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ALMOST CONSERVATION LAWS AND GLOBAL ROUGH
SOLUTIONS TO A NONLINEAR SCHRÖDINGER EQUATION

J. Colliander, M. Keel, G. Staffilani, H. Takaoka, and T. Tao

Abstract. We prove an “almost conservation law” to obtain global-in-time well-
posedness for the cubic, defocussing nonlinear Schrödinger equation in Hs(R

n)

when n = 2, 3 and s > 4
7
, 5
6
, respectively.

1. Introduction and Statement of Results

We study the following initial value problem for a defocussing nonlinear
Schrödinger equation,

i∂tφ(x, t) + ∆φ(x, t) = |φ(x, t)|2φ(x, t) x ∈ Rn, t ≥ 0(1.1)

φ(x, 0) = φ0(x) ∈ Hs(Rn)(1.2)

when n = 2, 3. Here Hs(Rn) denotes the usual inhomogeneous Sobolev space.
Our goal is to loosen the regularity requirements on the initial data which ensure
global-in-time solutions. In particular, we aim to extend the global theory to
certain infinite energy initial data.

It is known [5] that (1.1)-(1.2) is well-posed locally in time when n = 2, 3 and
s > 0, 1

2 respectively1. In addition, these local solutions enjoy L2 conservation;

||φ(·, t)||L2(Rn) = ||φ0(·)||L2(Rn)(1.3)

and the H1(Rn) solutions have the following conserved energy,

E(φ)(t) ≡
∫

Rn

1
2
|∇xφ(x, t)|2 +

1
4
|φ(x, t)|4 dx = E(φ)(0).(1.4)

Together, energy conservation and the local-in-time theory immediately yield
global-in-time well-posedness of (1.1)-(1.2) from data in Hs(Rn) when s ≥ 1,
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1In addition, there are local in time solutions from L2, H
1
2 data when n = 2, 3, respectively.

However, it is not yet known whether the time interval of existence for such solutions depends
only on the data’s Sobolev norm. For example, the L2 conservation law (1.3) does not yield
the widely conjectured result of global in time solutions on R

2+1 from L2 initial data.
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and n = 2, 3. It is conjectured that (1.1)-(1.2) is in fact globally well-posed
in time from all data included in the local theory. The obvious impediment
to claiming global-in-time solutions in Hs, with 0 < s < 1, is the lack of any
applicable conservation law.

The first argument extending the lifespan of rough solutions to (1.1)-(1.2) in
a range s0 < s < 1 was given in [2] (see also [3]). In what might be called a
“Fourier truncation” approach, Bourgain observed that from the point of view of
regularity, the high frequency component of the solution φ is well-approximated
by the corresponding linear evolution of the data’s high frequency component.
More specifically: one makes a first approximation to the solution for a small
time step by evolving the high modes linearly, and the low modes according to
the nonlinear flow for which one has energy conservation. The correction term
one must add to match this approximation with the actual solution is shown to
have finite energy. This correction is added to the low modes as data for the
nonlinear evolution during the next time step, where the high modes are again
evolved linearly. For s > 3

5 , one can repeat this procedure to an arbitrarily large
time provided the distinction between “high” and “low” frequencies is made at
sufficiently large frequencies.

The argument in [2] has been applied to other subcritical initial value prob-
lems with sufficient smoothing in their principal parts. (See [3], [7], [13], [18],
[22], and [23]). It is important to note that the Fourier truncation method
demonstrates more than just rough data global existence. Indeed, write SNL

t

for the nonlinear flow2 of (1.1)-(1.2), and let SL
t denote the corresponding linear

flow. The Fourier truncation method shows then that for s > 3
5 and for all

t ∈ [0,∞),

SNL
t φ0 − SL

t φ0 ∈ H1(R2).(1.5)

Besides being part of the conclusion, the smoothing property (1.5) seems to be
a crucial constituent of the Fourier truncation argument itself.

In this paper we will use a modification of the above arguments, originally
put forward to analyze equations where the smoothing property (1.5) is not
available because it is either false (e.g. Wave maps [16]3) or simply not known
(e.g. Maxwell-Klein-Gordon equations [15], for which we suspect (1.5) is false).
In this “almost conservation law” approach, one controls the growth in time of a
rough solution by monitoring the energy of a certain smoothed out version of the
solution. It can be shown that the energy of the smoothed solution is “almost
conserved” as time passes, and controls the solution’s sub-energy Sobolev norm.
In proving the almost conservation law for the i.v.p. (1.1)-(1.2), we shall use
only the linear estimates presented in [2], [3]. Implicitly, we also use the view of
[2] that the energy at high frequencies does not move rapidly to low frequencies.

The almost conservation approach to global rough solutions has proven to be
quite robust [16], [15], [8], [11], and has been improved significantly by adding

2That is, SNL
t (φ0)(x) = φ(x, t), where φ, φ0 as in (1.1)-(1.2).

3See the appendix of [15] for the failure of (1.5) for Wave Maps.
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additional “correction” terms to the original almost conserved energy functional.
As a result, one obtains even stronger bounds on the growth of the solution’s
rough norm, and at least in some cases sharp global well-posedness results [12],
[9], [10].

The aims of this paper are three-fold: first and most obviously, an improved
understanding of the evolution properties of rough solutions of (1.1)-(1.2); sec-
ond, the almost conservation law approach is presented in a relatively straight-
forward setting; and third, we can directly compare this almost conservation law
approach to the Fourier cut-off technique, since both approaches apply to the
semilinear Schrödinger initial value problem. Our main result is the following:

Theorem 1.1. The initial value problem (1.1)-(1.2) is globally-well-posed from
data φ0 ∈ Hs(Rn), n = 2, 3 when s > 4

7 , 5
6 respectively.

By “globally-well-posed”, we mean that given data φ0 ∈ Hs(Rn) as above,
and any time T > 0, there is a unique solution to (1.1)-(1.2)

φ(x, t) ∈ C([0, T ];Hs(Rn))(1.6)

which depends continuously in (1.6) upon φ0 ∈ Hs(Rn). The polynomial bounds
we obtain for the growth of ||φ||Hs(Rn)(t) are contained in (3.4), (3.14), and (4.6)
below.

Theorem 1.1 extends to some extent the work in [2, 3] where global well-
posedness was shown when s > 3

5 , 11
13 and n = 2, 3 respectively. In a different

sense, the result here is weaker than the results of [2, 3] as we obtain no infor-
mation whatsoever along the lines of (1.5).

In a later paper, we hope to extend Theorem 1.1 to still rougher data, using
the additional cancellation terms mentioned above, and the multilinear estimates
contained in [6].

In Section 2 below we present some notation and linear estimates that are used
in our proofs. Sections 3, 4 present the almost conservation laws and proofs of
Theorem 1.1 in space dimensions two and three, respectively.

2. Estimates, Norms, and Notation

Given A, B ≥ 0, we write A � B to mean that for some universal constant
K > 2, A ≤ K · B. We write A ∼ B when both A � B and B � A. The
notation A 
 B denotes B > K · A.

We write 〈A〉 ≡ (1 + A2)
1
2 , and 〈∇〉 for the operator with Fourier multiplier

(1 + |ξ|2) 1
2 . The symbol ∇ will denote the spatial gradient.

