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INTERPOLATION BY PROPER HOLOMORPHIC
EMBEDDINGS OF THE DISC INTO C

2

Josip Globevnik

Dedicated to the memory of my mother

1. The result

Let ∆ be the open unit disc in C. A map f : ∆ → C
2 is called a proper

holomorphic embedding if it is a holomorphic immersion which is one to one and
such that the preimage of every compact set is compact. If f : ∆ → C

2 is a
proper holomorphic embedding then f(∆) is a closed submanifold of C

2 which
is, via f , biholomorphically equivalent to ∆.

It is not trivial to prove that there are proper holomorphic embeddings from
∆ to C

2 [St, A, GS]. It is known that given a discrete set E ⊂ C
2 there is a

proper holomorphic embedding f : ∆ → C
2 such that E ⊂ f(∆) [FGS]. In the

present paper we prove a stronger result:

Theorem 1.1 Given a discrete set S ⊂ ∆ and a proper injection ϕ : S → C
2

there is a proper holomorphic embedding f : ∆ → C
2 that extends ϕ.

In other words, given an injective sequence {ζj} ⊂ ∆ such that |ζj | → 1 and an
injective sequence {wj} ⊂ C

2 such that |wj | → +∞ there is a proper holomor-
phic embedding f : ∆ → C

2 such that f(ζj) = wj (j ∈ N).
The proof of the Carleman approximation theorem of Buzzard and Forstnerič

[BFo] can be adapted to prove such a result for proper holomorphic embeddings
f : C → C

2. In the proof there one uses the fact that C admits particularly
simple embeddings into C

2 of the form ζ → (ζ, a(ζ)) where a is an entire
function. There are no such embeddings for ∆ so a different proof is necessary
in our case. In the induction step of our proof we use simultaneous composition
by automorphisms on the left and on the right, a novelty introduced by Buzzard
and Forstnerič.

2. The scheme of the proof

Suppose that S ⊂ ∆ is a discrete set and let ϕ : S → C
2 be a proper injection.

With no loss of generality assume that S is infinite.
Denote by B the open unit ball in C

2. We shall construct inductively a
sequence Kn of compact subsets of ∆, such that bKn is a smooth Jordan curve
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for each n ∈ N and such that Kn ⊂⊂ Kn+1 (n ∈ N), ∪∞
n=1Kn = ∆, an increasing

sequence rn of positive numbers converging to +∞, a decreasing sequence εn of
positive numbers and a sequence fn of holomorphic maps from ∆ to C

2 which
are one to one and regular and such that the following hold:

(i) ϕ((∆ \ Kn) ∩ S) ⊂ C
2 \ rnB

(ii) fn(∆ \ IntKn) ⊂ C
2 \ rnB

(iii) fn+1(∆ \ Kn) ⊂ C
2 \ rn−1B

(iv) fn|Kn ∩ S = ϕ|Kn ∩ S
(v) |fn+1 − fn| < εn/2n on Kn

(vi) If h is a holomorphic map on IntKn that satisfies |h − fn| < εn on IntKn,
then h is one to one and regular on Kn−1

(vii) (1 − 1/n)∆ ⊂ Kn

Suppose for a moment that we have done this. By (v) and (vii) fn converges,
uniformly on compacta in ∆, to a holomorphic map f . By (v), |fn − f | ≤∑∞

j=n |fj+1 − fj | ≤
∑∞

j=n εj/2j < εn on Kn which implies by (vi) that f is
regular and one to one on Kn−1. As this holds for every n it follows that f is
regular and one to one on ∆ . By (iv), f extends ϕ. Let ζ ∈ Kn+1 \ Kn. By
(v), |fj+1(ζ) − fj(ζ)| < εj/2j (j ≥ n + 1) which, by (iii) implies that |f(ζ)| ≥
|fn+1(ζ)| − ∑∞

j=n+1 |fj+1(ζ) − fj(ζ)| ≥ rn−1 − ∑∞
j=n+1 εj/2j ≥ rn−1 − εn+1.

This holds for every n. Since rn increase to +∞ and since εn are decreasing it
follows that the map f is proper. Thus, f has all the required properties.

