EVERY MORPHISM IS THE RESTRICTION OF A TORIC ONE

FLORIAN BERCHTOLD AND JÜRGEN HAUSEN

ABSTRACT. We show that every morphism of divisorial prevarieties is the restriction of a toric morphism. This extends an embedding theorem of Włodarczyk to the setting of morphisms.

Introduction

A prevariety X over an algebraically closed field K is called *divisorial* if every $x \in X$ has an affine open neighbourhood $X \setminus Z(f)$ obtained by removing the zero set Z(f) of a global section f of some line bundle on X, compare [2]. Nonseparated divisorial prevarieties occur for example in quotient constructions, where they behave more natural than their separated counterparts, see [4].

For divisorial prevarieties, Włodarczyk's Embedding Theorem [6, Theorem C] can be improved as follows: Every divisorial prevariety admits a closed embedding into a smooth toric prevariety with affine diagonal morphism, see [5, Theorem 3.2 and Remark 3.3]. In the present note, we extend this statement to morphisms.

The "ambient morphisms" will be toric morphisms $\psi: Z \to Z'$, i.e., morphisms of toric prevarieties Z and Z' that restrict to a homomorphism $T \to T'$ of the respective big tori $T \subset Z$ and $T' \subset Z'$ and satisfy $\psi(t \cdot z) = \psi(t) \cdot \psi(z)$. The description of toric morphisms by combinatorial data is a powerful tool for explicit studies, see [3] and [1].

For the sake of a rounded picture, we formulate our result in terms of a refined concept of divisoriality: Given k > 0, we say that a not necessarily irreducible prevariety X is k-divisorial if for any collection $x_1, \ldots, x_k \in X$ there is a line bundle L on X and a global section $f: X \to L$ such that $X \setminus Z(f)$ is an affine neighbourhood of the points x_1, \ldots, x_k , compare also [5]. We prove:

Theorem. Let $\varphi \colon X \to Y$ be a morphism of k-divisorial prevarieties. Then there exist k-divisorial smooth toric prevarieties Z_X , Z_Y and a commutative

Received August 20, 2001.

²⁰⁰⁰ Mathematics Subject Classification. 14E25, 14M25, 14C20.

diagram

where the downwards arrows are closed embeddings and $\psi: Z_X \to Z_Y$ is a toric morphism.

Note that the theorem applies in particular to all \mathbb{Q} -factorial prevarieties with affine diagonal morphism. For k > 1, all prevarieties occuring in the statement are in fact separated, and in this case the theorem can also be derived from the results of [5, Section 5] using the graph of the morphism $\varphi: X \to Y$.

Proof of the Theorem

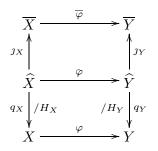
Throughout the proof of the main result we shall make use of the methods developed in [5, Section 2]. The first step is to reduce the study of arbitrary morphisms to the study of morphisms of affine varieties. As this might be of independent interest, we give a separate statement:

Lemma. Let X, Y be k-divisorial prevarieties, and let $\varphi \colon X \to Y$ be any morphism. Then there exist:

- (i) algebraic tori H_X , H_Y , an affine H_X -variety \overline{X} and an affine H_Y -variety \overline{Y} ,
- (ii) open dense invariant subsets $\widehat{X} \subset \overline{X}$ and $\widehat{Y} \subset \overline{Y}$ where the respective tori act freely with geometric quotients

$$q_X \colon \widehat{X} \to X, \qquad q_Y \colon \widehat{Y} \to Y,$$

(iii) a homomorphism $\tilde{\varphi} \colon H_X \to H_Y$ of algebraic tori and a commutative diagram of morphisms



where $\overline{\varphi}$ is equivariant in the sense that $\overline{\varphi}(t \cdot x) = \widetilde{\varphi}(t) \cdot \overline{\varphi}(x)$ and the maps j_X , j_Y denote the open inclusions,

- (iv) regular H_Y -homogeneous functions $g_1, \ldots, g_s \in \mathcal{O}(\overline{Y})$ such that
 - (a) $\overline{Y}_{g_j} = q_Y^{-1}(Y \setminus Z(g_j))$ holds for every $j = 1, \ldots, s$,
 - (b) any collection $y_1, \ldots, y_k \in \widehat{Y}$ is contained in some \overline{Y}_{g_i} ,
- (v) regular H_X -homogeneous functions $f_1, \ldots, f_r \in \mathcal{O}(\overline{X})$ such that