We will use the weighted Sobolev norms, (see [21, 1, 4, 20]),

||ψ||Xs,b
≡ ||〈ξ〉s〈τ − |ξ|2〉bψ̃(ξ, τ)||L2(Rn×R).(2.1)

Here ψ̃ is the space-time Fourier transform of ψ. We will need local-in-time
estimates in terms of truncated versions of the norms (2.1),

||f ||Xδ
s,b

≡ inf
ψ=fon[0,δ]

||ψ||Xδ
s,b

.(2.2)
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We will often use the notation 1
2+ ≡ 1

2 + ε for some universal 0 < ε 
 1.
Similarly, we shall write 1

2− ≡ 1
2 − ε, and 1

2 −− ≡ 1
2 − 2ε.

Given Lebesgue space exponents q, r and a function F (x, t) on Rn+1, we write

||F ||Lq
t Lr

x(Rn+1) ≡
(∫

R

(∫
Rn

|F (x, t)|rdx

) q
r

dt

) 1
q

.(2.3)

This norm will be shortened to Lq
tL

r
x for readability, or to Lr

x,t when q = r.
We will need Strichartz-type estimates [24, 14, 17] involving the spaces (2.3),

(2.1). We will call a pair of exponents (q, r) Schrödinger admissible for Rn+1

when q, r ≥ 2, (n, q) = (2, 2), and

1
q

+
n

2r
=

n

4
.(2.4)

For a Schrödinger admissible pair (q, r) we have what we will call the Lq
tL

r
x

Strichartz estimate,

||φ||Lq
t Lr

x(Rn+1) � ||φ||X0, 1
2 +

.(2.5)

Finally, we will need a refined version of these estimates due to Bourgain [2].

Lemma 2.1. Let ψ1, ψ2 ∈ Xδ
0, 1

2+
be supported on spatial frequencies |ξ| ∼

N1, N2, respectively. Then for N1 ≤ N2, one has

||ψ1 · ψ2||L2([0,δ]×R2) �
(

N1

N2

) 1
2

||ψ1||Xδ

0, 1
2 +

||ψ2||Xδ

0, 1
2 +

.(2.6)

In addition, (2.6) holds (with the same proof) if we replace the product ψ1 · ψ2

on the left with either ψ1 · ψ2 or ψ1 · ψ2.

3. Almost conservation and Proof of Theorem 1.1 in R2

For rough initial data, (1.2) with s < 1, the energy is infinite, and so the
conservation law (1.4) is meaningless. Instead, Theorem 1.1 rests on the fact
that a smoothed version of the solution (1.1)-(1.2) has a finite energy which is
almost conserved in time. We express this ‘smoothed version’ as follows.

Given s < 1 and a parameter N � 1, define the multiplier operator

ÎNf(ξ) ≡ mN (ξ)f̂(ξ),(3.1)

where the multiplier mN (ξ) is smooth, radially symmetric, nonincreasing in |ξ|
and

mN (ξ) =

1 |ξ| ≤ N(
N
|ξ|

)1−s

|ξ| ≥ 2N.
(3.2)
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For simplicity, we will eventually drop the N from the notation, writing I and m
for (3.1) and (3.2). Note that for solution and initial data φ, φ0 of (1.1), (1.2),
the quantities ||φ||Hs(Rn)(t) and E(INφ)(t) (see (1.4)) can be compared,

E(INφ)(t) ≤
(
N1−s||φ(·, t)||Ḣs(Rn)

)2

+ ||φ(t, ·)||4L4(Rn),(3.3)

||φ(·, t)||2Hs(Rn) � E(INφ)(t) + ||φ0||2L2(Rn).(3.4)

Indeed, the Ḣ1(Rn) component of the left hand side of (3.3) is bounded by
the right side by using the definition of IN and by considering separately those
frequencies |ξ| ≤ N and |ξ| ≥ N . The L4 component of the energy in (3.3) is
bounded by the right hand side of (3.3) by using (for example) the Hörmander-
Mikhlin multiplier theorem. The bound (3.4) follows quickly from (3.2) and L2

conservation (1.3) by considering separately the Ḣs(Rn) and L2(Rn) components
of the left hand side of (3.4).

To prove Theorem 1.1, we may assume that φ0 ∈ C∞
0 (Rn), and show that the

resulting global-in-time solution grows at most polynomially in the Hs norm,

||φ(·, t)||Hs(Rn) ≤ C1t
M + C2,(3.5)

where the constants C1, C2, M depend only on ||φ0||Hs(Rn) and not on higher
regularity norms of the smooth data. Theorem 1.1 follows immediately from
(3.5), the local-in-time theory [5], and a standard density argument.

By (3.4), it suffices to show

E(INφ)(t) � (1 + t)M .(3.6)

for some N = N(t). (See (3.13), (3.14) below for the definition of N and the
growth rate M we eventually establish.) The following proposition, which is one
of the two main estimates of this paper (see also Proposition 4.1), represents an
“almost conservation law” of the title and will yield (3.6) in space dimension
n = 2.

Proposition 3.1. Given s > 4
7 , N � 1, and initial data φ0 ∈ C∞

0 (R2) (see
preceeding remark) with E(INφ0) ≤ 1, then there exists a δ = δ(||φ0||L2(R2)) > 0
so that the solution

φ(x, t) ∈ C([0, δ], Hs(R2))

of (1.1)-(1.2) satisfies

E(INφ)(t) = E(INφ)(0) + O(N− 3
2+),(3.7)

for all t ∈ [0, δ].

Remark. Equation (3.7) asserts that INφ, though not a solution of the nonlin-
ear problem (1.1), enjoys something akin to energy conservation. If one could
replace the increment N− 3

2+ in E(INφ) on the right side of (3.7) with N−α for
some α > 0, one could repeat the argument we give below to prove global well
posedness of (1.1)-(1.2) for all s > 2

2+α . In particular, if E(INφ)(t) is conserved
(i.e. α = ∞), one could show that (1.1)-(1.2) is globally well-posed when s > 0.
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We first show that Proposition 3.1 implies (3.6). Note that the initial value
problem here has a scaling symmetry, and is Hs-subcritical when 1 > s > 0, 1

2
and n = 2, 3, respectively. That is, if φ is a solution to (1.1), so too

φ(λ)(x, t) ≡ 1
λ

φ(
x

λ
,

t

λ2
).(3.8)

Using (3.3), the following energy can be made arbitrarily small by taking λ large,

E(INφ
(λ)
0 ) ≤ (

(N2−2s)λ−2s + λ−2
) · (1 + ||φ0||Hs(R2))4(3.9)

≤ C0(N2−2sλ−2s) · (1 + ||φ0||Hs(R2))4.(3.10)

Assuming N � 1 is given4, we choose our scaling parameter λ = λ(N, ||φ||Hs(R2))

λ = N
1−s

s

(
1

2C0

)− 1
2s

· (1 + ||φ0||Hs(R2)

) 2
s(3.11)

so that E(INφ
(λ)
0 ) ≤ 1

2 . We may now apply Proposition 3.1 to the scaled initial
data φ

(λ)
0 , and in fact may reapply this Proposition until the size of E(INφ(λ))(t)

reaches 1, that is at least C1 · N 3
2− times. Hence

E(INφ(λ))(C1N
3
2−δ) ∼ 1.(3.12)

Given any T0 � 1, we establish the polynomial growth (3.6) from (3.12) by
first choosing our parameter N � 1 so that

T0 ∼
N

3
2−

λ2
C1 · δ ∼ N

7s−4
2s −,(3.13)

where we’ve kept in mind (3.11). Note the exponent of N on the right of (3.13)
is positive provided s > 4

7 , hence the definition of N makes sense for arbitrary
T0. In two space dimensions,

E(INφ)(t) = λ2E(INφ(λ))(λ2t).

