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EVERY MORPHISM IS THE RESTRICTION
OF A TORIC ONE

FLORIAN BERCHTOLD AND JURGEN HAUSEN

ABSTRACT. We show that every morphism of divisorial prevarieties is the restric-
tion of a toric morphism. This extends an embedding theorem of Wlodarczyk to
the setting of morphisms.

Introduction

A prevariety X over an algebraically closed field K is called divisorial if every
x € X has an affine open neighbourhood X \ Z(f) obtained by removing the
zero set Z(f) of a global section f of some line bundle on X, compare [2].
Nonseparated divisorial prevarieties occur for example in quotient constructions,
where they behave more natural than their separated counterparts, see [4].

For divisorial prevarieties, Wlodarczyk’s Embedding Theorem [6, Theorem C]
can be improved as follows: Every divisorial prevariety admits a closed embed-
ding into a smooth toric prevariety with affine diagonal morphism, see [5, The-
orem 3.2 and Remark 3.3]. In the present note, we extend this statement to
morphisms.

The “ambient morphisms” will be toric morphisms ¢: Z — Z’, i.e., mor-
phisms of toric prevarieties Z and Z’ that restrict to a homomorphism 7" — T’
of the respective big tori T' C Z and 7" C Z' and satisfy (t-z) = (t)-¢(2).
The description of toric morphisms by combinatorial data is a powerful tool for
explicit studies, see [3] and [1].

For the sake of a rounded picture, we formulate our result in terms of a refined
concept of divisoriality: Given k > 0, we say that a not necessarily irreducible
prevariety X is k-divisorial if for any collection xq,... ,zr € X there is a line
bundle L on X and a global section f: X — L such that X \ Z(f) is an affine
neighbourhood of the points z1, ... ,zx, compare also [5]. We prove:

Theorem. Let p: X — Y be a morphism of k-divisorial prevarieties. Then
there exist k-divisorial smooth toric prevarieties Zx, Zy and a commutative
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diagram

X Y

L,

ZX —>Zy

where the downwards arrows are closed embeddings and ¢: Zx — Zy is a toric
morphism.

Note that the theorem applies in particular to all Q-factorial prevarieties with
affine diagonal morphism. For k£ > 1, all prevarieties occuring in the statement
are in fact separated, and in this case the theorem can also be derived from the
results of [5, Section 5] using the graph of the morphism ¢: X — Y.

Proof of the Theorem

Throughout the proof of the main result we shall make use of the methods
developed in [5, Section 2]. The first step is to reduce the study of arbitrary
morphisms to the study of morphisms of affine varieties. As this might be of
independent interest, we give a separate statement:

Lemma. Let X, Y be k-divisorial prevarieties, and let p: X — Y be any mor-
phism. Then there exist:
(i) algebraic tori Hx, Hy, an affine Hx -variety X and an affine Hy -variety
Y,
(ii) open dense invariant subsets X CX andY CY where the respective tori
act freely with geometric quotients

qX:)?—>X, qy:}/;—>Y,

(iii) a homomorphism ¢: Hx — Hy of algebraic tori and a commutative dia-
gram of morphisms

be ® —
JXT TJY

~ ® ~

X————Y
QXl/HX /HleY

where @ is equivariant in the sense that p(t-x) = o(t)-@(x) and the maps
1x, Jy denote the open inclusions, o
(iv) regular Hy -homogeneous functions gi,...,gs € O(Y) such that
(a) Yy, = 4y (Y'\ Z(g;)) holds for every j =1,... s,
(b) any collection yy,... ,yx € Y is contained in some 79].,
(v) regular Hx -homogeneous functions fi,..., f, € O(X) such that



EVERY MORPHISM IS THE RESTRICTIONOF A TORIC ONE 635

(a) X;, = qx (X \ Z(f:)) holds for everyi=1,...,r,
(b) any collection 1, ...,z € X is contained in some X y,.

Proof. Choose line bundles E, ..., Eg on Y and sections g;: ¥ — Ej; such that
the sets Y; := Y \ Z(g;) are affine and any collection y,. ..,y is contained in
some Y;. In doing this, we may assume that the line bundles generate a free
abelian group I" in the sense of [5, Section 2]. For each E € T', let Bg denote its
sheaf of sections. Consider the associated I'-graded Oy-algebra

EcT

This algebra gives rise to a prevariety Y= Spec(B) and a canonical morphism
qy : Y — Y. The morphism ¢y is a geometric quotient for the action of the
algebraic torus Hy := Spec(K[I']) on Y defined by the grading of B. Note that
Y is quasiaffine; in fact, by [5, Lemma 2.4], there is an Hy-equivariant affine
closure Y of ¥ such that the g; extend regularly to Y and satisfy ng = q;l (Y;).

Now, let A be a finitely generated free group of line bundles on X that
contains bundles L1,...,L; and sections f;: X — L; such that any collection
Z1,...,o, € X has a common affine neighbourhood X; := X \ Z(f;). Enlarging
A and replacing I' and A with suitable subgroups, we can assume that there is
a canonical pullback homomorphism

e T — A, E— ¢*(F).

Let A be the graded Ox-algebra associated to the group A. Consider the
corresponding prevariety X := Spec(A) over X, and denote the canonical map
by ¢x: X — X. Again X is quasiaffine and ¢x is a geometric quotient for
the action of Hy := Spec(K[I']) on X. Note that the pullback homomorphism
¢*: I' = A induces a homomorphism ¢: Hx — Hy of algebraic tori.

