A NOTE ON THE GUROV-RESHETNYAK CONDITION

A. A. Korenovskyy, A. K. Lerner, and A. M. Stokolos

ABSTRACT. An equivalence between the Gurov-Reshetnyak $GR(\varepsilon)$ and Muckenhoupt A_{∞} conditions is established. Our proof is extremely simple and works for arbitrary absolutely continuous measures.

Throughout the paper, μ will be a positive measure on \mathbb{R}^n absolutely continuous with respect to Lebesgue measure. Denote

$$
\Omega_{\mu}(f;Q) = \frac{1}{\mu(Q)} \int_{Q} |f(x) - f_{Q,\mu}| d\mu(x), \quad f_{Q,\mu} = \frac{1}{\mu(Q)} \int_{Q} f(x) d\mu(x).
$$

Definition 1. We say that a nonnegative function f , μ -integrable on a cube *Q*₀, satisfies the Gurov-Reshetnyak condition $GR_\mu(\varepsilon)$, $0 < \varepsilon < 2$, if for any cube $Q ⊂ Q_0$,

$$
(1) \t\t\t\t\Omega_{\mu}(f;Q) \leq \varepsilon f_{Q,\mu}.
$$

When μ is Lebesgue measure we drop the subscript μ .

This condition appeared in [6, 7]. It is important in Quasi-Conformal Mappings, PDEs, Reverse Hölder Inequality Theory, etc. (see, e.g., $[2, 8]$). Since (1) trivially holds for all positive $f \in L_{\mu}(Q_0)$ if $\varepsilon = 2$, only the case $0 < \varepsilon < 2$ is of interest. It was established in [2, 6, 7, 8, 13] for Lebesgue measure and in [4, 5] for doubling measures that if ε is small enough, namely $0 < \varepsilon < c2^{-n}$, the $GR_{\mu}(\varepsilon)$ implies $f \in L_{\mu}^{p}(Q_{0})$ with some $p > 1$ depending on ε . The machinery used in the articles mentioned above does not work for $\varepsilon > 1/8$ even in the one-dimensional case.

The one-dimensional improvement of these results was done in [9]. Namely, for any $0 < \varepsilon < 2$ it was proved that $GR(\varepsilon) \subset L_{loc}^p$ where $1 < p < p(\varepsilon)$; moreover a sharp bound $p(\varepsilon)$ for the exponent was discovered. The main tool in [9] is the Riesz Sunrising Lemma which has no multidimensional version since it involves the structure of open sets on a real line.

In the present article using simple arguments we prove that for any $n \geq 1$, $0 < \varepsilon < 2$ and arbitrary absolutely continuous measure μ , the Gurov-Reshetnyak condition $GR_\mu(\varepsilon)$ implies the weighted $A_\infty(\mu)$ Muckenhoupt condition. And conversely, $A_{\infty}(\mu)$ implies $GR_{\mu}(\varepsilon_0)$ for some $0 < \varepsilon_0 < 2$.

Received April 20, 2002.

²⁰⁰⁰ *Mathematics Subject Classifcvation.* Primary 42B25.

The first author was partially supported by Ukrainian Foundation of Fundamental Research Grant F7/329 - 2001.

In the non-weighted (or doubling) case R.R. Coifman and C. Fefferman [3] have found several equivalent descriptions of the A_{∞} property. Recently these descriptions have been transfered by J. Orobitg and C. Perez [12] to the nondoubling case. For our purposes it will be convenient to define $A_{\infty}(\mu)$ by the following way.

Definition 2. We say that a nonnegative function f , μ -integrable on a cube Q_0 , satisfies Muckenhoupt condition $A_{\infty}(\mu)$ if there exist $0 < \alpha, \beta < 1$ such that for any cube $Q \subset Q_0$,

$$
\mu\{x \in Q : f(x) > \beta f_{Q,\mu}\} > \alpha \mu(Q).
$$

Our main result is the following.

Theorem 1.

