INTERPOLATION BY PROPER HOLOMORPHIC EMBEDDINGS OF THE DISC INTO \mathbb{C}^2

Josip Globevnik

Dedicated to the memory of my mother

1. The result

Let Δ be the open unit disc in \mathbb{C} . A map $f: \Delta \to \mathbb{C}^2$ is called a proper holomorphic embedding if it is a holomorphic immersion which is one to one and such that the preimage of every compact set is compact. If $f: \Delta \to \mathbb{C}^2$ is a proper holomorphic embedding then $f(\Delta)$ is a closed submanifold of \mathbb{C}^2 which is, via *f*, biholomorphically equivalent to Δ .

It is not trivial to prove that there are proper holomorphic embeddings from Δ to \mathbb{C}^2 [St, A, GS]. It is known that given a discrete set $E \subset \mathbb{C}^2$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ such that $E \subset f(\Delta)$ [FGS]. In the present paper we prove a stronger result:

Theorem 1.1 Given a discrete set $S \subset \Delta$ and a proper injection $\varphi: S \to \mathbb{C}^2$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ that extends φ .

In other words, given an injective sequence $\{\zeta_i\} \subset \Delta$ such that $|\zeta_i| \to 1$ and an injective sequence $\{w_j\} \subset \mathbb{C}^2$ such that $|w_j| \to +\infty$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^2$ such that $f(\zeta_j) = w_j$ $(j \in \mathbb{N})$.

The proof of the Carleman approximation theorem of Buzzard and Forstneric [BFo] can be adapted to prove such a result for proper holomorphic embeddings *f* : $\mathbb{C} \to \mathbb{C}^2$. In the proof there one uses the fact that \mathbb{C} admits particularly simple embeddings into \mathbb{C}^2 of the form $\zeta \to (\zeta, a(\zeta))$ where *a* is an entire function. There are no such embeddings for Δ so a different proof is necessary in our case. In the induction step of our proof we use simultaneous composition by automorphisms on the left and on the right, a novelty introduced by Buzzard and Forstnerič.

2. The scheme of the proof

Suppose that $S \subset \Delta$ is a discrete set and let $\varphi: S \to \mathbb{C}^2$ be a proper injection. With no loss of generality assume that *S* is infinite.

Denote by $\mathbb B$ the open unit ball in $\mathbb C^2$. We shall construct inductively a sequence K_n of compact subsets of Δ , such that bK_n is a smooth Jordan curve

Received January 3, 2002.

for each $n \in \mathbb{N}$ and such that $K_n \subset K_{n+1}$ $(n \in \mathbb{N})$, $\cup_{n=1}^{\infty} K_n = \Delta$, an increasing sequence r_n of positive numbers converging to $+\infty$, a decreasing sequence ε_n of positive numbers and a sequence f_n of holomorphic maps from Δ to \mathbb{C}^2 which are one to one and regular and such that the following hold:

- (i) $\varphi((\Delta \setminus K_n) \cap S) \subset \mathbb{C}^2 \setminus r_n \overline{\mathbb{B}}$
- (ii) $f_n(\Delta \setminus \text{Int}K_n) \subset \mathbb{C}^2 \setminus r_n\overline{\mathbb{B}}$
- (iii) $f_{n+1}(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus r_{n-1}$
- $f_n|K_n \cap S = \varphi|K_n \cap S$
- (v) $|f_{n+1} f_n| < \varepsilon_n/2^n$ on K_n
- (vi) If *h* is a holomorphic map on $\text{Int}K_n$ that satisfies $|h f_n| < \varepsilon_n$ on $\text{Int}K_n$, then *h* is one to one and regular on K_{n-1}
- (vii) (1 − 1*/n*)∆ ⊂ *Kⁿ*