634

(a)
$$\overline{X}_{f_i} = q_X^{-1}(X \setminus Z(f_i))$$
 holds for every $i = 1, \ldots, r$,
(b) any collection $x_1, \ldots, x_k \in \widehat{X}$ is contained in some \overline{X}_{f_i}

Proof. Choose line bundles E_1, \ldots, E_d on Y and sections $g_j: Y \to E_j$ such that the sets $Y_j := Y \setminus Z(g_j)$ are affine and any collection y_1, \ldots, y_k is contained in some Y_j . In doing this, we may assume that the line bundles generate a free abelian group Γ in the sense of [5, Section 2]. For each $E \in \Gamma$, let \mathcal{B}_E denote its sheaf of sections. Consider the associated Γ -graded \mathcal{O}_Y -algebra

$$\mathcal{B} := \bigoplus_{E \in \Gamma} \mathcal{B}_E$$

This algebra gives rise to a prevariety $\widehat{Y} := \operatorname{Spec}(\mathcal{B})$ and a canonical morphism $q_Y \colon \widehat{Y} \to Y$. The morphism q_Y is a geometric quotient for the action of the algebraic torus $H_Y := \operatorname{Spec}(\mathbb{K}[\Gamma])$ on \widehat{Y} defined by the grading of \mathcal{B} . Note that \widehat{Y} is quasiaffine; in fact, by [5, Lemma 2.4], there is an H_Y -equivariant affine closure \overline{Y} of \widehat{Y} such that the g_i extend regularly to \overline{Y} and satisfy $\overline{Y}_{q_i} = q_Y^{-1}(Y_i)$.

Now, let Λ be a finitely generated free group of line bundles on X that contains bundles L_1, \ldots, L_l and sections $f_i: X \to L_i$ such that any collection $x_1, \ldots, x_k \in X$ has a common affine neighbourhood $X_i := X \setminus Z(f_i)$. Enlarging Λ and replacing Γ and Λ with suitable subgroups, we can assume that there is a canonical pullback homomorphism

$$\varphi^* \colon \Gamma \to \Lambda, \qquad E \mapsto \varphi^*(E).$$

Let \mathcal{A} be the graded \mathcal{O}_X -algebra associated to the group Λ . Consider the corresponding prevariety $\widehat{X} := \operatorname{Spec}(\mathcal{A})$ over X, and denote the canonical map by $q_X : \widehat{X} \to X$. Again \widehat{X} is quasiaffine and q_X is a geometric quotient for the action of $H_X := \operatorname{Spec}(\mathbb{K}[\Gamma])$ on X. Note that the pullback homomorphism $\varphi^* \colon \Gamma \to \Lambda$ induces a homomorphism $\widehat{\varphi} \colon H_X \to H_Y$ of algebraic tori.

Use again [5, Lemma 2.4] to choose an H_X -equivariant affine closure \overline{X} of \widehat{X} such that for some finite system $h_n \in \mathcal{B}(Y)$ of homogeneous generators of the algebra $\mathcal{O}(\overline{Y})$ the pullback sections $\varphi^*(h_n)$ extend regularly to \overline{X} . Additionally, ensure that the functions $f_i \in \mathcal{O}(\widehat{X})$ extend regularly to \overline{X} and satisfy $\overline{X}_{f_i} = q_X^{-1}(X_i)$.

So far, we have defined all the data occuring in the items (i), (ii), (iv) and (v). The only missing thing is to establish the commutative diagram of (iii). For this define a φ^* -graded homomorphism $\overline{\varphi}^* \colon \mathcal{O}(\overline{Y}) \to \mathcal{O}(\overline{X})$ by setting on homogeneous elements

$$\mathcal{B}_E(Y) \ni g \mapsto \varphi^*(g) \in \mathcal{A}_{\varphi^*(E)}(X).$$

Then this homomorphism induces a morphism $\overline{\varphi} \colon \overline{X} \to \overline{Y}$ which is $\widetilde{\varphi}$ -equivariant in the sense of item (iii). To obtain a restricted morphism $\widehat{\varphi} \colon \widehat{X} \to \widehat{Y}$,

we have to verify that $\overline{\varphi}$ maps \widehat{X} indeed to \widehat{Y} . This is true because we have

$$\widehat{X} = \bigcup_{j=1}^{s} q_X^{-1}(\varphi^{-1}(Y \setminus Z(g_j)))$$
$$= \bigcup_{j=1}^{s} q_X^{-1}(X \setminus Z(\varphi^*(g_j)))$$
$$\subset \bigcup_{j=1}^{s} \overline{X}_{\varphi^*(g_j)}.$$

Since in degree zero, the pullback $\widehat{\varphi}^*$ is nothing but the usual pullback of functions on Y via $\varphi \colon X \to Y$, also the lower part of the diagram in (iii) is commutative.

