Mathematical Research Letters 9, 579-583 (2002)

A NOTE ON THE GUROV-RESHETNYAK CONDITION

A. A. KORENOVSKYY, A. K. LERNER, AND A. M. STOKOLOS

ABSTRACT. An equivalence between the Gurov-Reshetnyak GR(e) and Mucken-
houpt A~ conditions is established. Our proof is extremely simple and works for
arbitrary absolutely continuous measures.

Throughout the paper, p will be a positive measure on R™ absolutely contin-
uous with respect to Lebesgue measure. Denote

1 1
0(f:Q) = /Q @) = foplduta). fon =~ /Q f(@)dp(z).

Definition 1. We say that a nonnegative function f, p-integrable on a cube
Qo, satisfies the Gurov-Reshetnyak condition GR,(¢), 0 < € < 2, if for any cube

Q C Qo,
(1) Qu(f;Q) <efqu-

When p is Lebesgue measure we drop the subscript pu.

This condition appeared in [6, 7]. It is important in Quasi-Conformal Map-
pings, PDEs, Reverse Holder Inequality Theory, etc. (see, e.g., [2, 8]). Since
(1) trivially holds for all positive f € L,(Qo) if ¢ = 2, only the case 0 < e < 2
is of interest. It was established in [2, 6, 7, 8, 13] for Lebesgue measure and in
[4, 5] for doubling measures that if € is small enough, namely 0 < & < ¢27", the
G R, (g) implies f € LF(Qo) with some p > 1 depending on ¢. The machinery
used in the articles mentioned above does not work for ¢ > 1/8 even in the
one-dimensional case.

The one-dimensional improvement of these results was done in [9]. Namely,
for any 0 < € < 2 it was proved that GR(e) C L} . where 1 < p < p(g); moreover
a sharp bound p(e) for the exponent was discovered. The main tool in [9] is the
Riesz Sunrising Lemma which has no multidimensional version since it involves
the structure of open sets on a real line.

In the present article using simple arguments we prove that for any n > 1,
0 < € < 2 and arbitrary absolutely continuous measure y, the Gurov-Reshetnyak
condition GR,(¢) implies the weighted A (1) Muckenhoupt condition. And
conversely, Ao (1) implies GR,, (o) for some 0 < g9 < 2.
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In the non-weighted (or doubling) case R.R. Coifman and C. Fefferman [3]
have found several equivalent descriptions of the A., property. Recently these
descriptions have been transfered by J. Orobitg and C. Perez [12] to the non-
doubling case. For our purposes it will be convenient to define Ao (u) by the
following way.

Definition 2. We say that a nonnegative function f, u-integrable on a cube
Qo, satisfies Muckenhoupt condition A, () if there exist 0 < «, # < 1 such that
for any cube Q C Qo,

e € Q: f(z) > Bfgut > an(Q).
Our main result is the following.
Theorem 1.

(i) Suppose that for some 0 < £ < 2 nonnegative function f satisfies the
inequality

Qu(va) < EfQ,u-
Then, for e < A < 2 we have
e e Q: flx) > A —e/AN)fout = (1=22)u(@);

(ii) Suppose that for some 0 < a, 3 < 1 nonnegative function f satisfies the
nequality

p{z € Q: f(z) > Bfout > an(Q).

Then

Qu(fé Q) <2(1- O‘ﬁ)fQ,u-

Proof. Set E = {x € Q : f(z) > (1 —¢/N)fou}, EC = Q\ E. Suppose that
wu(E€) > 0 (otherwise part (i) is trivial). Then

€ _ 1
XfQ,u < xlenEfc(fQ,u - f(fE)) < M /Ec (fQ,u — f(x))du(g;)
1
= wu(E°) / (fo.u — f(@))du(z)

{z€Q:f(z)<fq,u}

R (%) , 1 @)
= wEe) 2 WS gy e

Hence, p(E°) < (A/2)u(Q), as required.
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To prove the second part, set £ = {x € Q : f(x) > Bfou}, B¢ = Q\ E.
Then p(E°) < (1 — a)u(Q), and we have

QD =~ [ (e F@)d
{z€Q: f(x)<fq,u}
2
- = / (Fou — F(2))du(z)
{z€Q:Bfq.u<f(x)<fq.u.}
2
w5 [ (o= 1@)inte)
2 C
< gy fon (1= BmE) + u(E)
2 (&
= gylen(0=0m(@Q) + pu(E))
2
< gy an (0= 0p@ + 501 - Q) =201~ aB) o
The theorem is proved. O

Corollary. The following characterization of As (1) holds:

Aoso(p) = U GR(e).

0<e<?2

Since Ao (1) condition is equivalent to the weighted reverse Holder inequality
for some p > 1 (cf. [12]), i.e.

1 » 1/p 1
(2) <m/Q(f(x)) du(x)) gcm/czf(rv)du(w) (Q C Qo),

we see that for any 0 < € < 2 a function f satisfying the Gurov-Reshetnyak
condition GR,, () belongs to LE (Qo) for some p > 1. Observe that such approach
(i.e. GR,(e) = As(p) = Reverse Holder) does not give the optimal order of
integrability for small €, though it is known [2, 4] in doubling case that GR,(¢) C

Lﬁ(s)(Qo), where p(e) < ¢, /e,e — 0, and this order is sharp. However we will
show that part (i) of Theorem 1 allows us to obtain the same order for any
measure u, any 0 < e < 2, and f € GR, (). We will need the following.

Covering Lemma [10]. Let E be a subset of Qo, and suppose that u(E) <
pi(Qo), 0 < p < 1. Then there exists a sequence {Q;} of cubes contained in Qg
such that

(1) u(@QiNE) = pu(Qi);
(i) the family {Q;} is almost disjoint with constant B(n), that is, every point
of Qo belongs to at most B(n) cubes Q;;
(i) E' C U;Q;, where E' is the set of p-density points of E.
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Recall that the non-increasing rearrangement of f on a cube )y with respect
to p is defined by

fut) = ECQ?LI()E) t;gglf( z)| (0 <t < u(Qo))

Denote f;*(t) = =t1 f()

Theorem 2. Let 0 < & < 2, and f € GR,(¢). Thenfore < A <2, p<1—2A/2,
and t < pu(Qo) we have

3 i < (B e 1) o,

Remark. A well-known argument due to Muckenhoupt [11, Lemma 4] shows

that (3) implies the reverse Holder inequality (2) for all p < 1+ (W/EP‘H)) 1

Proof of Theorem 2. Set E = {x € Qo : f(x) > f;(t)}, and apply the Covering
Lemma to E and number p. We get cubes Q; C Qo, satisfying (i)-(iii). Since
p < 1—X\/2, we obtain from (i) that for each Q;,

(fx@.), (1= 2/2)u(Q:)) < £ (D).
Hence, by Theorem 1,

@ Foun < 3= (Fxa ) (1= M2)u(Q0) < 32— )
and so,

e
) Q) < 32 fi)

Further, by (ii),
S #(Qi N E) < Bu(E) < B

Therefore, using a well-known property of rearrangement (see, e.g. [1]) and (4),
(5), we obtain

L) — fo() = Lumw— }jém £1(1)) din(z)
- % /E )~ fau)dntz)

+ Zu ENQi)(fo.u— (1))

Zqu — ZuEﬂQ

A/p+ 1 .
et

which gives the desired result. O

<

< B(n)
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