(i) Suppose that for some $0 < \varepsilon < 2$ nonnegative function f satisfies the inequality

$$
\Omega_{\mu}(f;Q) \leq \varepsilon f_{Q,\mu}.
$$

Then, for $\varepsilon < \lambda < 2$ we have

$$
\mu\{x \in Q : f(x) > (1 - \varepsilon/\lambda)f_{Q,\mu}\} \ge (1 - \lambda/2)\mu(Q);
$$

(ii) Suppose that for some $0 < \alpha, \beta < 1$ nonnegative function f satisfies the inequality

$$
\mu\{x \in Q : f(x) > \beta f_{Q,\mu}\} > \alpha \mu(Q).
$$

Then

$$
\Omega_{\mu}(f;Q) \le 2(1-\alpha\beta)f_{Q,\mu}.
$$

Proof. Set $E = \{x \in Q : f(x) > (1 - \varepsilon/\lambda)f_{Q,\mu}\}, E^c = Q \setminus E$. Suppose that $\mu(E^c) > 0$ (otherwise part (i) is trivial). Then

$$
\frac{\varepsilon}{\lambda} f_{Q,\mu} \leq \inf_{x \in E^c} (f_{Q,\mu} - f(x)) \leq \frac{1}{\mu(E^c)} \int_{E^c} (f_{Q,\mu} - f(x)) d\mu(x)
$$
\n
$$
\leq \frac{1}{\mu(E^c)} \int_{\{x \in Q : f(x) < f_{Q,\mu}\}} (f_{Q,\mu} - f(x)) d\mu(x)
$$
\n
$$
= \frac{1}{\mu(E^c)} \frac{\mu(Q)}{2} \Omega_{\mu}(f;Q) \leq \frac{1}{\mu(E^c)} \frac{\mu(Q)}{2} \varepsilon f_{Q,\mu}.
$$

Hence, $\mu(E^c) \leq (\lambda/2)\mu(Q)$, as required.

To prove the second part, set $E = \{x \in Q : f(x) > \beta f_{Q,\mu}\}, E^c = Q \setminus E$. Then $\mu(E^c) \leq (1 - \alpha) \mu(Q)$, and we have

$$
\Omega_{\mu}(f;Q) = \frac{2}{\mu(Q)} \int_{\{x \in Q: f(x) < f_{Q,\mu}\}} (f_{Q,\mu} - f(x)) d\mu(x)
$$
\n
$$
= \frac{2}{\mu(Q)} \int_{\{x \in Q: \beta f_{Q,\mu} < f(x) < f_{Q,\mu}\}} (f_{Q,\mu} - f(x)) d\mu(x)
$$
\n
$$
+ \frac{2}{\mu(Q)} \int_{E^c} (f_{Q,\mu} - f(x)) d\mu(x)
$$
\n
$$
\leq \frac{2}{\mu(Q)} f_{Q,\mu} \Big((1 - \beta) \mu(E) + \mu(E^c) \Big)
$$
\n
$$
= \frac{2}{\mu(Q)} f_{Q,\mu} \Big((1 - \beta) \mu(Q) + \beta \mu(E^c) \Big)
$$
\n
$$
\leq \frac{2}{\mu(Q)} f_{Q,\mu} \Big((1 - \beta) \mu(Q) + \beta (1 - \alpha) \mu(Q) \Big) = 2(1 - \alpha \beta) f_{Q,\mu}.
$$

The theorem is proved.

Corollary. The following characterization of $A_{\infty}(\mu)$ holds:

$$
A_{\infty}(\mu) = \bigcup_{0 < \varepsilon < 2} GR_{\mu}(\varepsilon).
$$

Since $A_{\infty}(\mu)$ condition is equivalent to the weighted reverse Hölder inequality for some $p > 1$ (cf. [12]), i.e.

