a compactification of Γ\X, [S2] starts from a compactification
X̄S

ρ (3.1) and distinguishes certain boundary components X ′
P (see 3.1) called

rational. It then considers the union X∗ of X and of the rational boundary
components. It is endowed with a certain topology, Γ operates continuously on
X∗ and Γ\X∗ is the sought for compactification. It is the union of Γ\X and
finitely many quotients ΓP \X ′

P , where ΓP is an arithmetically defined group
of automorphisms of X ′

P . The boundary component X ′
P is rational if first of

all its normalizer P is defined over Q, and second if the centralizer of X ′
P has

a normal cocompact Q-subgroup. In most cases in which this construction has
been carried out, the second condition follows from the first. This is in particular
so if X̄S

ρ is the maximal Satake compactification. Then X ′
P = XP . It also

holds if X̄S
ρ is the Baily–Borel–Satake compactification of an irreducible bounded

symmetric domain [BB]. See [BJ3] for a discussion and references pertaining to
this question.

8.3 The Borel–Serre compactification [BS]. The original method in [BS]
uses the geodesic action to define corners of rational parabolic subgroups, and
these corners are used as a covering to define a partial compactification of X. On
the other hand, the attachment method starts with a partial compactification
X̄BS of X, obtained by attaching for each parabolic Q-subgroup, e(P) = NP ×
XP to X by a procedure analogous to, but simpler than, 3.2. It is operated
upon properly by Γ and Γ\X̄BS is the Borel–Serre compactification of Γ\X. If
Γ is neat ([B], 17.1), it is a compact manifold with corners, of rank equal to the
Q-rank rQ of G, i.e. the common dimension of the maximal Q-split Q-tori of G.
In fact, it can be shown that Γ\X̄BS is a real analytic manifold with corners,
and the self-gluing method of (4.3) and (4.4) also applies here to give a closed
analytic manifold containing Γ\X as an open subset.

8.4. Next is a modification of Γ\X̄BS introduced by S. Zucker [Z] in order
to study L2-cohomology, now called the reductive Borel–Serre compactification.
First a partial compactification X̄RBS of X is defined as above by attaching
XP rather than NP × XP to X for each parabolic Q-subgroup. Again, Γ acts
continuously on it and (Γ\X)RBS is Γ\X̄RBS . The identity on X extends to a
surjective morphism of (Γ\X)BS onto (Γ\X)RBS , the fibers of which are compact
nilmanifolds (Γ ∩ NP )\NP . The compactification (Γ\X)RBS maps surjectively
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onto all Satake compactifications, in particular on the maximal one. In that last
case, the fibers are topological tori ([BJ3], 9.4).

§9. Compactifications of Γ\G
9.1. Let P be as before. We can write

(1) G = NP · AP · (MP · K).

Here (MP · K) stands for the set of products u · v (u ∈ MP, v ∈ K). Of course,
for a given element in MP · K, the factors u, v are defined up to multiplication
by elements of MP ∩ K, but the components of g in NP or AP are uniquely
determined. This decomposition defines the horospherical coordinates of g rela-
tive to P and allows one to apply the attachment method to compactify Γ\G.
Specifically, one can mimic the constructions underlying 8.3, 8.4 to define partial
compactifications ḠBS and ḠRBS , and their quotients by Γ.

9.2. To each parabolic Q-subgroup P, is associated a boundary component
e(P) = NP × (MPK) with the obvious definition of convergence: the sequence

yj = (nj , aj , zj),
(
nj ∈ NP , aj ∈ AP, zj ∈ (MPK)

)
, (j = 1, 2, . . . )

converges to (n, z) (n ∈ NP , z ∈ (MPK) if nj → n, zj → z and aα
j → ∞ for

all Φ(P, AP). Here Φ(P, AP) is the analogue of the Φ(P, AP ) in 2.3, and is
the set of weights of AP acting on nP. Again, there are similar definitions for
convergence of sequences in e(P) to points in e(Q) if Q ⊂ P. It can be shown
that Γ acts properly on ḠBS , and the quotient Γ\ḠBS is compact, Hausdorff.
The group K acts by right translation on ḠBS , commutes with Γ, hence acts
also on Γ\ḠBS , freely if Γ is torsion-free, and the quotient is Γ\X̄BS . If Γ is
neat, the action is free and ḠBS is a principal K-bundle over X̄BS .

9.3. Similarly, the partial compactification ḠRBS is defined by attaching for
each P the set e(P) = (MP · K) as a boundary component. The convergence
of sequences is defined as above, except that there is no condition on the nj ’s.
Again, ḠRBS is Hausdorff, Γ operates continuously on it on the left and Γ\ḠRBS

is compact, Hausdorff. A chief difference with the previous case is that now not
only K, but also G acts on ḠRBS and Γ\ḠRBS by right translation (leaving
each boundary component stable). The quotient of Γ\ḠRSS by K is Γ\X̄RBS .

9.4. Let H be any compact subgroup of G. Dividing out by H the spaces
Γ\ḠBS and Γ\ḠRBS , we get compactifications of the space Γ\G/H. If X is
a bounded symmetric domain and G/H is a Griffiths period domain, the first
compactification is the compactification Γ\DBS in the preprint [KU] we have
just received.

9.5. The two previous compactifications were obtained by the attachment
method. Under a further assumption on Γ, a third one can be defined by the
embedding method [BJ1]. We assume G to be simple over Q. Then, since Γ
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is not cocompact, no proper factor of G is compact, hence any cofinite discrete
subgroup is Zariski-dense [Bo1]. Moreover, by [KM], the covolumes of discrete
subgroups of G have a strictly positive lower bound. As a consequence, Γ is
contained as a subgroup of finite index in a maximal discrete subgroup Γ′, and
the latter is equal to its own normalizer. However, Γ′ may not be contained in
G(Q), but it is automatically so if G is of adjoint type. Let us now assume that
Γ is maximal discrete, and therefore equal to its normalizer. Let S(G) be the
space of closed subgroups of G, ([Br], VIII, §5, no 3). It is a compact Hausdorff
G-space, G acting on it by conjugation. Then the map iΓ which associates to
x ∈ Γ\G its isotropy group in G is an injective map of Γ\G into S(G). Using
the fact that Γ is arithmetic, iΓ can be shown to be an embedding. The closure
of iΓ(Γ\G) in S(G) is then a compactification of Γ\G, to be denoted (Γ\G)sb.

9.6. Proposition. We keep the previous notation and the maximality assump-
tion on Γ.

(i) The closed subgroups in the complement of iΓ(Γ\G) in (Γ\G)sb are con-
jugates of the subgroups (Γ∩P ) ·NP (P proper parabolic subgroup defined
over Q).

(ii) The identity map of Γ\G extends to a continuous surjective G-morphism

of Γ\GRBS
onto Γ\Gsb

, which is an isomorphism if (Γ∩P )/(Γ∩NP) is
maximal discrete in MP and MP is semisimple for all P’s.

The proof makes use of reduction theory and of an argument occuring in the
proof of the convergence of Eisenstein series for large values of the parameters.
Indeed, the subgroups in (i) are those which leave invariant the constant terms
of cuspidal Eisenstein series. For details see [BJ1].

The assumption of (ii) is e.g. satisfied if Γ = SLn(Z),Sp2n(Z), (or more
generally if Γ is an arithmetic subgroup associated to a Z-form of a simply
connected Q-split Q-group).
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