Proof of the Theorem. Choose a lifting of the morphism $\varphi \colon X \to Y$ and data as in the Lemma. Complete the collections $f_1, \ldots, f_r \in \mathcal{O}(\overline{X})$ and $g_1, \ldots, g_s \in \mathcal{O}(\overline{Y})$ by homogeneous functions to obtain closed embeddings

$$i_X \colon X \to \mathbb{K}^{n_X}, \qquad x \mapsto (f_1(x), \dots, f_r(x), f_{r+1}(x), \dots, f_{n_X}(x))$$
$$i_Y \colon \overline{Y} \to \mathbb{K}^{n_Y}, \qquad y \mapsto (g_1(y), \dots, g_s(y), g_{s+1}(y), \dots, g_{n_Y}(y))$$

Endow the spaces \mathbb{K}^{n_X} and \mathbb{K}^{n_Y} with the respective diagonal actions of H_X and H_Y such that these embeddings become equivariant. Let $\Phi \colon \mathbb{K}^{n_X} \to \mathbb{K}^{n_Y}$ be a polynomial map that extends $\overline{\varphi} \colon \overline{X} \to \overline{Y}$ and fulfils

$$\Phi(t \cdot z) = \widetilde{\varphi}(t) \cdot \Phi(z) \quad \text{for all } (t, z) \in H_X \times \mathbb{K}^{n_X}.$$

Now, let $n_{X,Y} := n_X + n_Y$, and consider the graph $\Psi \colon \mathbb{K}^{n_X} \to \mathbb{K}^{n_{X,Y}}$ of the map $\Phi \colon \mathbb{K}^{n_X} \to \mathbb{K}^{n_Y}$. Then $\Psi \circ i_X$ embeds \overline{X} equivariantly into $\mathbb{K}^{n_{X,Y}}$, where H_X acts on the latter space via

$$t \cdot (x, y) := (t \cdot x, \widetilde{\varphi}(t) \cdot y).$$

In the sequel, we regard \overline{X} as a subvariety of $\mathbb{K}^{n_{X,Y}}$ and \overline{Y} as a subvariety of \mathbb{K}^{n_Y} . Thus, denoting by $\operatorname{pr}_Y \colon \mathbb{K}^{n_{X,Y}} \to \mathbb{K}^{n_Y}$ the projection onto the second factor, we are in the following situation:

$$(*) \qquad \qquad \begin{array}{c} \mathbb{K}^{n_{X,Y}} \xrightarrow{\operatorname{pr}_{Y}} \mathbb{K}^{n_{Y}} \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{array}$$

Let $W_{\hat{X}} \subset \mathbb{K}^{n_{X,Y}}$ be the minimal open toric subset containing \hat{X} . Analogously let $W_{\hat{Y}} \subset \mathbb{K}^{n_Y}$ be the minimal open toric subset with $\hat{Y} \subset W_{\hat{Y}}$. Then we claim:

$$\widehat{X} = \overline{X} \cap W_{\overline{X}}, \qquad \widehat{Y} = \overline{Y} \cap W_{\overline{Y}}, \qquad \mathrm{pr}_Y(W_{\overline{X}}) \subset W_{\overline{Y}}.$$

For the first equation note that \widehat{X} is obtained by removing the common zeroes of the first r coordinates of $\mathbb{K}^{n_{X,Y}}$ from \overline{X} . Thus \widehat{X} is the intersection of \overline{X} with an open toric subset of $\mathbb{K}^{n_{X,Y}}$. Minimality of $W_{\widehat{X}}$ gives the desired statement. The same argument works for the second equation.

To verify the third observation, let B_1, \ldots, B_m denote the orbits of the big torus $\mathbb{T}^{n_{X,Y}}$ of $\mathbb{K}^{n_{X,Y}}$ that intersect \widehat{X} . Then $W_{\widehat{X}}$ is the union of all $\mathbb{T}^{n_{X,Y}}$ -orbits that have one of the B_l in its closure. Thus, given $z = (x, y) \in W_{\widehat{X}}$ we have

$$\lim_{t \to 0} \lambda(t) \cdot t_0 \cdot z = z_0 \in \widehat{X}$$

with some $t_0 \in \mathbb{T}^{n_{X,Y}}$ and some one parameter subgroup $\lambda \colon \mathbb{K}^* \to \mathbb{T}^{n_{X,Y}}$. Now, applying the projection pr_Y to the above equation yields that $y = \operatorname{pr}_Y(z)$ lies in W_Y , and our claim is verified.