Suppose for a moment that we have done this. By (v) and (vii) f_n converges, uniformly on compacta in Δ , to a holomorphic map f. By (v), $|f_n - f| \leq$ $\sum_{j=n}^{\infty} |f_{j+1} - f_j| \leq \sum_{j=n}^{\infty} \varepsilon_j/2^j < \varepsilon_n$ on K_n which implies by (vi) that *f* is regular and one to one on K_{n-1} . As this holds for every *n* it follows that *f* is regular and one to one on Δ . By (iv), *f* extends φ . Let $\zeta \in K_{n+1} \setminus K_n$. By (v), $|f_{j+1}(\zeta) - f_j(\zeta)| < \varepsilon_j/2^j$ ($j \ge n+1$) which, by (iii) implies that $|f(\zeta)| \ge$ $|f_{n+1}(\zeta)| - \sum_{j=n+1}^{\infty} |f_{j+1}(\zeta) - f_j(\zeta)| \ge r_{n-1} - \sum_{j=n+1}^{\infty} \varepsilon_j/2^j \ge r_{n-1} - \varepsilon_{n+1}.$ This holds for every *n*. Since r_n increase to $+\infty$ and since ε_n are decreasing it follows that the map *f* is proper. Thus, *f* has all the required properties.

In the process we shall also construct two sequences S_n , T_n of positive numbers such that $S_{n+1} = S_n$ for even *n* and $T_{n+1} = T_n$ for odd *n*. Each map f_n will be of the form $f_n = A_n \circ g_n$ where A_n is a holomorphic automorphism of \mathbb{C}^2 and *gⁿ* is a one to one and regular holomorphic map from an open neighbourhood *U_n* of $\overline{\Delta}$ to \mathbb{C}^2 which, for even *n* is transverse to $\{(z,w): |z| = S_n\}$ and satisfies $g_n^{-1}(\{|z| = S_n\}) = b\Delta$, and for odd *n*, is transverse to $\{(z,w): |w| = T_n\}$ and satisfies $g_n^{-1}(\{|w| = T_n\}) = b\Delta$.

With no loss of generality assume that $0 \notin S$. To begin the induction, let $f_1(\zeta) = (0,\zeta)$ and let r_1 , $0 < r_1 < 1/2$ be such that $2r_1\overline{\Delta}$ contains no point of *S*. Put $K_0 = r_1 \overline{\Delta}$, $K_1 = 2r_1 \overline{\Delta}$. Then (i), (ii) and (vii) are satisfied for $n = 1$ and (iv) is vacuously satisfied for $n = 1$. Put $S_1 = T_1 = 1$ and $A_1 = Id$ so that $f_1 = A_1 \circ g_1$ where $g_1(\zeta) = (0, \zeta)$ and $U_1 = \mathbb{C}$. Clearly g_1 is transverse to $\{|w| = T_1\}$ and $g_1^{-1}(\{|w| = T_1\}) = b\Delta$. Put $r_0 = r_1/2$. Then $A_1(\{|w| > T_1/2\})$ misses $2r_0\mathbb{B}$. Put $\varepsilon_0 = \min\{1, r_1/2\}$.

Given $f_n = A_n \circ g_n$ we shall have $f_{n+1} = A_{n+1} \circ g_{n+1}$ with $A_{n+1} = \Psi_{n+1} \circ g_n$ $\Theta_{n+1} \circ A_n$ where Θ_{n+1} and Ψ_{n+1} are holomorphic automorphisms of \mathbb{C}^2 and with $g_{n+1} = G_{n+1} \circ g_n \circ p_{n+1}$ where p_{n+1} is a conformal map from a neighbourhood U_{n+1} of $\overline{\Delta}$ to $p_{n+1}(U_{n+1}) \subset \mathbb{C}$ which is a slight perturbation of the identity on $\overline{\Delta}$ and G_{n+1} is an automorphism of \mathbb{C}^2 of the form

(2.1')
$$
G_{n+1}(z,w) = \left(z + S_{n+1}\left(\frac{w}{T_n}\right)^{M_{n+1}}, w\right) \text{ if } n \text{ is odd,}
$$

(2.1")
$$
G_{n+1}(z,w) = \left(z, w + T_{n+1}\left(\frac{z}{S_n}\right)^{M_{n+1}}\right) \text{ if } n \text{ is even.}
$$