We use (3.11), (3.12), and (3.13) to conclude that for T0 � 1,

E(INφ)(T0) ≤ C2T

1−s
7
4 s−1

+

0 ,(3.14)

where N is chosen as in (3.13) and C2 = C2(||φ0||Hs(R2), δ). Together with (3.4),
the bound (3.14) establishes the desired polynomial bound (3.5).

It remains then to prove Proposition 3.1. We will need the following modified
version of the usual local existence theorem, wherein we control for small times
the smoothed solution in the Xδ

1, 1
2+

norm.

Proposition 3.2. Assume 4
7 < s < 1 and we are given data for the problem

(1.1)-(1.2) with E(Iφ0) ≤ 1. Then there is a constant δ = δ(||φ0||L2(R2)) so
that the solution φ obeys the following bound on the time interval [0, δ],

||Iφ||Xδ

1, 1
2 +

� 1.(3.15)

4The parameter N will be chosen shortly.
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Proof. We mimic the typical iteration argument showing local existence. We will
need the following three estimates involving the Xs,δ spaces (2.1) and functions
F (x, t), f(x). (Throughout this section, the implicit constants in the notation �
are independent of δ.)

‖S(t)f‖Xδ

1, 1
2 +

� ‖f‖H1(R2),(3.16) ∥∥∥∥∫ t

0

S(t − τ)F (x, τ)dτ

∥∥∥∥
X1, 1

2 +

� ‖F‖Xδ

1,− 1
2 +

,(3.17)

‖F‖Xδ
1,−b

� δP ‖F‖Xδ
1,−β

,(3.18)

where in (3.18) we have 0 < β < b < 1
2 , and P = 1

2 (1 − β
b ) > 0. The bounds

(3.16), (3.17) are analogous to estimates (3.13), (3.15) in [19]. As for (3.18), by
duality it suffices to show

||F ||Xδ
−1,β

� δP ||F ||Xδ
−1,b

.

Interpolation5 gives

||F ||Xδ
−1,β

� ||F ||(1−
β
b )−

Xδ
−1,0

· ||F ||
β
b

Xδ
−1,b

.

As b ∈ (0, 1
2 ), arguing exactly as on page 771 of [7],

||F ||Xδ
−1,0

� δ
1
2 ||F ||Xδ

−1,b
,

and (3.18) follows.
Duhamel’s principle and (3.16)- (3.18) give us

||Iφ||Xδ

1, 1
2 +

=
∥∥∥∥S(t)(Iφ0) +

∫ t

0

S(t − τ)I(φφ̄φ)(τ)dτ

∥∥∥∥
Xδ

1, 1
2 +

� ||Iφ0||H1(R2) + ||I(φφφ)||Xδ

1,− 1
2 +

� ||Iφ0||H1(R2) + δε||I(φφφ)||Xδ

1,− 1
2 ++

,(3.19)

where − 1
2 + + is a real number slightly larger than − 1

2+ and ε > 0. By the
definition of the restricted norm (2.2),

||Iφ||Xδ

1, 1
2 +

� ||Iφ0||H1(R2) + δε||I(ψψψ)||X1,− 1
2 ++

,(3.20)

where the function ψ agrees with φ for t ∈ [0, δ], and

||Iφ||Xδ

1, 1
2 +

∼ ||Iψ||X1, 1
2 +

.(3.21)

We will show shortly that

||I(ψψψ)||X1,− 1
2 ++

� ||Iψ||3X1, 1
2 +

.(3.22)

5The argument here actually involves Lemma 3.2 of [19]. We thank S. Selberg for pointing
this out to us.
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Setting then Q(δ) ≡ ||Iφ(t)||Xδ

1, 1
2 +

, the bounds (3.19), (3.21) and (3.22) yield

Q(δ) � ||Iφ0||H1(R2) + δε(Q(δ))3.(3.23)

Note

||Iφ0||H1(R2) � (E(Iφ0))
1
2 + ||φ0||L2(R2) � 1 + ||φ0||L2(R2).(3.24)

As Q is continuous in the variable δ, a bootstrap argument yields (3.15) from
(3.23), (3.24).

It remains to show (3.22). Using the interpolation lemma of [10], it suffices
to show

||ψψ̄ψ||X
s,− 1

2 ++
� ||ψ||3X

s, 1
2 +

,(3.25)

for all 4
7 < s < 1. By duality and a “Leibniz” rule6, (3.25) follows from

∣∣∣∣∫
R

∫
R2

(〈∇〉sφ1)φ2φ3φ4dxdt

∣∣∣∣ � ||φ1||X
s, 1

2 +
· ||φ2||X

s, 1
2 +

· ||φ3||X
s, 1

2 +
||φ4||X0, 1

2−− .

(3.26)

Note that since the factors in the integrand on the left here will be taken in
absolute value, the relative placement of complex conjugates is irrelevant. Use
Hölder’s inequality on the left side of (3.26), taking the factors in, respectively,
L4

x,t, L
4
x,t, L

6
x,t and L3

x,t. Using a Strichartz inequality,

||〈∇〉sφ1||L4
x,t(R

2+1) � ||〈∇〉sφ1||X0, 1
2 +

= ||φ1||X
s, 1

2 +
,

and

||φ2||L4
x,t(R

2+1) � ||φ2||X0, 1
2 +

� ||φ2||X
s, 1

2 +
.

The bound for the third factor uses Sobolev embedding and the L6
t L

3
x Strichartz

estimate,

||φ3||L6
t L6

x(R2+1) � ||〈∇〉 1
3 φ3||L6

t L3
x(R2+1)

� ||〈∇〉 1
3 φ3||X0, 1

2 +

≤ ||φ3||X
s, 1

2 +
.

It remains to bound ||φ4||L3(R2+1). Interpolating between ||φ4||L2
t L2

x
≤ ||φ4||X0,0

and the Strichartz estimate ||φ4||L4
t L4

x
� ||φ4||X0, 1

2 +
yields

||φ4||L3
t L3

x
� ||φ4||X0, 1

2−− .

This completes the proof of (3.26), and hence Proposition 3.2.

6By this, we mean the operator 〈D〉s can be distributed over the product by taking Fourier
transform and using 〈ξ1 + . . . ξ4〉s � 〈ξ1〉s + . . . 〈ξ4〉s.
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Proof of Proposition 3.1. The usual energy (1.4) is shown to be conserved by
differentiating in time, integrating by parts, and using the equation (1.1),

∂tE(φ) = Re
∫

R2
φt(|φ|2φ − ∆φ)dx

= Re
∫

R2
φt(|φ|2φ − ∆φ − iφt)dx

= 0.