In the process we shall also construct two sequences Sn, Tn of positive numbers
such that Sn+1 = Sn for even n and Tn+1 = Tn for odd n. Each map fn will be
of the form fn = An ◦ gn where An is a holomorphic automorphism of C

2 and
gn is a one to one and regular holomorphic map from an open neighbourhood
Un of ∆ to C

2 which, for even n is transverse to {(z, w) : |z| = Sn} and satisfies
g−1

n ({|z| = Sn}) = b∆, and for odd n, is transverse to {(z, w) : |w| = Tn} and
satisfies g−1

n ({|w| = Tn}) = b∆.
With no loss of generality assume that 0 �∈ S. To begin the induction, let

f1(ζ) = (0, ζ) and let r1, 0 < r1 < 1/2 be such that 2r1∆ contains no point of
S. Put K0 = r1∆, K1 = 2r1∆. Then (i), (ii) and (vii) are satisfied for n = 1
and (iv) is vacuously satisfied for n = 1. Put S1 = T1 = 1 and A1 = Id so
that f1 = A1 ◦ g1 where g1(ζ) = (0, ζ) and U1 = C. Clearly g1 is transverse to
{|w| = T1} and g−1

1 ({|w| = T1}) = b∆. Put r0 = r1/2. Then A1({|w| > T1/2})
misses 2r0B. Put ε0 = min{1, r1/2}.

Given fn = An ◦ gn we shall have fn+1 = An+1 ◦ gn+1 with An+1 = Ψn+1 ◦
Θn+1◦An where Θn+1 and Ψn+1 are holomorphic automorphisms of C

2 and with
gn+1 = Gn+1 ◦ gn ◦ pn+1 where pn+1 is a conformal map from a neighbourhood
Un+1 of ∆ to pn+1(Un+1) ⊂ C which is a slight perturbation of the identity on
∆ and Gn+1 is an automorphism of C

2 of the form

(2.1′) Gn+1(z, w) =
(
z + Sn+1

( w

Tn

)Mn+1

, w
)

if n is odd,
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(2.1′′) Gn+1(z, w) =
(
z, w + Tn+1

( z

Sn

)Mn+1
)

if n is even.

3. The induction step, Part 1

Suppose for a moment that we have constructed fn = An◦gn, Kn, Sn, Tn, rn

and εn−1. We want to show how to obtain εn, Kn+1, Sn+1, Tn+1, rn+1 and
fn+1 = An+1 ◦ gn+1. Suppose that n is odd so that gn : Un → C

2 is transverse
to {(z, w) : |w| = Tn} and satisfies g−1

n ({|w| = Tn}) = b∆. Put Tn+1 = Tn. Since
gn is transverse to {|w| = Tn} and since S is discrete one can, after shrinking
Un if necessary, choose Tn1, Tn2, Tn3 such that

Tn

2
< Tn3 < Tn2 < Tn1 < Tn

where Tn3 is so close to Tn that for all T, Tn3 ≤ T ≤ Tn, gn is transverse to
{|w| = T} and g−1

n ({|w| = T}) is a smooth Jordan curve, that

Kn ⊂ g−1
n {|w| < Tn3},

that g−1
n ({Tn3 ≤ |w| ≤ Tn2}) contains no point of S, and that g−1

n ({|w| < Tn1})
contains a point in S that does not belong to Kn. Put

Pn+1 = g−1
n ({|w| ≤ Tn3}), Qn+1 = g−1

n ({|w| ≤ Tn2}), Kn+1 = g−1
n ({|w| ≤ Tn1}).

With no loss of generality assume that Tn3 has been chosen so close to Tn that
(vii) holds with n replaced by n + 1. We have

Kn ⊂⊂ Pn+1 ⊂⊂ Qn+1 ⊂⊂ Kn+1.

Clearly bKn+1 is a smooth Jordan curve.
By (i), rn < min{|ϕ(w)| : w ∈ (∆\Kn)∩S}. Thus, one can choose rn+1 > rn

such that
(3.1)
min{|ϕ(w)| : w ∈ (∆\Kn+1)∩S}−1 < rn+1 < min{|ϕ(w)| : w ∈ (∆\Kn+1)∩S}.
Then (i) is satisfied with n replaced by n + 1. Choose εn, 0 < εn < εn−1, such
that

(3.2) εn < rn − rn−1, εn < rn−1,

and such that (vi) holds. Since fn is one to one and regular on ∆ this is possible
by a lemma of Narasimhan [Na, p. 926].