Use again [5, Lemma 2.4] to choose an H x-equivariant affine closure X of X
such that for some finite system h,, € B(Y') of homogeneous generators of the
algebra O(Y) the pullback sections ¢*(h,,) extend regularly to X. Additionally,
ensure that the functions f; € (9()? ) extend regularly to X and satisfy Xy, =
ax (Xi).

So far, we have defined all the data occuring in the items (i), (ii), (iv) and (v).
The only missing thing is to establish the commutative diagram of (iii). For this
define a ¢*-graded homomorphism 7*: O(Y) — O(X) by setting on homoge-
neous elements

Be(Y) 2 g ¢"(g) € Ap= () (X).

Then this homomorphism induces a morphism @: X — Y which is &-
equivariant in the sense of item (iii). To obtain a restricted morphism p: X — Y,
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we have to verify that  maps X indeed to Y. This is true because we have

X = ax' (¢~ (Y \ Z(g))))

.

<
Il
—_

ax (X \ Z(¢"(95))

I
-

<
Il
_

C X

.

v*(g;5)"

<
I
u

Since in degree zero, the pullback * is nothing but the usual pullback of
functions on Y via ¢: X — Y, also the lower part of the diagram in (iii) is
commutative. O

Proof of the Theorem. Choose a lifting of the morphism ¢: X — Y and data

as in the Lemma. Complete the collections fi,..., f. € O(X) and g1,... ,gs €
O(Y) by homogeneous functions to obtain closed embeddings

D' 7 - KnX: T = (f1($)7 s 7fr(x)7 fr+1($)7 cee 7an (.’E))

we Y — K™, y = (91)s-- -5 95W): gs1(y) - gny (1))

Endow the spaces K™* and K™Y with the respective diagonal actions of Hx
and Hy such that these embeddings become equivariant. Let ®: K"x — K"
be a polynomial map that extends @: X — Y and fulfils

O(t-z) = ¢(t)-®(z) forall (¢,2) € Hx x K"X.

Now, let nx y := nx + ny, and consider the graph ¥: K"X — K"X.¥ of the
map ®: K" — K™. Then ¥ o:1x embeds X equivariantly into KXY where
Hx acts on the latter space via

t-(ac,y) = (t'xa &(t)y)

In the sequel, we regard X as a subvariety of K®*¥ and Y as a subvariety
of K™ . Thus, denoting by pry : K"¥¥ — K™ the projection onto the second
factor, we are in the following situation:

pry
K"X,Y - > KnY

() J_j

X——>Y
Let Wy C K"*.¥ be the minimal open toric subset containing X. Analogously

let Wy, C K™ be the minimal open toric subset with Y C Ws,. Then we claim:

X=XnWy, Y=YnNW,,  pry(Wy)CW,.
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For the first equation note that X is obtained by removing the common zeroes
of the first r coordinates of K"*.¥ from X. Thus X is the intersection of X with
an open toric subset of K"X.¥. Minimality of W gives the desired statement.
The same argument works for the second equation.

To verify the third observation, let By,..., B,, denote the orbits of the big
torus TPx.¥ of K"*.¥ that intersect X. Then W is the union of all T"*:¥ -orbits
that have one of the B; in its closure. Thus, given z = (z,y) € W we have

%il’l(l) At)-to-z =20 € X

with some £y € T"*¥ and some one parameter subgroup A: K* — T"X.¥. Now,
applying the projection pry- to the above equation yields that y = pry-(z) lies in
Wy, and our claim is verified.

Since Hyx acts freely on Wy and so does Hy on Wy, there exist geometric
quotients Wy — Zx and Wy, — Zy for these actions. Thereby the quotients
spaces Zx and Zy are smooth toric prevarieties having an affine diagonal mor-
phism, see e.g. [5, Lemma 1.6]. Moreover, we have the following commutative
diagram of toric morphisms:

pry
WX ’ WY

/Hxl l/HY
P

Zx—>Zy

By construction, X = )/(\'/HX is embedded into Zx and sois Y = XA’/HY into
Zy. By the commutative diagrams (x) and statement (iii) of the Lemma, the
toric morphism ¢ : Zx — Zy is an extension of ¢: X — Y.

It remains to show that the prevarieties Zx and Zy are in fact k-divisorial.
We consider exemplarily Zy. Since Zy is smooth and has an affine diagonal
morphism, it suffices to show that any k points of Zy admit a common affine
neighbourhood in Zy. We do this by verifying the assumptions of [5, Corol-
lary 4.4].

So, let B1,...,Bx C Zy be closed orbits of the big torus of Zy. By minimality
of Wy, we find for each [ a point y, € Y N B;. We construct a common affine
neighbourhood of the points y1, ..., yr using the method presented in [5, Proof
of Theorem 5.3]:

For each [, choose a point 7; € q;l(yl). By construction, there is a coordinate
zj such that K2 is a common neighbourhood of Y1, ..., Y. Consider the closed
Hy-invariant subsets

A=K \Wy, Y :=YNKY

of KZY. As they are disjoint, the categorical quotient p: K™ — K™ JHy
separates these sets. In particular, no point p(y;) lies in p(A). Thus we find an
Hy-invariant regular function & on KZ2* that vanishes along A but on none of
the points 7.
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Removing the zero set of the function h from KZ7* yields a common Hy-

invariant affine open neighbourhood U C Wy, of 41,. .. ,yx. Now, the image V' C

Zy of U under the quotient map Wy, — Zy is the desired affine neighbourhood

of the points y1,... , yk. O
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