We follow the same strategy to estimate the growth of E(Iφ)(t),

∂tE(Iφ)(t) = Re
∫

R2
I(φ)t(|Iφ|2Iφ − ∆Iφ − iIφt)dx

= Re
∫

R2
I(φ)t(|Iφ|2Iφ − I(|φ|2φ))dx,

where in the last step we’ve applied I to (1.1). When we integrate in time and
apply the Parseval formula7 it remains for us to bound

(3.27) E(Iφ(δ)) − E(Iφ(0)) =∫ δ

0

∫
∑ 4

j=1 ξj=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2) · m(ξ3) · m(ξ4)

)
Î∂tφ(ξ1)Îφ(ξ2)Îφ(ξ3)Îφ(ξ4).

The reader may ignore the appearance of complex conjugates here and in the
sequel, as they have no impact on the availability of estimates. (See e.g. Lemma
2.1 above.) We include the complex conjugates for completeness.

We use the equation (1.1) to substitute for ∂tI(φ) in (3.27). Our aim is to
show that

Term1 + Term2 � N− 3
2+,(3.28)

where the two terms on the left are

(3.29) Term1 ≡∣∣∣∣∣
∫ δ

0

∫
∑ 4

i=1 ξi=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
̂(∆Iφ)(ξ1) · Îφ(ξ2) · Îφ(ξ3) · Îφ(ξ4)

∣∣∣∣∣
(3.30) Term2 ≡∣∣∣∣∣
∫ δ

0

∫
∑ 4

i=1 ξi=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

)
̂(I(|φ|2φ))(ξ1) · Îφ(ξ2) · Îφ(ξ3) · Îφ(ξ4)

∣∣∣∣∣ .

In both cases we break φ into a sum of dyadic constituents ψj , each with fre-
quency support 〈ξ〉 ∼ 2j , j = 0, . . . ..

7That is,
∫

R
n f1(x)f2(x)f3(x)f4(x)dx =

∫
ξ1+ξ2+ξ3+ξ4=0 f̂1(ξ1)f̂2(ξ2)f̂3(ξ3)f̂4(ξ4) where∫ ∑

i ξi=0 here denotes integration with respect to the hyperplane’s measure

δ0(ξ1 + ξ2 + ξ3 + ξ4)dξ1dξ2dξ3dξ4, with δ0 the one dimensional Dirac mass.
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For both Term1 and Term2 we’ll pull the symbol

1 − m(ξ2 + ξ3 + ξ4)
m(ξ2)m(ξ3)m(ξ4)

(3.31)

out of the integral, estimating it pointwise in absolute value, using two different
strategies depending on the relative sizes of the frequencies involved. After so
bounding the factor (3.31), the remaining integrals in (3.29), (3.30), involving
the pieces ψi of φ, are estimated by reversing the Plancherel formula8 and using
duality, Hölder’s inequality, and Strichartz estimates. We can sum over the all
frequency pieces ψi since our bounds decay geometrically in these frequencies.
We suggest that the reader at first ignore this summation issue, and so ignore on
first reading the appearance below of all factors such as N0−

i which we include
only to show explicitly why our frequency interaction estimates sum. The main
goal of the analysis is to establish the decay of N− 3

2+ in each class of frequency
interactions below.

Consider first Term1. By Proposition 3.2,

||∆(Iφ)||Xδ

−1, 1
2 +

≤ ||Iφ||Xδ

1, 1
2 +

� 1.

Hence we conclude Term1 � N− 3
2+ once we show

(3.32)

∣∣∣∣∣
∫ δ

0

∫
∑ 4

i=1 ξi=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2) · m(ξ3) · m(ξ4)

)
φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3)φ̂4(ξ4)

∣∣∣∣∣
� N− 3

2+(N1N2N3N4)0−||φ1||X−1, 1
2 +

· ||φ2||X1, 1
2 +

· ||φ3||X1, 1
2 +

· ||φ4||X1, 1
2 +

,

for any functions φi, i = 1, . . . , 4 with positive spatial Fourier transforms sup-
ported on

〈ξ〉 ∼ 2ki ≡ Ni,(3.33)

for some ki ∈ {0, 1, . . . }. (Note that we are not decomposing the frequencies
|ξ| ≤ 1 here. In the three dimensional argument we’ll need to do this.) The
inequality (3.32) implies our desired bound (3.28) for Term1 once we sum over
all dyadic pieces ψj .

By the symmetry of the multiplier (3.31) in ξ2, ξ3, ξ4, and the fact that the
refined Strichartz estimate (2.6) allows complex conjugates on either factor, we
may assume for the remainder of this proof that

N2 ≥ N3 ≥ N4.(3.34)

Note too that
∑4

i=1 ξi = 0 in the integration of (3.32) so that N1 � N2. Hence
it is sufficient to obtain a decay factor of N− 3

2+N0−
2 on the right hand side

of (3.32). We now split the different frequency interactions into three cases,
according to the size of the parameter N in comparison to the Ni.

8Assuming, as we may, that the spatial Fourier transform of φ is always positive.
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Term1, Case 1: N � N2. According to (3.2), the symbol (3.31) is in this case
identically zero and the bound (3.32) holds trivially.
Term1, Case 2: N2 � N � N3 ≥ N4. Since

∑
i ξi = 0, we have here also

N1 ∼ N2. By the mean value theorem,∣∣∣∣m(ξ2) − m(ξ2 + ξ3 + ξ4)
m(ξ2)

∣∣∣∣ � |∇m(ξ2) · (ξ3 + ξ4)|
m(ξ2)

� N3

N2
.(3.35)

This pointwise bound together with Plancherel’s theorem and (2.6) yield

Left Side of (3.32) ≤ N3

N2
||φ1φ3||L2([0,δ]×R2])||φ2φ4||L2([0,δ]×R2)(3.36)

≤ N3N
1
2
3 N

1
2
4

N2N
1
2
1 N

1
2
2

∏
i

||φi||Xδ

0, 1
2 +

.(3.37)

Comparing (3.32) with (3.37) it remains only to show that

N3N
1
2
3 N

1
2
4 〈N1〉

N2N
1
2
1 N

1
2
2 N2〈N3〉〈N4〉

� N− 3
2+N0−

2 ,

which follows immediately from our assumptions N1 ∼ N2 � N � N3 ≥ N4.
Term1, Case 3: N2 ≥ N3 � N . We use in this instance a trivial pointwise
bound on the symbol,∣∣∣∣1 − m(ξ2 + ξ3 + ξ4)

m(ξ2)m(ξ3)m(ξ4)

∣∣∣∣ � m(ξ1)
m(ξ2)m(ξ3)m(ξ4)

.(3.38)

When estimating the remainder of the integrand on the left of (3.32), break the
interactions into two subcases, depending on which frequency is comparable to
N2.
Case 3(a): N1 ∼ N2 ≥ N3 � N . We aim for

m(N1)
m(N2)m(N3)m(N4)

·
∣∣∣∣∣
∫ δ

0

∫
∑ 4

i=1 ξi=0

φ̂1φ̂2φ̂3φ̂4

∣∣∣∣∣
� N− 3

2+N0−
2 N2N3〈N4〉
N1

4∏
i=1

||φi||Xδ

0, 1
2 +

.

