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A NOTE ON THE GUROV-RESHETNYAK CONDITION

A.A. Korenovskyy, A.K. Lerner, and A.M. Stokolos

Abstract. An equivalence between the Gurov-Reshetnyak GR(ε) and Mucken-
houpt A∞ conditions is established. Our proof is extremely simple and works for
arbitrary absolutely continuous measures.

Throughout the paper, µ will be a positive measure on R
n absolutely contin-

uous with respect to Lebesgue measure. Denote

Ωµ(f ;Q) =
1

µ(Q)

∫
Q

|f(x) − fQ,µ|dµ(x), fQ,µ =
1

µ(Q)

∫
Q

f(x)dµ(x).

Definition 1. We say that a nonnegative function f , µ-integrable on a cube
Q0, satisfies the Gurov-Reshetnyak condition GRµ(ε), 0 < ε < 2, if for any cube
Q ⊂ Q0,

Ωµ(f ; Q) ≤ εfQ,µ.(1)

When µ is Lebesgue measure we drop the subscript µ.
This condition appeared in [6, 7]. It is important in Quasi-Conformal Map-

pings, PDEs, Reverse Hölder Inequality Theory, etc. (see, e.g., [2, 8]). Since
(1) trivially holds for all positive f ∈ Lµ(Q0) if ε = 2, only the case 0 < ε < 2
is of interest. It was established in [2, 6, 7, 8, 13] for Lebesgue measure and in
[4, 5] for doubling measures that if ε is small enough, namely 0 < ε < c2−n, the
GRµ(ε) implies f ∈ Lp

µ(Q0) with some p > 1 depending on ε. The machinery
used in the articles mentioned above does not work for ε > 1/8 even in the
one-dimensional case.

The one-dimensional improvement of these results was done in [9]. Namely,
for any 0 < ε < 2 it was proved that GR(ε) ⊂ Lp

loc where 1 < p < p(ε); moreover
a sharp bound p(ε) for the exponent was discovered. The main tool in [9] is the
Riesz Sunrising Lemma which has no multidimensional version since it involves
the structure of open sets on a real line.

In the present article using simple arguments we prove that for any n ≥ 1,
0 < ε < 2 and arbitrary absolutely continuous measure µ, the Gurov-Reshetnyak
condition GRµ(ε) implies the weighted A∞(µ) Muckenhoupt condition. And
conversely, A∞(µ) implies GRµ(ε0) for some 0 < ε0 < 2.
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In the non-weighted (or doubling) case R.R. Coifman and C. Fefferman [3]
have found several equivalent descriptions of the A∞ property. Recently these
descriptions have been transfered by J. Orobitg and C. Perez [12] to the non-
doubling case. For our purposes it will be convenient to define A∞(µ) by the
following way.

Definition 2. We say that a nonnegative function f , µ-integrable on a cube
Q0, satisfies Muckenhoupt condition A∞(µ) if there exist 0 < α, β < 1 such that
for any cube Q ⊂ Q0,

µ{x ∈ Q : f(x) > βfQ,µ} > αµ(Q).

Our main result is the following.

Theorem 1.

(i) Suppose that for some 0 < ε < 2 nonnegative function f satisfies the
inequality

Ωµ(f ; Q) ≤ εfQ,µ.

Then, for ε < λ < 2 we have

µ{x ∈ Q : f(x) > (1 − ε/λ)fQ,µ} ≥ (1 − λ/2)µ(Q);

(ii) Suppose that for some 0 < α, β < 1 nonnegative function f satisfies the
inequality

µ{x ∈ Q : f(x) > βfQ,µ} > αµ(Q).

Then

Ωµ(f ;Q) ≤ 2(1 − αβ)fQ,µ.

Proof. Set E = {x ∈ Q : f(x) > (1 − ε/λ)fQ,µ}, Ec = Q \ E. Suppose that
µ(Ec) > 0 (otherwise part (i) is trivial). Then

ε

λ
fQ,µ ≤ inf

x∈Ec

(
fQ,µ − f(x)

) ≤ 1
µ(Ec)

∫
Ec

(
fQ,µ − f(x)

)
dµ(x)

≤ 1
µ(Ec)

∫

{x∈Q:f(x)<fQ,µ}

(
fQ,µ − f(x)

)
dµ(x)

=
1

µ(Ec)
µ(Q)

2
Ωµ(f ; Q) ≤ 1

µ(Ec)
µ(Q)

2
εfQ,µ.

Hence, µ(Ec) ≤ (λ/2)µ(Q), as required.
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To prove the second part, set E = {x ∈ Q : f(x) > βfQ,µ}, Ec = Q \ E.
Then µ(Ec) ≤ (1 − α)µ(Q), and we have

Ωµ(f ;Q) =
2

µ(Q)

∫

{x∈Q: f(x)<fQ,µ}

(
fQ,µ − f(x)

)
dµ(x)

=
2

µ(Q)

∫

{x∈Q:βfQ,µ<f(x)<fQ,µ}

(
fQ,µ − f(x)

)
dµ(x)

+
2

µ(Q)

∫
Ec

(
fQ,µ − f(x)

)
dµ(x)

≤ 2
µ(Q)

fQ,µ

(
(1 − β)µ(E) + µ(Ec)

)

=
2

µ(Q)
fQ,µ

(
(1 − β)µ(Q) + βµ(Ec)

)

≤ 2
µ(Q)

fQ,µ

(
(1 − β)µ(Q) + β(1 − α)µ(Q)

)
= 2(1 − αβ)fQ,µ.