3. The induction step, Part 1

Suppose for a moment that we have constructed $f_n = A_n \circ g_n$, K_n , S_n , T_n , r_n and ε_{n-1} . We want to show how to obtain ε_n , K_{n+1} , S_{n+1} , T_{n+1} , r_{n+1} and $f_{n+1} = A_{n+1} \circ g_{n+1}$. Suppose that *n* is odd so that $g_n: U_n \to \mathbb{C}^2$ is transverse to {(*z*, *w*): $|w| = T_n$ } and satisfies $g_n^{-1}(\{|w| = T_n\}) = b\Delta$. Put $T_{n+1} = T_n$. Since g_n is transverse to $\{|w| = T_n\}$ and since *S* is discrete one can, after shrinking U_n if necessary, choose T_{n1} , T_{n2} , T_{n3} such that

$$
\frac{T_n}{2} < T_{n3} < T_{n2} < T_{n1} < T_n
$$

where T_{n3} is so close to T_n that for all T , $T_{n3} \leq T \leq T_n$, g_n is transverse to $\{|w| = T\}$ and $g_n^{-1}(\{|w| = T\})$ is a smooth Jordan curve, that

$$
K_n \subset g_n^{-1}\{|w| < T_{n3}\},
$$

that $g_n^{-1}(\{T_{n3} \leq |w| \leq T_{n2}\})$ contains no point of *S*, and that $g_n^{-1}(\{|w| < T_{n1}\})$ contains a point in *S* that does not belong to K_n . Put

$$
P_{n+1} = g_n^{-1}(\{|w| \le T_{n3}\}), Q_{n+1} = g_n^{-1}(\{|w| \le T_{n2}\}), K_{n+1} = g_n^{-1}(\{|w| \le T_{n1}\}).
$$

With no loss of generality assume that T_{n3} has been chosen so close to T_n that (vii) holds with *n* replaced by $n + 1$. We have

$$
K_n \subset\subset P_{n+1}\subset\subset Q_{n+1}\subset\subset K_{n+1}.
$$

Clearly bK_{n+1} is a smooth Jordan curve.

By (i), $r_n < \min\{|\varphi(w)|: w \in (\Delta \setminus K_n) \cap S\}$. Thus, one can choose $r_{n+1} > r_n$ such that

(3*.*1)

$$
\min\{|\varphi(w)|\colon w\in(\Delta\setminus K_{n+1})\cap S\}-1
$$

Then (i) is satisfied with *n* replaced by $n + 1$. Choose ε_n , $0 < \varepsilon_n < \varepsilon_{n-1}$, such that

$$
(3.2) \qquad \qquad \varepsilon_n < r_n - r_{n-1}, \quad \varepsilon_n < r_{n-1},
$$

and such that (vi) holds. Since f_n is one to one and regular on Δ this is possible by a lemma of Narasimhan [Na, p. 926].

Choose *R*, $R > 2r_{n+1}$, $R > 2r_n + \varepsilon_n$, so large that $f_n(K_n) + \mathbb{B} \subset R \mathbb{B}$ and that $\varphi(K_{n+1} \cap S) \subset R \mathbb{B}$. We need the following lemma.

Lemma 3.1. Let $R > 0$ and let $w_1, w_2, \dots, w_n \in R\mathbb{B}, w_i \neq w_j \ (i \neq j).$ Given $\gamma > 0$ there is a $\delta > 0$ such that whenever $q_1, q_2, \dots, q_n \in \mathbb{C}^2$ satisfy $|q_i - w_i| < \delta$, $1 \leq i \leq n$, there is a holomorphic automorphism Ψ of \mathbb{C}^2 such that:

- (i) $\Psi(q_i) = w_i \quad (1 \leq i \leq n)$
- (ii) $|\Psi(w) w| < \gamma \quad (w \in R \mathbb{B}).$

Lemma 3.1 provides a θ_n , $0 < \theta_n < \varepsilon_n/2^{n+2}$, such that

(3*.*3) $\sqrt{ }$ \int \mathcal{L} whenever $\psi: K_{n+1} \cap S \to \mathbb{C}^2$ satisfies $|\psi - \varphi| < 3\theta_n$ on $K_{n+1} \cap S$ there is a holomorphic automorphism Ψ of \mathbb{C}^2 such that $\Psi \circ \psi = \varphi | K_{n+1}$ and such that $|\Psi - \text{Id}| < \varepsilon_n/2^{n+1}$ on $R \mathbb{B}$.