Choose R, R > 2rn+1, R > 2rn + εn, so large that fn(Kn) + B ⊂ R B and
that ϕ(Kn+1 ∩ S) ⊂ R B. We need the following lemma.

Lemma 3.1. Let R > 0 and let w1, w2, · · ·wn ∈ R B, wi �= wj (i �= j).
Given γ > 0 there is a δ > 0 such that whenever q1, q2, · · · qn ∈ C

2 satisfy
|qi − wi| < δ, 1 ≤ i ≤ n, there is a holomorphic automorphism Ψ of C

2 such
that:

(i) Ψ(qi) = wi (1 ≤ i ≤ n)
(ii) |Ψ(w) − w| < γ (w ∈ R B).
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Lemma 3.1 provides a θn, 0 < θn < εn/2n+2, such that

(3.3)




whenever ψ : Kn+1 ∩ S → C
2 satisfies |ψ − ϕ| < 3θn on

Kn+1 ∩ S there is a holomorphic automorphism Ψ of C
2 such that

Ψ ◦ ψ = ϕ|Kn+1 and such that |Ψ − Id| < εn/2n+1 on R B.

By (3.2) we may assume that

(3.4) rn − 3θn > rn−1 + εn + θn, 2rn−1 − θn > rn−1 + εn + θn.

4. Proof of Lemma 3.1

Sublemma 4.1 Suppose that R > 0 and let α1, · · ·αn ∈ R∆, αi �= αj (i �= j).
There are η > 0 and L < ∞ such that whenever β1, · · ·βn satisfy |βi − αi| <
η, 1 ≤ i ≤ n, then for every j, 1 ≤ j ≤ n, there is a polynomial Qj such that
(i) Qj(βi) = δji (1 ≤ i, j ≤ n) (ii) |Qj(ζ)| ≤ L (ζ ∈ 2R∆).

Proof. Choose η > 0 so small that αi +η∆ ⊂ R∆ (1 ≤ i ≤ n) and let |βi −αi| <
η (1 ≤ i ≤ n). For each j, 1 ≤ j ≤ n, the polynomial

Qj(ζ) =
n∏

k=1,k �=j

ζ − βk

βj − βk

satisfies (i). If |ζ| < 2R then

|Qj(ζ)| ≤ (3R)n−1(
min j �=k|βj − βk|

)n−1 .

Now, let γ = minj �=k |αj − αk|. Passing to a smaller η we may assume that
0 < η < γ/2. If |αi − βi| < η, 1 ≤ i ≤ n, then minj �=k |βj − βk| ≥ γ − 2η > 0 so
Qj satisfies (ii) with L = [3R/(γ − 2η)]n−1. This completes the proof.

Proof of Lemma 3.1. Choose a coordinate system in C
2 such that if wi =

(w1
i , w2

i ) then w1
i �= w1

j , w2
i �= w2

j if i �= j, 1 ≤ i, j ≤ n. By Sublemma 4.1
there are η > 0 and L < ∞ such that whenever β1

i satisfy |β1
i − w1

i | < η
and β2 satisfy |β2

i − w2
i | < η, 1 ≤ i ≤ n, then for each j, 1 ≤ j ≤ n,

there are polynomials Q1
j and Q2

j such that Q1
j (β

1
j ) = 1, Q1

j (β
1
i ) = 0 (i �= j),

Q2
j (β

2
j ) = 1, Q2

j (β
2
i ) = 0 (i �= j) and |Q1

j | < L, |Q2
j | < L on 2R∆. Let

|zj − wj | < η, 1 ≤ j ≤ n. Our map Φ will be of the form Φ = T ◦ S where T, S
are the automorphisms of C

2

T (ξ, ζ) = (ξ, ζ + Q1(ξ)), S(ξ, ζ) = (ξ + Q2(ζ), ζ)

such that

(4.1) S(R∆ × R∆) ⊂ (2R∆) × (R∆),

(4.2) |S(ξ, ζ) − (ξ, ζ)| < γ/2 ((ξ, ζ) ∈ (R∆)2),

(4.3) |T (ξ, ζ) − (ξ, ζ)| < γ/2 ((ξ, ζ) ∈ (2R∆) × (R∆)),
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and

(4.4) S(z1
i , z2

i ) = (w1
i , z2

i ), T (w1
i , z2

i ) = (w1
i , w2

i ) (1 ≤ i ≤ n).