Pairing φ1 · φ4 and φ2 · φ3 in L2 and applying (2.6), it remains to show

m(N1)N
1
2
4 N

1
2
3

m(N2)m(N3)m(N4)N
1
2
1 N

1
2
2

� N− 3
2+ N1−

2 N3〈N4〉
N1

,

or

N
3
2−N0+

2

m(N3)m(N4)N2N
1
2
3 〈N4〉 1

2

� 1.(3.39)
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When estimating such fractions here and in the sequel, we frequently use two
trivial observations9: for any p > 3

7 , the function m(x)xp is increasing; and
m(x)〈x〉p is bounded below. For example, in the denominator of (3.39),

m(N4)〈N4〉 1
2 � 1 and m(N3)N

1
2
3 � m(N)N

1
2 = N

1
2 . After these observations

one quickly concludes that (3.39) holds.
Case 3(b): N2 ∼ N3 � N . Argue as above, now pairing φ1φ2 and φ3φ4 in L2.
The desired bound (3.32) will follow from

m(N1)N
1
2
1 N

1
2
4

m(N2)m(N3)m(N4)N
1
2
2 N

1
2
3

� N− 3
2+ N1−

2 N3〈N4〉
〈N1〉 ,

or, after cancelling powers of N1 in the numerator with powers of N2 in the
denominator,

m(N1)N
3
2−N0+

2

m(N2)m(N3)m(N4)N
1
2
3 N2〈N4〉 1

2

� 1.(3.40)

Using m(N4)〈N4〉 1
2 � 1 and that both m(N2)N

1
2
2 , m(N3)N

1
2
3 � m(N)N

1
2 =

N
1
2 , we get (3.40). This completes the proof of (3.32), and the bound for the

contribution of Term1 in (3.28).
We turn to the bound (3.28) for Term2 (3.30). As in our previous discussion

of Term1, it suffices to show

(3.41)∣∣∣∣∣
∫ δ

0

∫
∑ 6

i=1 ξi=0

(
1 − m(ξ4 + ξ5 + ξ6)

m(ξ4)m(ξ5)m(ξ6)

)
PN123

̂
I(φ1φ2φ3)(ξ1 + ξ2 + ξ3)Îφ4(ξ4)Îφ5(ξ5)Îφ6(ξ6)

∣∣∣∣∣
� N− 3

2+N0−
4

6∏
i=1

||Iφi||X
1, 1

2 +
,

where as above, 0 ≤ φ̂i(ξi) is supported for |ξi| ∼ Ni = 2ki , i = 4, 5, 6, and
without loss of generality,

N4 ≥ N5 ≥ N6, and N4 � N,(3.42)

the latter assumption since otherwise the symbol on the left of (3.41) vanishes.
In (3.41) we have written PN123 for the projection onto functions supported in
the N123 dyadic spatial frequency shell. The decay factor on the right of (3.41)
allows us to sum in N4, N5, N6, and N123, which suffices as we do not dyadically
decompose that part of Term2 represented here by φi, i = 1, 2, 3. We pointwise
bound the symbol on the left of (3.41) in the obvious way∣∣∣∣1 − m(ξ4 + ξ5 + ξ6)

m(ξ4)m(ξ5)m(ξ6)

∣∣∣∣ � m(N123)
m(N4)m(N5)m(N6)

9Alternatively, use (3.2) to write out the value of m explicitly.
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and as before, we undo the Plancherel formula. After applying Hölder’s inequal-
ity, it suffices to show

(3.43)
m(N123)

m(N4)m(N5)m(N6)
·||PN123I(φ1φ2φ3)||L2

t L2
x
·||Iφ4||L4

t L4
x
·||Iφ5||L4

t L4
x
·||Iφ6||L∞

t L∞
x

� N− 3
2+N0−

4

6∏
i=1

||Iφi||X1, 1
2 +

.

To this end, we’ll use:

Lemma 3.3. Suppose the functions φi, i = 1, . . . 6 as above. Then,

||PN123I(φ1φ2φ3)||L2
t L2

x
� 1

〈N123〉
3∏

i=1

||Iφi||X1, 1
2 +

,(3.44)

||Iφj ||L4
t L4

x
� 1

〈Nj〉 ||Iφj ||X1, 1
2 +

j = 4, 5,(3.45)

||Iφ6||L∞
t L∞

x
� ||Iφ6||X1, 1

2 +
.(3.46)

Proof. For (3.44), it suffices to prove

||〈∇〉PN123I(φ1φ2φ3)||L2
t L2

x
�

3∏
i=1

||Iφi||X1, 1
2 +

.(3.47)

(See Section 2 above for notation). The operator 〈∇〉I obeys a Leibniz rule.
Using Hölder’s inequality on a typical resulting term,

||PN123 ((〈∇〉I(φ1))φ2φ3) ||L2
t L2

x
� ||〈∇〉I(φ1)||L4

x,t
||φ2||L8

x,t
||φ3||L8

x,t
.(3.48)

By Sobolev’s inequality and a L8
t L

8
3
x Strichartz estimate (2.5),

||φ2||L8
t,x

� ||〈∇〉 1
2 φ2||

L8
t L

8
3
x

� ||〈∇〉 1
2 φ2||X0, 1

2 +

� ||φ2||X1, 1
2 +

(3.49)

and similarly for the φ3 factor on the right of (3.48). Applying the L4
x,t Strichartz

estimate,

||〈∇〉Iφ1||L4
x,t

� ||Iφ1||X1, 1
2 +

.(3.50)

Together, (3.48) - (3.50) yield (3.44).
The bounds (3.45) follow immediately from the L4

t,x Strichartz estimate as in
(3.50). The estimate (3.46) is seen using Sobolev embedding, the fact that φ6 is
frequency localized, and the L∞

t L2
x Strichartz bound,

||Iφ6||L∞
x,t

� ||〈∇〉Iφ6||L∞
t L2

x

� ||Iφ6||X1, 1
2 +

.
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Together, (3.43) and Lemma 3.3 leave us to show

m(N123) · N 3
2−N0+

4

m(N4)m(N5)m(N6)〈N123〉〈N4〉〈N5〉 � 1(3.51)

under the assumption (3.42). We can break the frequency interactions into two
cases: N4 ∼ N5 and N4 ∼ N123, since we have

∑6
i=1 ξi = 0 in (3.41).

Term2, Case 1; N4 ∼ N5;N4 ≥ N5 ≥ N6; N4 � N : We aim here for

m(N123)N
3
2−N0+

4

(m(N4))2〈N4〉2m(N6)〈N123〉 � 1.

Since m(N4)〈N4〉 1
2 � m(N)〈N〉 1

2 = 〈N〉 1
2 it suffices to show

m(N123)N
1
2−N0+

4

〈N4〉m(N6)〈N123〉 � 1,(3.52)

which is clear since 〈N123〉 ≥ m(N123), and

m(y)〈x〉 1
2 � 1 for all 0 ≤ y ≤ x.(3.53)

Term2, Case 2; N4 ∼ N123;N4 ≥ N5 ≥ N6; N4 � N : Here we argue that

m(N4)N
3
2−N0+

4

m(N4)〈N4〉2m(N5)m(N6)〈N5〉 � N
3
2−N0+

4

m(N5)〈N5〉 1
2 m(N6)〈N4〉2〈N5〉 1

2
� 1,

using (3.53) and our assumptions on the Ni. This completes the proof of (3.28)
and hence the proof of Proposition 3.1.