(2)
$$
\left(\frac{1}{\mu(Q)}\int_{Q} (f(x))^{p} d\mu(x)\right)^{1/p} \leq c \frac{1}{\mu(Q)}\int_{Q} f(x) d\mu(x) \quad (Q \subset Q_{0}),
$$

we see that for any $0 < \varepsilon < 2$ a function f satisfying the Gurov-Reshetnyak condition $GR_{\mu}(\varepsilon)$ belongs to $L_{\mu}^{p}(Q_{0})$ for some $p > 1$. Observe that such approach (i.e. $GR_\mu(\varepsilon) \Rightarrow A_\infty(\mu) \Rightarrow$ Reverse Hölder) does not give the optimal order of integrability for small ε , though it is known [2, 4] in doubling case that $GR_\mu(\varepsilon) \subset$ $L_{\mu}^{p(\varepsilon)}(Q_0)$, where $p(\varepsilon) \simeq c_n/\varepsilon, \varepsilon \to 0$, and this order is sharp. However we will show that part (i) of Theorem 1 allows us to obtain the same order for any measure μ , any $0 < \varepsilon < 2$, and $f \in \widehat{GR}_{\mu}(\varepsilon)$. We will need the following.

Covering Lemma [10]. Let *E* be a subset of Q_0 , and suppose that $\mu(E) \leq$ $\rho\mu(Q_0)$, $0 < \rho < 1$. Then there exists a sequence $\{Q_i\}$ of cubes contained in Q_0 such that

- (i) $\mu(Q_i \cap E) = \rho \mu(Q_i);$
- (ii) the family ${Q_i}$ is almost disjoint with constant $B(n)$, that is, every point of Q_0 belongs to at most $B(n)$ cubes Q_i ;
- (iii) $E' \subset \bigcup_i Q_i$, where *E'* is the set of μ -density points of *E*.

 \Box

Recall that the non-increasing rearrangement of *f* on a cube *Q*⁰ with respect to μ is defined by

$$
f_{\mu}^*(t) = \sup_{E \subset Q_0: \mu(E) = t} \inf_{x \in E} |f(x)| \quad (0 < t < \mu(Q_0)).
$$

Denote $f_{\mu}^{**}(t) = t^{-1} \int_0^t f_{\mu}^*(\tau) d\tau$.

Theorem 2. Let $0 < \varepsilon < 2$, and $f \in GR_\mu(\varepsilon)$. Then for $\varepsilon < \lambda < 2$, $\rho < 1 - \lambda/2$, and $t \leq \rho \mu(Q_0)$ we have

(3)
$$
f_{\mu}^{**}(t) \leq \left(B(n)\frac{\lambda/\rho+1}{\lambda-\varepsilon}\varepsilon+1\right)f_{\mu}^{*}(t).
$$

Remark. A well-known argument due to Muckenhoupt [11, Lemma 4] shows that (3) implies the reverse Hölder inequality (2) for all $p < 1 + \left(\frac{\lambda - \varepsilon}{B(n)(\lambda/\rho + 1)}\right) \frac{1}{\varepsilon}$.

Proof of Theorem 2. Set $E = \{x \in Q_0 : f(x) > f^*_{\mu}(t)\}\)$, and apply the Covering Lemma to *E* and number *ρ*. We get cubes $Q_i \n\subset Q_0$, satisfying (i)-(iii). Since $\rho < 1 - \lambda/2$, we obtain from (i) that for each Q_i ,

$$
\big(f\chi_{Q_i}\big)^*\big((1-\lambda/2)\mu(Q_i)\big)\leq f^*_\mu(t).
$$

Hence, by Theorem 1,

(4)
$$
f_{Q_i,\mu} \leq \frac{\lambda}{\lambda-\varepsilon} \big(f\chi_{Q_i}\big)^*_\mu \big((1-\lambda/2)\mu(Q_i)\big) \leq \frac{\lambda}{\lambda-\varepsilon} f^*_\mu(t),
$$

and so,

(5)
$$
\Omega_{\mu}(f;Q_i) \leq \frac{\varepsilon \lambda}{\lambda - \varepsilon} f_{\mu}^*(t).
$$