By (4.1)-(4.4) the map Φ satisfies (i) and (ii) in Lemma 3.1. To construct S,
put β2

j = z2
j , 1 ≤ j ≤ n, and let Q2

j , 1 ≤ j ≤ n, be as above. In particular,
Q2

j (z
2
i ) = δji, 1 ≤ i, j ≤ n. Put

Q2(ζ) =
n∑

j=1

(w1
j − z1

j )Q2
j (ζ).

We have

Q2(z2
j ) =

n∑
i=1

(w1
i − z1

i )Q2
i (z

2
j ) = w1

j − z1
j

and so S(z1
i , z2

i ) = (z1
i + w1

i − z1
i , z2

i ) = (w1
i , z2

i ). We have

|Q2(ζ)| ≤ n · max
1≤j≤n

|w1
j − z1

j | · L, (|ζ| < R)

which implies that

|S(ξ, ζ) − (ξ, ζ)| = |(Q2(ζ), 0)| ≤ n · L · max
1≤j≤n

|wj − zj |, (|ζ| < R).

In particular, if η > 0 is small enough then |Q2(ζ)| < R, (|ζ| < R), so that (4.1)
and (4.2) hold. To construct T , put β1

j = w1
j , 1 ≤ j ≤ n, and let Q1

j , 1 ≤ j ≤ n,
be as above. Put

Q1(ζ) =
n∑

j=1

(w2
j − z2

j )Q1
j (ζ).

We have Q1(w1
j ) = w2

j − z2
j (1 ≤ j ≤ n), so T (w1

i , z2
i ) = (w1

i , z2
i + w2

i − z2
i ) =

(w1
i , w2

i ), (1 ≤ i ≤ n). Again, |Q1(ζ)| ≤ n · max1≤j≤n |w2
j − z2

j | · L, (|ζ| < 2R),
which implies that

|T (ξ, ζ) − (ξ, ζ)| = |(0, Q1(ξ))| ≤ n · max
1≤j≤n

|wj − zj | · L, (|ξ| < 2R).

In particular, if δ = η is small enough then (4.3) holds. The equality (4.4) is clear.
This completes the proof.

Remark. Lemma 3.1 holds for C
N , N ≥ 2. The proof is an easy elaboration of

the proof above.

5. The induction step, Part 2

We need the following:

Lemma 5.1 Let r > 0 and let Φ: C → C
2 be a proper holomorphic embedding.

Let Σ ⊂⊂ C be a domain bounded by a smooth Jordan curve and assume that
Φ(bΣ) ⊂ C

2 \ r B. Then the set (r B) ∪ Φ(Σ) is polynomially convex.
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Proof. Since Σ is a Jordan domain with smooth boundary it is easy to see that
if K ⊂ C \ Σ is a compact set, if a, b ∈ (C \ Σ) \ K, and if p is a path in
C \ K joining a and b then there is a path p̃ in (C \ Σ) \ K joining a and b. Let
K = {ζ ∈ C \ Σ: |Φ(ζ)| ≤ r}. Since Φ(bΣ) ⊂ C

2 \ r B and since |Φ(ζ)| → +∞
as |ζ| → +∞, the set K is compact. Suppose for a moment that (C \ Σ) \ K is
not connected. The preceding discussion implies that {ζ ∈ C : |Φ(ζ)| > r} has a
bounded component which contradicts the maximum principle. Thus, (C\Σ)\K
is connected which implies that for each q ∈ Φ(C) \ (Φ(Σ) ∪ rB) there is a path
η : [0, 1) → Φ(C) \ (Φ(Σ) ∪ r B) such that η(0) = q and |η(t)| → +∞ as t → 1.
The statement of the lemma now follows from [BF, Lemma 3.1]. This completes
the proof.

Remark. It is easy to see that the proof of Lemma 3.1 in [BF] works for
C

N , N ≥ 2, and so Lemma 5.1. holds for proper holomorphic embeddings
Φ: C → C

N , N ≥ 2.