The theorem is proved.

Corollary. The following characterization of A∞(µ) holds:

A∞(µ) =
⋃

0<ε<2

GRµ(ε).

Since A∞(µ) condition is equivalent to the weighted reverse Hölder inequality
for some p > 1 (cf. [12]), i.e.

( 1
µ(Q)

∫
Q

(
f(x)

)p
dµ(x)

)1/p

≤ c
1

µ(Q)

∫
Q

f(x)dµ(x) (Q ⊂ Q0),(2)

we see that for any 0 < ε < 2 a function f satisfying the Gurov-Reshetnyak
condition GRµ(ε) belongs to Lp

µ(Q0) for some p > 1. Observe that such approach
(i.e. GRµ(ε) ⇒ A∞(µ) ⇒ Reverse Hölder) does not give the optimal order of
integrability for small ε, though it is known [2, 4] in doubling case that GRµ(ε) ⊂
L

p(ε)
µ (Q0), where p(ε) � cn/ε, ε → 0, and this order is sharp. However we will

show that part (i) of Theorem 1 allows us to obtain the same order for any
measure µ, any 0 < ε < 2, and f ∈ GRµ(ε). We will need the following.

Covering Lemma [10]. Let E be a subset of Q0, and suppose that µ(E) ≤
ρµ(Q0), 0 < ρ < 1. Then there exists a sequence {Qi} of cubes contained in Q0

such that

(i) µ(Qi ∩ E) = ρµ(Qi);
(ii) the family {Qi} is almost disjoint with constant B(n), that is, every point

of Q0 belongs to at most B(n) cubes Qi;
(iii) E′ ⊂ ∪jQj, where E′ is the set of µ-density points of E.



582 A.A. KORENOVSKYY, A. K. LERNER, AND A. M. STOKOLOS

Recall that the non-increasing rearrangement of f on a cube Q0 with respect
to µ is defined by

f∗
µ(t) = sup

E⊂Q0:µ(E)=t

inf
x∈E

|f(x)| (0 < t < µ(Q0)).

Denote f∗∗
µ (t) = t−1

∫ t

0
f∗

µ(τ)dτ .

Theorem 2. Let 0 < ε < 2, and f ∈ GRµ(ε). Then for ε < λ < 2, ρ < 1− λ/2,
and t ≤ ρµ(Q0) we have

f∗∗
µ (t) ≤

(
B(n)

λ/ρ + 1
λ − ε

ε + 1
)
f∗

µ(t).(3)

Remark. A well-known argument due to Muckenhoupt [11, Lemma 4] shows
that (3) implies the reverse Hölder inequality (2) for all p < 1 +

(
λ−ε

B(n)(λ/ρ+1)

)
1
ε .

Proof of Theorem 2. Set E = {x ∈ Q0 : f(x) > f∗
µ(t)}, and apply the Covering

Lemma to E and number ρ. We get cubes Qi ⊂ Q0, satisfying (i)-(iii). Since
ρ < 1 − λ/2, we obtain from (i) that for each Qi,(

fχQi

)∗
µ

(
(1 − λ/2)µ(Qi)

) ≤ f∗
µ(t).

Hence, by Theorem 1,

fQi,µ ≤ λ

λ − ε

(
fχQi

)∗
µ

(
(1 − λ/2)µ(Qi)

) ≤ λ

λ − ε
f∗

µ(t),(4)

and so,

Ωµ(f ;Qi) ≤ ελ

λ − ε
f∗

µ(t).(5)

Further, by (ii), ∑
i

µ(Qi ∩ E) ≤ B(n)µ(E) ≤ B(n)t.

Therefore, using a well-known property of rearrangement (see, e.g. [1]) and (4),
(5), we obtain

t
(
f∗∗

µ (t) − f∗
µ(t)

)
=

∫
E

(
f(x) − f∗

µ(t)
)
dµ(x) =

∑
i

∫
E∩Qi

(
f(x) − f∗

µ(t)
)
dµ(x)

=
∑

i

∫
E∩Qi

(
f(x) − fQi,µ

)
dµ(x)

+
∑

i

µ(E ∩ Qi)
(
fQi,µ − f∗

µ(t)
)

≤ ελ

λ − ε
f∗

µ(t)
∑

i

µ(Qi) +
ε

λ − ε
f∗

µ(t)
∑

i

µ(E ∩ Qi)

≤ B(n)
λ/ρ + 1
λ − ε

εtf∗
µ(t),

which gives the desired result.
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