By (3.2) we may assume that

$$
(3.4) \qquad r_n - 3\theta_n > r_{n-1} + \varepsilon_n + \theta_n, \quad 2r_{n-1} - \theta_n > r_{n-1} + \varepsilon_n + \theta_n.
$$

4. Proof of Lemma 3.1

Sublemma 4.1 Suppose that $R > 0$ and let $\alpha_1, \dots, \alpha_n \in R\Delta$, $\alpha_i \neq \alpha_j$ ($i \neq j$). There are $\eta > 0$ and $L < \infty$ such that whenever β_1, \cdots, β_n satisfy $|\beta_i - \alpha_i|$ *η,* $1 \leq i \leq n$, then for every *j*, $1 \leq j \leq n$, there is a polynomial Q_j such that (i) $Q_j(\beta_i) = \delta_{ji}$ $(1 \leq i, j \leq n)$ (ii) $|Q_j(\zeta)| \leq L$ $(\zeta \in 2R\Delta)$.

Proof. Choose $\eta > 0$ so small that $\alpha_i + \eta \Delta \subset R\Delta$ ($1 \leq i \leq n$) and let $|\beta_i - \alpha_i|$ η (1 \leq *i* \leq *n*). For each *j*, 1 \leq *j* \leq *n*, the polynomial

$$
Q_j(\zeta) = \prod_{k=1, k \neq j}^n \frac{\zeta - \beta_k}{\beta_j - \beta_k}
$$

satisfies (i). If $|\zeta| < 2R$ then

$$
|Q_j(\zeta)| \le \frac{(3R)^{n-1}}{\left(\min_{j \neq k} |\beta_j - \beta_k|\right)^{n-1}}.
$$

Now, let $\gamma = \min_{j \neq k} |\alpha_j - \alpha_k|$. Passing to a smaller η we may assume that $0 < \eta < \gamma/2$. If $|\alpha_i - \beta_i| < \eta$, $1 \le i \le n$, then $\min_{j \ne k} |\beta_j - \beta_k| \ge \gamma - 2\eta > 0$ so Q_i satisfies (ii) with $L = [3R/(\gamma - 2\eta)]^{n-1}$. This completes the proof. *Q*_j satisfies (ii) with $L = \left[\frac{3R}{\gamma} - 2\eta\right]^{n-1}$. This completes the proof.

Proof of Lemma 3.1. Choose a coordinate system in \mathbb{C}^2 such that if $w_i =$ (w_i^1, w_i^2) then $w_i^1 \neq w_j^1$, $w_i^2 \neq w_j^2$ if $i \neq j$, $1 \leq i, j \leq n$. By Sublemma 4.1 there are $\eta > 0$ and $L < \infty$ such that whenever β_i^1 satisfy $|\beta_i^1 - w_i^1| < \eta$ and β^2 satisfy $|\beta_i^2 - w_i^2| < \eta$, $1 \leq i \leq n$, then for each $j, 1 \leq j \leq n$, there are polynomials Q_j^1 and Q_j^2 such that $Q_j^1(\beta_j^1) = 1$, $Q_j^1(\beta_i^1) = 0$ ($i \neq j$), $Q_j^2(\beta_j^2) = 1$, $Q_j^2(\beta_i^2) = 0$ (*i* $\neq j$) and $|Q_j^1| < L$, $|Q_j^2| < L$ on $2R\Delta$. Let $|z_j - w_j| < \eta, 1 \leq j \leq n$. Our map Φ will be of the form $\Phi = T \circ S$ where *T*, *S* are the automorphisms of \mathbb{C}^2

$$
T(\xi, \zeta) = (\xi, \zeta + Q_1(\xi)), \quad S(\xi, \zeta) = (\xi + Q_2(\zeta), \zeta)
$$

such that

(4.1)
$$
S(R\Delta \times R\Delta) \subset (2R\Delta) \times (R\Delta),
$$

(4.2)
$$
|S(\xi,\zeta) - (\xi,\zeta)| < \gamma/2 \quad ((\xi,\zeta) \in (R\Delta)^2),
$$