Proof of the induction step, continued. We have already mentioned that for each
m, fm+1 = (Ψm+1 ◦ Θm+1 ◦ Am) ◦ (Gm+1 ◦ gm ◦ pm+1) = Am+1 ◦ gm+1. Thus,
fn = Hn◦g1◦(p2◦· · ·◦pn) where Hn = (Ψn◦Θn)◦· · ·◦(Ψ2◦Θ2)◦(Gn◦· · ·◦G2) is
a holomorphic automorphism of C

2. It follows that fn(Kn) is a compact subset
of (Hn ◦ g1)(C), a closed submanifold of C

2 biholomorphically equivalent to C,
whose boundary fn(bKn) is a smooth Jordan curve which is, by (ii), contained
in C

2 \rnB. By Lemma 5.1 the set fn(Kn)∪rnB is polynomially convex. By (ii)
fn(Kn)∪rnB contains no point of fn((Kn+1 \Kn)∩S). Since fn is one to one it
follows that fn(ξ) �= fn(η) if ξ, η ∈ (Kn+1 \Kn)∩S. By (i), ϕ((Kn+1 \Kn)∩S)
does not meet rnB. However, some points of ϕ((Kn+1 \ Kn) ∩ S) may lie in
fn(Kn). Since fn(Kn) is contained in (Hn ◦ g1)(C), a closed one dimensional
complex submanifold of C

2, one can change ϕ slightly on Kn+1 ∩S to ϕ̃ so that

|ϕ̃ − ϕ| < θn on Kn+1 ∩ S,

so that ϕ̃ is one to one on Kn+1 ∩S and that fn(Kn)∪ rnB contains no point of
ϕ̃((Kn+1 \Kn)∩S). By [FGS] there is an automorphism Θn+1 of C

2 which fixes
each point of fn(Kn ∩ S), that moves each point fn(ζ), ζ ∈ (Kn+1 \Kn)∩ S to
ϕ̃(ζ), and that satisfies

(5.2) |Θn+1 − Id| < θn on fn(Kn) ∪ rnB.

By (iv) we have fn|Kn ∩ S = ϕ|Kn ∩ S. Almost the same equality holds for
Θn+1 ◦ fn in place of fn since Θn+1 ◦ fn|Kn+1 ∩ S = ϕ̃|Kn+1 ∩ S. Applying on
both sides on the left an automorphism Ψ provided by Lemma 3.1 which satisfies
Ψ ◦ ϕ̃ = ϕ on Kn+1 ∩ S, would produce a map from ∆ to C

2 that would satisfy
(iv) with n replaced by n + 1. However, such a map does not necessarily satisfy
(ii) with n + 1 in place of n or (iii) since we have no control over what Θn+1

does with fn(∆ \ Kn).
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6. The induction step, Part 3

We perform our induction process in such a way that

(6.1′) An({(z, w) : |w| > Tn/2}) misses 2rn−1B if n is odd.

and

(6.1′′) An({(z, w) : |z| > Sn/2}) misses 2rn−1B if n is even.

Recall that (6.1′) holds for n = 1. We are describing the induction step for odd
n so assume that (6.1′) holds. To handle the problem described at the end of the
previous section we replace gn in Θn+1 ◦An ◦gn = Θn+1 ◦fn by Gn+1 ◦gn where
Gn+1 is an automorphism of C

2 of the form (2.1′). Passing to a slightly smaller
Un if necessary we may assume that gn(Un) is bounded. We want that Gn+1

changes gn only slightly on Kn and on Kn+1∩S while it maps gn(Un \ IntQn+1)
so far from the origin that

(6.2) (Θn+1 ◦ An+1) ◦ (Gn+1 ◦ gn)(Un \ IntQn+1) ⊂ C
2 \ 2rn+1B

which, since gn(Un) is bounded, and since Θn+1 ◦ An+1 is an automorphism of
C

2, holds if

(6.3)

∣∣∣∣∣Sn+1

(
w

Tn

)Mn+1
∣∣∣∣∣ ≥ ρn (|w| ≥ Tn2)

provided that ρn is sufficiently large. Choose τn > 0 so small that

(6.4) |(Θn+1 ◦ An)(p) − (Θn+1 ◦ An)(q)| < θn (q ∈ gn(Pn+1), |p − q| < 2τn).