4. Proof of Theorem 1.1 in R3

In three space dimensions our almost conservation law takes the following
form.

Proposition 4.1. Given s > 5
6 , N � 1, and initial data φ0 ∈ C∞

0 (R3) with
E(INφ0) ≤ 1, then there exists a universal constant δ so that the solution

φ(x, t) ∈ C([0, δ], Hs(R3))

of (1.1)-(1.2) satisfies

E(INφ)(t) = E(INφ)(0) + O(N−1+),(4.1)

for all t ∈ [0, δ].

The norm ||φ(t, ·)||L2(R3) is supercritical with respect to the scaling (3.8).
Hence, aside from the L2 conservation (1.3) we will avoid using this quantity in
the proof of the three dimensional result. Beside the technical issues introduced
by scaling the L2 norm, our proof of Theorem 1.1 for n = 3 follows very closely
the n = 2 arguments of Section 3.

We begin with the fact that Proposition 4.1 implies Theorem 1.1 with n = 3.
Recall that it suffices to show the Hs(R3) norm of the solution to (1.1)- (1.2)
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grows polynomially in time. Recall too φ(λ) as the scaled solution defined in
(3.8). When n = 3, the definition of the energy (1.4) and Sobolev embedding
imply

E(INφ
(λ)
0 ) =

1
2
||∇INφ

(λ)
0 ||2L2(R3) +

1
4
||INφ

(λ)
0 ||4L4(R3)

≤ C0N
2−2sλ1−2s(1 + ||φ0||Hs(R3))4.

(4.2)

Once the parameter N is chosen, we will choose λ according to

λ =
(

1
2C0

) 1
1−2s

N
2s−2
1−2s (1 + ||φ0||Hs(R3))

− 4
1−2s .(4.3)

Together, (4.3) and (4.2) give E(INφ
(λ)
0 ) ≤ 1

2 . We can therefore apply Proposi-
tion 4.1 at least C1 · N1− times to give

E(INφ(λ))(C1N
1− · δ) ∼ 1.(4.4)

The estimate (4.4) implies ||φ(t, ·)||Hs(R3) grows at most polynomially when 5
6 <

s < 1. This can be seen exactly as in the two dimensional case. We include the
argument here for completeness.

Given any T0 � 1, first choose N � 1 so that

T0 =
C1N

1−δ

λ2
∼ N

( 5
2−3s−
1
2−s

)
.(4.5)

Note that the exponent of N on the right of (4.5) is positive (and hence this
definition of N makes sense) precisely when s > 5

6 . In three space dimensions
we have

E(INφ(λ))(λ2t) =
1
λ

E(INφ)(t).

According to (4.3), (4.4), (4.5), we therefore get

E(INφ)(T0) ≤ λE(INφ(λ))(λ2T0)

� λ

� N
2s−2
1−2s

� T

1−s+
3(s− 5

6 )

0 .

According to (3.4) and (1.3), the Hs(R3) norm grows with at most half this rate
when 5

6 < s < 1,

||φ||Hs(R3)(T ) � (1 + T )
1−s+

6(s− 5
6 ) .(4.6)

As in the two dimensional argument, the proof of Proposition 4.1 relies on
bounds for the local-in-time Hs solution. The following analogue of Proposition
3.2 avoids the use of the norm ||φ(·, t)||L2(R3), which, as mentioned above, is
supercritical with respect to scaling.



674 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO

Proposition 4.2. Assume 5
6 < s < 1 and we are given data for (1.1)-(1.2) with

E(Iφ0) ≤ 1. Then there is a universal constant δ > 0 so that the solution φ
obeys the following bound on the time interval [0, δ],

||∇Iφ||Xδ

0, 1
2 +

� 1.(4.7)

Proof. Arguing as in the proof of Proposition 3.2, it suffices to prove

||∇I(φφ̄φ)||Xδ

0,− 1
2 ++

� ||∇Iφ||3X0, 1
2 +

,

Again, the interpolation lemma in [10] allows us to assume N = 1 in the defini-
tion (3.1) of the operator I. After applying a Leibniz rule for the operator ∇I
and duality, we aim to show

||(∇I)(φ1) · φ2 · φ3 · ψ||L1(R3+1) � ||ψ||X0, 1
2−−

3∏
i=1

||∇Iφi||X0, 1
2 +

.(4.8)

Again, the complex conjugate will have no bearing on our bounds. We split the
functions φj , j = 2, 3 into high and low frequency components,

φj = φhigh
j + φlow

j ,(4.9)

where

supp ̂
φhigh

j (ξ, t) ⊂ {|ξ| ≥ 1
2
}

supp φ̂low
j (ξ, t) ⊂ {|ξ| ≤ 1}.

Note that when n = 3, homogeneous Sobolev embedding and the L10
t L

30
13
x

Strichartz estimate give

||φ||L10
t L10

x (R3+1) � ||∇φ||
L10

t L
30
13
x (R3+1)

� ||∇φ||X0, 1
2 +

.
(4.10)

Consider first the low frequency components on the left of (4.8). Apply Holder’s

inequality with the factors in L
10
3

x,t, L
10
x,t, L

10
x,t, and L2

x,t respectively. The L
10
3

x,t

Strichartz estimate along with (4.10) give,

||(∇I)(φ1) · φlow
2 · φlow

3 · ψ||L1(R3+1) � ||ψ||X0,0 ||∇Iφ1||X0, 1
2 +

3∏
i=2

||∇φlow
j ||X0, 1

2 +
.

Together with the fact that φlow
j = Iφlow

j , this bound accounts for part of the low
frequency contributions of φ2, φ3 in (4.8). A typical contribution which remains
to be bounded is

||∇(Iφ1)φ
high
2 φhigh

3 ψ||L1
x,t(R

3+1).

Recall the Strichartz estimate,

||ψ||
L

10
3

x,t(R
3+1)

� ||ψ||X0, 1
2 +

.(4.11)
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Interpolating between (4.11) and the trivial bound ||ψ||L2
x,t(R

3+1) � ||ψ||X0,0 gives

||ψ||L3
x,t(R

3+1) � ||ψ||X0, 1
2−− .(4.12)

Using (4.12) and Holder’s inequality on the left of (4.8), we aim to show

||∇(Iφ1)φ
high
2 φhigh

3 ||
L

3
2
x,t(R

3+1)
�

3∏
i=1

||∇Iφi||X0, 1
2 +

.(4.13)

Since we’ve reduced to the case N = 1, we note I−1 = 〈∇〉g, where

g ≡ 1 − s ∈ (0,
1
6
)(4.14)

is the gap between s and 1. We may therefore rewrite our desired estimate as

||∇(Iφ1)(〈∇〉gIφhigh
2 )(〈∇〉gIφhigh

3 )||
L

3
2
x,t(R

3+1)
≤

3∏
i=1

||∇Iφi||X0, 1
2 +

.(4.15)

But this estimate follows after taking the factors on the left in L
10
3

x,t, L
60
11
x,t, L

60
11
x,t,

respectively and using Hölders inequality. The first resulting factor is bounded
using the L

10
3

x,t Strichartz estimate. As for the second two factors, Sobolev em-

bedding, the bounds (4.14) on g, and the L
60
11

45
17

t,x Strichartz estimate yield for
j = 2, 3,

||〈∇〉gIφhigh
j ||

L
60
11
x,t(R

3+1)
� ||〈∇〉1−g〈∇〉gIφhigh

j ||
L

60
11

45
17

t,x

� ||∇Iφhigh
j ||X0, 1

2 +
.