Further, by (ii),

$$
\sum_{i} \mu(Q_i \cap E) \leq B(n)\mu(E) \leq B(n)t.
$$

Therefore, using a well-known property of rearrangement (see, e.g. [1]) and (4), (5), we obtain

$$
t(f_{\mu}^{**}(t) - f_{\mu}^{*}(t)) = \int_{E} (f(x) - f_{\mu}^{*}(t)) d\mu(x) = \sum_{i} \int_{E \cap Q_{i}} (f(x) - f_{\mu}^{*}(t)) d\mu(x)
$$

\n
$$
= \sum_{i} \int_{E \cap Q_{i}} (f(x) - f_{Q_{i},\mu}) d\mu(x)
$$

\n
$$
+ \sum_{i} \mu(E \cap Q_{i}) (f_{Q_{i},\mu} - f_{\mu}^{*}(t))
$$

\n
$$
\leq \frac{\varepsilon \lambda}{\lambda - \varepsilon} f_{\mu}^{*}(t) \sum_{i} \mu(Q_{i}) + \frac{\varepsilon}{\lambda - \varepsilon} f_{\mu}^{*}(t) \sum_{i} \mu(E \cap Q_{i})
$$

\n
$$
\leq B(n) \frac{\lambda/\rho + 1}{\lambda - \varepsilon} \varepsilon t f_{\mu}^{*}(t),
$$

which gives the desired result.

 \Box

References

- [1] C. Bennett and R. Sharpley, *Interpolation of operators,* Pure and Applied Mathematics, 129. Academic Press, Inc., Boston, MA, 1988.
- [2] B. Bojarski, *Remarks on the stability of reverse Hölder inequalities and quasi-conformal mappings,* Ann. Acad. Sci. Fenn. Ser. A I Math. **10** (1985), 89–94.
- [3] R. R. Coifman and C. Fefferman, *Weighted norm inequalities for maximal functions and singular integrals,* Studia Math. **15** (1974), 241–250.
- [4] M. Franciosi, *Weighted rearrangements and higher integrability results,* Studia Math. **92** (1989), 131–139.
- [5] , *On weak reverse integral inequalities for mean oscillations,* Proc. Amer. Math. Soc. **113** (1991), 105–112.
- [6] L. G. Gurov, *The stability of Lorentz transformations. Estimates for the derivatives,* (Russian) Dokl. Akad. Nauk SSSR **220** (1975), 273–276.
- [7] L. G. Gurov and Yu. G. Reshetnyak, *A certain analogue of the concept of a function with bounded mean oscillation,* (Russian) Sibirsk. Mat. \check{Z} . **17** (1976), 540–546.
- [8] T. Iwaniec, *On Lp-integrability in PDEs and quasiregular mappings for large exponents,* Ann. Acad. Sci. Fenn. Ser. A I Math. **7** (1982), 301–322.
- [9] A. A. Korenovskii, *The connection between mean oscillations and exact exponents of summability of functions,* (Russian) Mat. Sb. **181** (1990), 1721–1727; translation in Math. USSR-Sb. **71** (1992), 561–567.
- [10] J. Mateu, P. Mattila, A. Nicolau, and J. Orobitg, *BMO for nondoubling measures*, Duke Math. J. **102** (2000), 533–565.
- [11] B. Muckenhoupt, *Weighted norm inequalities for the Hardy maximal function,* Trans. Amer. Math. Soc. **165** (1972), 207–226.
- [12] J. Orobitg and C. Perez, A_p weights for nondoubling measures in R^n and applications, Trans. Amer. Math. Soc. **354** (2002), 2013–2033.
- [13] I. Wik, *Note on a theorem by Reshetnyak-Gurov,* Studia Math. **86** (1987), 287–290.

Department of Mathematical Analysis, IMEM, National University of Odessa, Dvoryanskaya, 2, 65026 Odessa, Ukraine.

E-mail address: anakor@paco.net

Department of Mathematics and Computer Science, Bar-Ilan University, 52900 Ramat Gan, Israel.

E-mail address: aklerner@netvision.net.il

Department of Mathematics, University of Connecticut, U-9, Storrs, CT 06268, U.S.A.

E-mail address: stokolos@math.uconn.edu