We want that

(6.5)

∣∣∣∣∣Sn+1

(
w

Tn

)Mn+1
∣∣∣∣∣ ≤ τn (|w| ≤ Tn1)

which will imply that Gn+1 changes gn on Pn+1 for at most τn. Let

Sn+1 = ρn

(
Tn

Tn2

)Mn+1

.

Notice that Sn+1 is arbitrarily large provided that Mn+1 is large enough. The
choice of Sn+1 implies (6.3) while (6.5) becomes equivalent to

(6.7) ρn

(
Tn1

Tn2

)Mn+1

< τn

which will hold provided that Mn+1 is large enough. Choose Mn+1 so large that
Sn+1 becomes so large that

(6.8) (Θn+1 ◦ An)({|z| > Sn+1/2}) misses (2rn + εn)B.

Notice that if an automorphism G : C
2 → C

2 satisfies |G(z) − z| < τ (z ∈
R B) where 0 < τ < R then (R − τ)B ⊂ G(R B). Choose a compact set
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K ′
n ⊂ IntKn such that fn(∆ \ K ′

n) ⊂ fn(∆ \ Kn) + θnB. Now, (ii) implies that
An(gn(∆ \ K ′

n)) = fn(∆ \ K ′
n) misses (rn − θn)B and (5.2) implies that

(6.9) (Θn+1 ◦ An ◦ gn)(∆ \ K ′
n) ⊂ C

2 \ (rn − 2θn)B.

By (6.5), |Gn+1 ◦ gn − gn| ≤ τn on Pn+1 so by (6.4)

|(Θn+1 ◦ An ◦ Gn+1 ◦ gn)(ζ) − (Θn+1 ◦ An ◦ gn)(ζ)| ≤ θn (ζ ∈ Pn+1)

which, by (6.9) gives

(6.10) (Θn+1 ◦ An ◦ Gn+1 ◦ gn)(Pn+1 \ K ′
n) ⊂ C

2 \ (rn − 3θn)B.

Let ζ ∈ Qn+1 \ Pn+1. Since gn(Qn+1 \ Pn+1) ⊂ {|w| > Tn/2} and since Gn+1

does not change the w coordinate we have (Gn+1 ◦ gn)(ζ) ∈ {|w| > Tn/2} and
so (An ◦ Gn+1 ◦ gn)(ζ) ∈ An({|w| > Tn/2}). By (6.1′) An({|w| > Tn/2}) misses
2rn−1B which implies that (An ◦Gn+1 ◦gn)(ζ) ∈ C

2 \2rn−1B. By (5.2) it follows
that (Θn+1 ◦An ◦Gn+1 ◦ gn)(ζ) ∈ C

2 \ sB where s = min{rn − θn, 2rn−1 − θn},
by (3.4), satisfies s > rn−1 + θn + εn. By (6.10), (6.2) and (3.4) it follows that

(6.11) (Θn+1 ◦ An ◦ Gn+1 ◦ gn)(Un \ K ′
n) ⊂ C

2 \ (rn−1 + θn + εn)B.

7. The induction step, Part 4

Note first that Θn+1◦An◦gn|Kn+1∩S = ϕ̃|Kn+1∩S. This does not necessarily
hold if we replace gn by Gn+1 ◦ gn. However, since all points of Kn+1 ∩ S lie in
Pn+1, since |Gn+1 ◦ gn − gn| < τn on Pn+1 and since |ϕ − ϕ̃| < θn on Kn+1 ∩ S
it follows by (6.4) that

(7.1) |Θn+1 ◦ An ◦ Gn+1 ◦ gn − ϕ| < 2θn on Kn+1 ∩ S.

The problem now is that (Gn+1 ◦ gn)−1({(z, w) : |z| = Sn+1}) is not neces-
sarily equal to b∆ so we cannot use Θn+1 ◦ An ◦ Gn+1 ◦ gn as fn+1 even after
composing with a correction automorphism provided by Lemma 3.1. However,
(Gn+1 ◦ gn)−1({|z| = Sn+1}) is a real analytic curve that is arbitrarily small C1

perturbation of b∆ independently of Mn+1 if only Sn+1 is large enough [G, Sec.
5]; in our case this means if only Mn+1 is large enough.

