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Lp BOUNDS FOR THE FUNCTION OF MARCINKIEWICZ

A. Al-Salman, H. Al-Qassem, L.C. Cheng, and Y. Pan

1. Introduction

Let Ω denote a homogeneous function of degree 0 on Rn which is locally
integrable and satisfies ∫

Sn−1
Ω(y)dσ(y) = 0,(1.1)

where dσ represents the normalized Lebesgue measure on the unit sphere Sn−1.
For n ≥ 2 and f ∈ L1

loc(R
n), the Marcinkiewicz function of f is given by

µΩ(f)(x) =
( ∫ ∞

0

∣∣∣∣
∫
|y|≤t

Ω(y)
|y|n−1

f(x − y)dy

∣∣∣∣
2
dt

t3

)1/2

.(1.2)

The above operator was introduced by E.M. Stein in [7] as an extension of the
notion of Marcinkiewicz function from one dimension to higher dimensions. By
using the Lp boundedness of the 1-dimensional Marcinkiewicz function, Stein
showed that µΩ is bounded on Lp(Rn) for 1 < p < ∞ whenever Ω is odd.

For a general kernel function Ω, the Lp boundedness of µΩ has been estab-
lished under various conditions on Ω. For example, Stein proved that µΩ is
bounded on Lp(Rn) for 1 < p ≤ 2 if Ω ∈ Lip(Sn−1). Benedek, Calderón and
Panzone proved in [2] that the Lp boundedness of µΩ holds for 1 < p < ∞ under
the condition that Ω ∈ C1(Sn−1).

In 1972 T. Walsh showed that the Lp boundedness of µΩ can still hold even
if Ω is quite rough.

Theorem 1 (Walsh [11]). Suppose that p ∈ (1,∞), r = min{p, p′}, and Ω ∈
L(log L)1/r(log log L)2(1−2/r′)(Sn−1). Then µΩ is bounded on Lp(Rn).

When p = 2, the condition in Theorem 1 is simply Ω ∈ L(log L)1/2(Sn−1),
which was shown by Walsh to be optimal in the sense that the exponent 1/2 in
L(log L)1/2 cannot be replaced by any smaller numbers.

On the other hand, Walsh did not consider his condition to be in any sense
optimal when p 	= 2. Indeed, by comparing with the result of Calderón and
Zygmund on singular integrals, one is naturally led to the question whether the
condition Ω ∈ L(log L)1/2(Sn−1) is also sufficient for the Lp boundedness of µΩ

even when p 	= 2. This problem, which was formally proposed by Y. Ding in [4],
is resolved by our next theorem.
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Theorem 2. If Ω ∈ L(log L)1/2(Sn−1) and p ∈ (1,∞), then µΩ is bounded on
Lp(Rn).

The method employed in this paper is based in part on ideas from [1], [3],
[5] and [10], among others. A great deal more can be obtained by applying
variations of this scheme to more general integral operators of Marcinkiewicz
type. An extensive discussion of these results will appear in a forthcoming
paper.

Throughout the rest of the paper the letter C will stand for a constant but
not necessarily the same one in each occurrence.

2. The Main Lemma and Proof of Theorem 2

For a suitable family of measures τ = {τt : t ∈ R} on Rn, we define the
operators ∆τ and τ∗ by

∆τ (f)(x) =
( ∫

R

|τt ∗ f(x)|2dt

)1/2

(2.1)

and

τ∗(f)(x) = sup
t∈R

(|τt| ∗ |f |)(x).(2.2)

The following is our main lemma:

Lemma 3. Let a ≥ 2, A > 0, γ > 0, q > 1 and Cq > 0. Suppose that the family
of measures {τt : t ∈ R} satisfies the following:

‖τt‖ ≤ A for t ∈ R;(i)

|τ̂t(ξ)| ≤ A[min{at|ξ|, (at|ξ|)−1}]γ/ ln a for ξ ∈ Rnand t ∈ R;(ii)

‖τ∗(f)‖q ≤ CqA‖f‖q for f ∈ Lq(Rn).(iii)

Then, for every p satisfying |1/p−1/2| < 1/(2q), there exists a positive constant
Cp which is independent of a and A such that

‖∆τ (f)‖p ≤ CpA‖f‖p(2.3)

for f ∈ Lp(Rn).

This lemma can be viewed as a continuous analogue of Theorem B in [5].
The novel feature, which keys its application to the current problem, is the
uniformness of the bound on the operator norm with respect to the parameter a.

Proof of Theorem 2. Let Ω ∈ L(log L)1/2(Sn−1) and satisfy (1.1). For k ∈ N let
Ek = {y ∈ Sn−1 : 2k−1 ≤ |Ω(y)| < 2k} and

Ωk(y) = Ω(y)χEk
(y) −

∫
Ek

Ωdσ.

Thus ∫
Sn−1

Ωk(y)dσ(y) = 0(2.4)
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for k ∈ N. Let Λ = {k ∈ N : σ(Ek) > 2−4k} and

Ω0 = Ω −
∑
k∈Λ

Ωk.

It then follows that Ω0 ∈ L2(Sn−1) and∫
Sn−1

Ω0(y)dσ(y) = 0.

For every k ∈ Λ we define the family of measures τ (k) = {τk,t : t ∈ R} on Rn

by ∫
Rn

fdτk,t = 2−kt

∫
|y|≤2kt

Ωk(y)
|y|n−1

f(y)dy.

If we set ak = 2k, Ak = 2
∫

Ek
|Ω(y)|dσ(y) and γ = ln 2

6 , then the following holds
for t ∈ R, ξ ∈ Rn, and p > 1:



(i) ‖τk,t‖ ≤ Ak,
(ii) |τ̂k,t(ξ)| ≤ Ak(at

k|ξ|)γ/ ln ak ,
(iii) |τ̂k,t(ξ)| ≤ CAk(at

k|ξ|)−γ/ ln ak ,
(iv) ‖(τ (k))∗‖p,p ≤ CpAk,

(2.5)

where C and Cp are independent of k.
While (2.5.i) is obvious, (2.5.ii) follows immediately from (2.4) and (2.5.i). In

addition, (2.5.iv) can be obtained in a straightforward manner (see, for example,
Page 823 in [6]).

On the other hand, by the proof of Corollary 4.1 on P. 551 of [5],

|τ̂k,t(ξ)| ≤ C‖Ωk‖2(at
k|ξ|)−1/6.(2.6)

Thus, by (2.5.i), (2.6) and the inequality ‖Ωk‖2 ≤ 22k+2Ak,

|τ̂k,t(ξ)| ≤ A
(k−1)/k
k [C22k+2Ak(at

k|ξ|)−1/6]1/k

≤ CAk(at
k|ξ|)−γ/ ln ak ,

which proves (2.5.iii).
By Minkowski’s inequality,

µΩ(f) ≤ µΩ0(f) +
∑
k∈Λ

(k ln 2)1/2∆τ(k)(f).(2.7)

Finally, by (2.5), (2.7), Theorem 1 and Lemma 3, we obtain

‖µΩ(f)‖p ≤ Cp

(
1 +

∑
k∈Λ

√
kAk

)
‖f‖p

≤ Cp(1 + ‖Ω‖L(log L)1/2)‖f‖p

for 1 < p < ∞. The proof of Theorem 2 is now complete.
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