Since H_X acts freely on W_X and so does H_Y on W_Y , there exist geometric quotients $W_X \to Z_X$ and $W_Y \to Z_Y$ for these actions. Thereby the quotients spaces Z_X and Z_Y are smooth toric prevarieties having an affine diagonal morphism, see e.g. [5, Lemma 1.6]. Moreover, we have the following commutative diagram of toric morphisms:

$$\begin{array}{c|c} W_{\tilde{X}} \xrightarrow{\operatorname{pr}_{Y}} W_{\tilde{Y}} \\ /H_{X} & /H_{Y} \\ Z_{X} \xrightarrow{\psi} Z_{Y} \end{array}$$

By construction, $X = \hat{X}/H_X$ is embedded into Z_X and so is $Y = \hat{Y}/H_Y$ into Z_Y . By the commutative diagrams (*) and statement (iii) of the Lemma, the toric morphism $\psi: Z_X \to Z_Y$ is an extension of $\varphi: X \to Y$.

It remains to show that the prevarieties Z_X and Z_Y are in fact k-divisorial. We consider exemplarily Z_Y . Since Z_Y is smooth and has an affine diagonal morphism, it suffices to show that any k points of Z_Y admit a common affine neighbourhood in Z_Y . We do this by verifying the assumptions of [5, Corollary 4.4].

So, let $B_1, \ldots, B_k \subset Z_Y$ be closed orbits of the big torus of Z_Y . By minimality of $W_{\hat{Y}}$, we find for each l a point $y_l \in Y \cap B_l$. We construct a common affine neighbourhood of the points y_1, \ldots, y_k using the method presented in [5, Proof of Theorem 5.3]:

For each l, choose a point $\hat{y}_l \in q_Y^{-1}(y_l)$. By construction, there is a coordinate z_j such that $\mathbb{K}_{z_j}^{n_Y}$ is a common neighbourhood of $\hat{y}_1, \ldots, \hat{y}_k$. Consider the closed H_Y -invariant subsets

$$A := \mathbb{K}_{z_i}^{n_Y} \setminus W_{\widehat{Y}}, \qquad \widehat{Y}_j := \overline{Y} \cap \mathbb{K}_{z_j}^{n_Y}$$

of $\mathbb{K}_{z_j}^{n_Y}$. As they are disjoint, the categorical quotient $p: \mathbb{K}^{n_Y} \to \mathbb{K}^{n_Y} /\!\!/ H_Y$ separates these sets. In particular, no point $p(\hat{y}_l)$ lies in p(A). Thus we find an H_Y -invariant regular function h on $\mathbb{K}_{z_j}^{n_Y}$ that vanishes along A but on none of the points \hat{y}_l . Removing the zero set of the function h from $\mathbb{K}_{z_j}^{n_Y}$ yields a common H_Y invariant affine open neighbourhood $U \subset W_Y$ of $\hat{y}_1, \ldots, \hat{y}_k$. Now, the image $V \subset$ Z_Y of U under the quotient map $W_Y \to Z_Y$ is the desired affine neighbourhood
of the points y_1, \ldots, y_k .

References

- A. A'Campo-Neuen, J. Hausen, Toric prevarieties and subtorus actions, Geom. Dedicata 87 (2001), 35–64.
- [2] M. Borelli, Divisorial varieties, Pacific J. Math. 13 (1963), 375–388.
- [3] W. Fulton, Introduction to toric varieties, Annals of Mathematics Studies, 131. The William H. Roever Lectures in Geometry. Princeton University Press, Princeton, NJ, 1993.
- [4] J. Hausen, A generalization of Mumford's geometric invariant theory, Doc. Math. 6 (2001), 571–592 (electronic).
- [5] _____, Equivariant embeddings into smooth toric varieties, Canad. J. Math. 54 (2002), 554–570.
- [6] J. Włodarczyk, Embeddings in toric varieties and prevarieties, J. Algebraic Geom. 2 (1993), 705–726.

FACHBEREICH MATHEMATIK UND STATISTIK, UNIVERSITÄT KONSTANZ, 78457 KONSTANZ, GERMANY.

E-mail address: Florian.Berchtold@uni-konstanz.de *E-mail address*: Juergen.Hausen@uni-konstanz.de