Thus, provided that Mn+1 is large enough the conformal map pn+1 map-
ping ∆ to the domain (Gn+1 ◦ gn)−1({|z| < Sn+1}) and satisfying pn+1(0) =
0, p′n+1(0) > 0, is arbitrarily close to the identity on ∆ provided that Mn+1

is sufficiently large [P, p. 286]. Once we have chosen Mn+1 the map pn+1 ex-
tends holomorphically to a neighbourhood Un+1 ⊂ Un of ∆ so that the extended
map pn+1 maps Un+1 biholomorphically onto pn+1(Un+1) and so that the map
gn+1 = Gn+1 ◦ gn ◦ pn+1 : Un+1 → C

2 is transverse to {(z, w) : |z| = Sn+1} and
satisfies g−1

n+1({|z| = Sn+1}) = b∆ [G].
Passing to a larger Mn+1 if necessary we may assume that pn+1 is so close to

the identity on ∆ that

(7.2) |gn ◦ pn+1 − gn| < τn on ∆
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and that

(7.3)

{
Kn ⊂ p−1

n+1(Pn+1), Kn+1 ∩ S ⊂ p−1
n+1(Pn+1)

p−1
n+1(Qn+1) ⊂ IntKn+1, p−1

n+1(K
′
n) ⊂ Kn.

Since |Gn+1◦gn−gn| ≤ τn on Pn+1 it follows that |Gn+1◦gn◦pn+1−gn◦pn+1| ≤
τn on p−1

n+1(Pn+1) which, by (7.2) and (7.3) implies that

|Gn+1 ◦ gn ◦ pn+1 − gn| < 2τn on Kn ∪ (Kn+1 ∩ S).

Since Kn ∪ (Kn+1 ∩ S) ⊂ Pn+1, (6.4) implies that

|(Θn+1◦An◦Gn+1◦gn◦pn+1)(ζ)−(Θn+1◦An◦gn)(ζ)| < θn (ζ ∈ Kn∪(Kn+1∩S)).

By (5.2), |Θn+1fn(ζ) − fn(ζ)| < θn (ζ ∈ Kn) so it follows that

(7.4) |(Θn+1 ◦ An ◦ Gn+1 ◦ gn ◦ pn+1)(ζ) − fn(ζ)| < 2θn (ζ ∈ Kn).

Further, since (Θn+1 ◦An ◦gn)|Kn+1∩S = ϕ̃ and since |ϕ̃−ϕ| < θn on Kn+1∩S
it follows also that

(7.5) |(Θn+1 ◦ An ◦ Gn+1 ◦ gn ◦ pn+1)(ζ) − ϕ(ζ)| < 3θn (ζ ∈ Kn+1 ∩ S).

The choice of R and (3.3) imply that there is a holomorphic automorphism Ψn+1

of C
2 such that

(7.6) |Ψn+1 − Id| < εn/2n+1 on R B

and such that

(7.7) (Ψn+1 ◦ Θn+1 ◦ An ◦ Gn+1 ◦ gn ◦ pn+1)(ζ) = ϕ(ζ) (ζ ∈ Kn+1 ∩ S).

Put fn+1 = An+1 ◦ gn+1, where An+1 = Ψn+1 ◦ Θn+1 ◦ An, and gn+1 = Gn+1 ◦
gn ◦ pn+1. By (7.7), (iv) is satisfied with n+1 in place of n. Since θn < εn/2n+2

and since fn(Kn) + B ⊂ R B, (7.4) and (7.6) imply that |fn+1(ζ) − fn(ζ)| <
2θn + εn/2n+1 < εn/2n (ζ ∈ Kn) so that (v) is satisfied.

By (7.3), ζ ∈ ∆ \ IntKn+1 implies that pn+1(ζ) ∈ Un \ Qn+1 which, by (6.2)
implies that (Θn+1 ◦ An ◦ gn+1)(ζ) ∈ C

2 \ 2rn+1B. By (7.6), by the fact that
R > 2rn+1 and by (3.2) it follows that fn+1(ζ) ∈ C

2 \ (2rn+1 − εn/2n+1)B ⊂
C

2 \ (2rn+1 − r1)B ⊂ C
2 \ (rn+1B). Thus (ii) holds with n replaced by n + 1.