The case where φlow
2 φhigh

3 appears on the left of (4.8) is handled similarly, using
a homogeneous Sobolev embedding to bound the φlow

2 term.

Proof of Proposition 4.1. Arguing as in the two dimensional result leaves us to
show

Term1 + Term2 � N−1++,(4.16)

where the two terms on the left are as before, (3.29), (3.30). We will have to pay
closer attention here than in R2 when we sum the various dyadic components of
this estimate. The fact that we only control inhomogeneous norms (4.7) forces
us to decompose the frequencies |ξ| ≤ 1 as well.

Considering first Term1, it follows from the definition of the Xs,b norms (2.1)
that

||∆Iφ||Xδ

−1, 1
2 +

� ||∇Iφ||Xδ

0, 1
2 +

.(4.17)



676 J. COLLIANDER, M. KEEL, G. STAFFILANI, H. TAKAOKA, AND T. TAO

We conclude Term1 � N−1++ once we prove

(4.18)

∣∣∣∣∣
∫ δ

0

∫
∑ 4

i=1 ξi=0

(
1 − m(ξ2 + ξ3 + ξ4)

m(ξ2) · m(ξ3) · m(ξ4)

)
φ̂1(ξ1)φ̂2(ξ2)φ̂3(ξ3)φ̂4(ξ4)

∣∣∣∣∣
� N−1++C(N1, N2, N3, N4)||φ1||X−1, 1

2 +
·

4∏
j=2

||∇φj ||X0, 1
2 +

,

for sufficiently small C(N1, N2, N3, N4) and for any smooth functions φi, i =
1, . . . 4 with 0 ≤ φ̂i(ξi) supported for |ξi| ∼ Ni ≡ 2ki , ki = 0,±1,±2, . . . .
As before, we may assume N2 ≥ N3 ≥ N4. The precise extent to which
C(N1, N2, N3, N4) decays in its arguments, and the fact that this decay allows
us to sum over all dyadic shells, will be described below on a case-by-case basis.

In addition to the estimates (4.10), (4.11), our analysis here uses the following
related bounds, all of which are quick consequences of homogeneous Sobolev
embedding, Hölder’s inequality in the time variable, and/or Strichartz estimates.
These estimates will allow for bounds decaying in the frequencies. For a function
φ with frequency support in the D’th dyadic shell,

||φ||L10
t L10±

x ([0,δ]×R3) � D0±||∇φ||X0, 1
2 +

(4.19)

||φ||
L

10
3

t L
10
3 −

x ([0,δ]×R3)
� δ0+||φ||X0, 1

2 +
(4.20)

||φ||
L

10
3

t L
10
3 +

x ([0,δ]×R3)
� D0+||φ||X0, 1

2 +
.(4.21)

Term1, Case 1: N � N2. Again, the symbol (3.31) is in this case identically
zero and the bound (4.18) holds trivially, with C ≡ 0.
Term1, Case 2: N2 � N � N3 ≥ N4. We have N2 ∼ N1 here as well. We will
show

C(N1, N2, N3, N4) = N0−
2 N0+

4 .(4.22)

With this decay factor, and the fact that we are considering here terms where
N1 ∼ N2, we may immediately sum over the N1, N2 indices. Similarly, the factor
N0+

4 in (4.22) allows us to sum over all terms here with N3, N4 
 1. It remains
to sum the terms where 1 � N4 ≤ N3 
 N , but these introduce at worst a
divergence N0+ log(N), which is absorbed by the decay factor N−1++ on the
right side of (4.18).

We now show (4.18), (4.22). As before, (3.35), we bound the symbol in this
case by N3

N2
. We apply Hölder’s inequality to the left side of (4.18), bounding

φ1, φ3 in L
10
3

x,t as in (4.11); φ2 in L
10
3

t L
10
3 −

x as in (4.20); and φ4 in L10
t L10+

x as in
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(4.19) to get,

Left Side of (4.18) � N0+
4

N3

N2
||φ1||X0, 1

2 +
||φ2||X0, 1

2 +
||φ3||X0, 1

2 +
||∇φ4||X0, 1

2 +

� N0+
4 N3N1

N2 · N2 · N3
||φ1||X−1, 1

2 +

4∏
j=2

||∇φj ||X0, 1
2 +

.

We conclude the bound (4.18), (4.22) for this case once we note

N3N1N
1−N0+

2

N2N2N3
� 1,

which is immediate from our assumptions on the Ni.
Term1, Case 3, N2 ≥ N3 � N : As in the two dimensional argument, we
use here the straightforward bound (3.38) for the symbol. The estimate of the
remainder of the integrand will break up into six different subcases, depending
on which Ni is comparable to N2, and whether or not N1, N4 
 1.
Case 3(a), N1 ∼ N2 ≥ N3 � N ;N4 
 1: We will show here

C(N1, N2, N3, N4) = N0+
4 N0−

3 ,(4.23)

which suffices since one may use (4.23) to sum directly in N3, N4, and use
Cauchy-Schwarz to sum in N1, N2.

To establish (4.18), (4.23), estimate the φ4 factor in L10
t L10+

x using (4.19); φ3

in L
10
3

t L
10
3 −

x as in (4.20); and φ1, φ2 in L
10
3

x,t as in (4.11). It remains then to show

m(N1)N1N
1−N0+

3

m(N2)m(N3)N2N3
� 1.(4.24)

Note that since s ∈ ( 5
6 , 1), we can use the following fact while working in three

space dimensions,

(m(x))p1xp2 is nondecreasing in x when 0 < p1 ≤ 6p2.(4.25)

We check (4.24) by first cancelling factors involving N1 and N2 from numerator
and denominator,and then using (4.25),

m(N1)N1N
1−N0+

3

m(N2)m(N3)N2N3
� N1−N0+

3

m(N3)N3

� N1−N0+
3

(m(N))N1−N0+
3

� 1.

Case 3(b), N2 ∼ N3 � N, N1 � 1, N4 
 1: Exactly as above, one shows (4.18),
(4.23) holds. With this, one may sum directly in N4, and also in N1, N2, N3

using the N3 decay in (4.23).
Case 3(c), N2 ∼ N3 � N, N1 
 1, N4 
 1: Here we have

C(N1, N2, N3, N4) = N0−
3 N0+

4 N0+
1 .(4.26)
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Allowing us to sum directly in all Ni. One shows (4.26) by modifying the argu-

ment in 3(a), taking φ1, φ2 in L
10
3

t L
10
3 +

x , L
10
3

t L
10
3 +

x , respectively.
Case 3(d), N1 ∼ N2 ≥ N3 � N ;N4 � 1: We will show here

C(N1, N2, N3, N4) = N0−
3 N0−

4 ,(4.27)

allowing us to sum immediately in N3 and N4; summing in N1, N2 using Cauchy-
Schwarz.