By (6.11)

(Θn+1 ◦ An ◦ Gn+1 ◦ gn)(Un \ K ′
n) ⊂ C

2 \ (rn−1 + θn + εn)B.

If ζ ∈ ∆ \ Kn then, by (7.3), pn+1(ζ) ∈ pn+1(∆) \ K ′
n ⊂ Un \ K ′

n so

(Θn+1 ◦ An ◦ gn+1)(∆ \ Kn) ⊂ C
2 \ (rn−1 + θn + εn)B,

and since Rn−1+θn +εn < R it follows by (7.6) that fn+1(∆\Kn) ⊂ C
2\rn−1B,

that is, (iii) is satisfied.
Finally, (6.8) implies that

(Ψn+1 ◦ Θn+1 ◦ An)({|z| > Sn+1/2}) misses Ψn+1((2rn + εn)B).

Since 2rn +εn < R, (7.6) implies that 2rnB ⊂ Ψn+1((2rn +εn)B) so An+1({|z| >
Sn+1/2}) misses 2rnB, that is, (6.1′′) holds with n replaced by n + 1.
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This completes the proof of the induction step.
Since the map ϕ is proper, (vii) and the fact that (3.1) holds for every n imply

that rn → +∞ as n → ∞. The proof of Theorem 1.1 is complete.

8. Remarks

Theorem 1.1 holds with C
2 replaced by C

N , N ≥ 2.

Theorem 8.1 Let N ≥ 2. Given a discrete set S ⊂ ∆ and a proper injection
ϕ : S → C

N there is a proper holomorphic embedding f : ∆ → C
N that extends

ϕ.

If N ≥ 3 then one proves Theorem 8.1. as in the case N = 2 with a
slight modification: Let ι : C

2 → C
N be the standard embedding ι(ζ1, ζ2) =

(ζ1, ζ2, 0, · · · , 0). In the proof we replace fn = An ◦ gn by fn = An ◦ ι ◦ gn where
An is a holomorphic automorphism of C

N and gn, as in the proof in the case
N = 2, is a one to one and regular holomorphic map from an open neighbourhood
Un of ∆ to C

2 which, for even n is transverse to {(z, w) : |z| = Sn} and satisfies
g−1

n ({|z| = Sn}) = b∆, and for odd n, is transverse to {(z, w) : |w| = Tn} and
satisfies g−1

n ({|w| = Tn}) = b∆. Also, in the induction step, the maps Θn+1 and
Ψn+1 are automorphisms of C

N and Gn+1 is an automorphism of C
2. In (6.1′)

and (6.1′′) we replace An by An ◦ ι.

We say that two proper holomorphic embeddedings f1, f2 : ∆ → C
N are

Aut(CN )-equivalent if there is an automorphism Ψ: C
N → C

N such that
f2 = Ψ ◦ f1.

Corollary 8.2 Let N ≥ 2. The set of Aut(CN )-equivalence classes of proper
holomorphic embeddedings of ∆ into C

N is uncountable.

Proof. [BFo] It is known [RR, Remark 5.2] that there is an uncountable family
E of discrete injective sequences in C

N such that if {zn, n ∈ N}, {wn, n ∈ N}
are distinct elements of E then there is no automorphism Ψ of C

N such that
Ψ(zn) = wn (n ∈ N). Let {ζn} ⊂ ∆ be an injective sequence, limn→∞ |ζn| = 1,
and let {zn, n ∈ N}, {wn, n ∈ N} be distinct elements of E. By Theorem 8.1
there are proper holomorphic embeddings f1, f2 : ∆ → C

N such that f1(ζj) =
zj , f2(ζj) = wj (j ∈ N). Every automorphism Ψ of C

N such that f2 = Ψ ◦ f1

would have to satisfy Ψ(zn) = wn (n ∈ N) and there is no such Ψ. Thus,
in this way, each element of E produces a proper holomorphic embedding of
∆ into C

N and the embeddings associated with distinct elements of E are not
Aut(CN )-equivalent. This completes the proof.
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