After taking the symbol out of the left side of (4.18) using (3.38), we apply
Hölder’s inequality as follows: estimate the φ4 factor in L10

t L10−
x using (4.19);

φ3 in L
10
3

t L
10
3 +

x as in (4.21); and φ1, φ2 in L
10
3

x,t as in (4.11). We will establish
(4.18), (4.27) once we show

m(N1)N1N
1−−N0+

3 N0+
3

m(N2)m(N3)m(N4)N2N3
� 1.(4.28)

This is done as in the argument of Case 3(a).
Case 3(e), N2 ∼ N3 � N ; N4 � 1;N1 � 1: We will show here

C(N1, N2, N3, N4) = N0−
2 N0−

1 ,(4.29)

allowing us to sum directly in all the Ni. The Hölder’s inequality argument here
takes the φ1 factor in L10

t L10−
x using (4.19); φ2 in L

10
3

t L
10
3 +

x as in (4.21); and

φ3, φ4 in L
10
3

x,t as in (4.11). We will have shown (4.18), (4.29) once we show,

m(N1)N1N
1−−N0+

2 N0+
2

m(N2)m(N3)m(N4)N2N3
� 1.(4.30)

This argument is by now straightforward,

m(N1)N1N
1−−N0+

2 N0+
2

m(N2)m(N3)m(N4)N2N3
� N1−−N0+

2 N0+
2

m(N2)2N2

� N1−−N0+
2 N0+

2

N1−−N0+
2 N0+

2

� 1.

Case 3(f), N2 ∼ N3 � N ; N4 � 1;N1 
 1: We will show here

C(N1, N2, N3, N4) = N0−
2 N0+

1 ,(4.31)

allowing us to sum directly in all the Ni.
The proof of (4.18), (4.31) is similar to Case (3e), now taking φ1 in L10

t L10+
x

using (4.19); φ2 in L
10
3

t L
10
3 +

x as in (4.21); and φ3, φ4 in L
10
3

t L
10
3

x as in (4.20).
This completes the 3-dimensional analysis of Term1 in (4.16).
We will show Term2 � N−1+ using the straightforward bound (3.38) on the

symbol in the case N2 ≥ N , and the following,

Lemma 4.3.

||I(φ1φ2φ3)||L2
t L2

x([0,δ]×R3) �
3∏

i=1

||∇Iφi||X0, 1
2 +

.(4.32)
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We postpone the proof of Lemma 4.3. As in the work for Term1 above, the
argument bounding Term2 is complicated only by the presence of low frequencies.
Our aim is to show

Left Side of (3.41) � C(N123, N4, N5, N6)
6∏

i=1

||∇Iφi||X0, 1
2 +

.(4.33)

where N4 ≥ N5 ≥ N6 and N4 � N , and as in the Term1 work above,
C(N123, N4, N5, N6) decays sufficiently fast to allow us to add up the individual
frequency interaction estimates to get (4.16).

We sum first the interactions involving Ni � 1 for all frequencies in (4.33). In
this case we’ll show a decay factor of C = N−1+(N123N4N5N6)0−, allowing us to
sum in each index Ni directly. Apply Hölder’s inequality to the integrand on the
left of (3.41), taking the factors in L2

x,t;L
10
3

x,t;L10
x,t; and L10

x,t; respectively. Using
(3.38), (4.32), the Strichartz estimates and (4.10) as in the Term1 argument, it
suffices to show

N1−N0+
4 m(N123)

N4m(N4)m(N5)m(N6)
� 1.(4.34)

The fact that m(x) is nonincreasing in x and (4.25) give us

N1−N0+
4 m(N123)

N4m(N4)m(N5)m(N6)
� N1−N0+

4 m(N123)
N4(m(N4))3

� N1−N0+
4 m(N123)

N0+
4 N1−(m(N))3

� 1.

The above argument is easily modified in the presence of small frequencies. We
sketch these modifications here. In case N123 ∼ N4, with N6 
 1 and possibly
also N5 
 1, we need to get factors of N0+

6 and possibly also N0+
5 on the right

hand side of (4.33). We accomplish this by taking the factor Iφ6 and possibly

also Iφ5 in L10
t L10+

x ,and take the factor Iφ4 in L
10
3

t L
10
3 −

x , or possibly L
10
3

t L
10
3 −−

x .
In case N4 ∼ N5, with N123 and/or N6 small, a similar argument gets the

necessary decay: we can take PN123I(φ1φ2φ3) in L2
t L

2+
x , and/or Iφ6 in L10

t L10+
x ,

and take Iφ4 in L
10/3
t L

10
3 −

x or L
10/3
t L

10
3 −−

x .

Proof of Lemma 4.3. By the interpolation lemma in [10], we may assume N = 1.
By Plancherel’s theorem, it suffices to prove

||φ1 · φ2 · φ3||L2
x,t([0,δ]×R3) �

3∏
i=1

||∇φi||X0, 1
2 +

.(4.35)

Decomposing φi = φlow
i + φhigh

i as in (4.9), we consider first the contribution
when only the low frequencies interact with one another. Hölder’s inequality in
space-time, homogeneous Sobolev embedding, Hölder’s inequality in time, and
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the energy estimate yield,

||φlow
1 · φlow

2 · φlow
3 ||L2

x,t([0,δ]×R3) = ||Iφlow
1 · Iφlow

2 · Iφlow
3 ||L2

x,t([0,δ]×R3)

�
3∏

i=1

||Iφlow
i ||L6

x,t([0,δ]×R3)

�
3∏

i=1

||∇Iφlow
i ||L6

t L2
x([0,δ]×R3)

� δ
1
2

3∏
i=1

||∇Iφlow
i ||L∞

t L2
x([0,δ]×R3)

�
3∏

i=1

||∇Iφlow
i ||X0, 1

2 +
.

A typical term whose contribution to (4.35) remains to be controlled is

||Iφlow
1 · 〈∇〉gIφhigh

2 · 〈∇〉gIφhigh
3 ||L2

x,t([0,δ]×R3),(4.36)

where g is as in (4.14). Take the first factor here in L6
t L

18
x and each of the second

two in L6
t L

9
2
x via Hölder’s inequality. Note then that Sobolev embedding and the

L6
t L

18
7

x Strichartz inequality give us

||Iφlow
1 ||L6

t L18
x (R3+1) � ||∇Iφlow

1 ||
L6

t L
18
7

x (R3+1)

� ||∇Iφlow
1 ||Xδ

0, 1
2 +

.

Similarly, the fact that g ∈ (0, 1
6 ), Sobolev embedding, Hölder’s inequality in

time, and the energy estimate give us for j = 2, 3,

||〈∇〉gIφhigh
j ||

L6
t L

9
2
x ([0,δ]×R3)

� ||〈∇〉Iφhigh
j ||L6

t L2
x([0,δ]×R3)

� δ
1
6 ||∇Iφhigh

j ||L∞
t L2

x(R3+1)

� ||∇Iφj ||Xδ

0, 1
2 +

.

This completes the proof of Lemma 4.3.
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