(4.3)
$$
|T(\xi,\zeta) - (\xi,\zeta)| < \gamma/2 \quad ((\xi,\zeta) \in (2R\Delta) \times (R\Delta)),
$$

and

(4.4)
$$
S(z_i^1, z_i^2) = (w_i^1, z_i^2), \quad T(w_i^1, z_i^2) = (w_i^1, w_i^2) \quad (1 \le i \le n).
$$

By $(4.1)-(4.4)$ the map Φ satisfies (i) and (ii) in Lemma 3.1. To construct *S*, put $\beta_j^2 = z_j^2$, $1 \leq j \leq n$, and let Q_j^2 , $1 \leq j \leq n$, be as above. In particular, $Q_j^2(z_i^2) = \delta_{ji}, \ 1 \le i, j \le n.$ Put

$$
Q_2(\zeta) = \sum_{j=1}^n (w_j^1 - z_j^1) Q_j^2(\zeta).
$$

We have

$$
Q_2(z_j^2) = \sum_{i=1}^n (w_i^1 - z_i^1) Q_i^2(z_j^2) = w_j^1 - z_j^1
$$

and so $S(z_i^1, z_i^2) = (z_i^1 + w_i^1 - z_i^1, z_i^2) = (w_i^1, z_i^2)$. We have

$$
|Q_2(\zeta)| \le n \cdot \max_{1 \le j \le n} |w_j^1 - z_j^1| \cdot L, \quad (|\zeta| < R)
$$

which implies that

$$
|S(\xi,\zeta) - (\xi,\zeta)| = |(Q_2(\zeta),0)| \le n \cdot L \cdot \max_{1 \le j \le n} |w_j - z_j|, \quad (|\zeta| < R).
$$

In particular, if $\eta > 0$ is small enough then $|Q_2(\zeta)| < R$, $(|\zeta| < R$), so that (4.1) and (4.2) hold. To construct *T*, put $\beta_j^1 = w_j^1$, $1 \le j \le n$, and let Q_j^1 , $1 \le j \le n$, be as above. Put

$$
Q_1(\zeta) = \sum_{j=1}^n (w_j^2 - z_j^2) Q_j^1(\zeta).
$$

We have $Q_1(w_j^1) = w_j^2 - z_j^2$ $(1 \le j \le n)$, so $T(w_i^1, z_i^2) = (w_i^1, z_i^2 + w_i^2 - z_i^2) =$ $(w_i^1, w_i^2), (1 \le i \le n)$. Again, $|Q_1(\zeta)| \le n \cdot \max_{1 \le j \le n} |w_j^2 - z_j^2| \cdot L, (|\zeta| < 2R),$ which implies that

$$
|T(\xi,\zeta) - (\xi,\zeta)| = |(0,Q_1(\xi))| \le n \cdot \max_{1 \le j \le n} |w_j - z_j| \cdot L, \quad (|\xi| < 2R).
$$

In particular, if $\delta = \eta$ is small enough then (4.3) holds. The equality (4.4) is clear. This completes the proof. \Box

Remark. Lemma 3.1 holds for \mathbb{C}^N , $N \geq 2$. The proof is an easy elaboration of the proof above.

5. The induction step, Part 2

We need the following:

Lemma 5.1 Let $r > 0$ and let $\Phi: \mathbb{C} \to \mathbb{C}^2$ be a proper holomorphic embedding. Let $\Sigma \subset\subset \mathbb{C}$ be a domain bounded by a smooth Jordan curve and assume that $\Phi(b\Sigma) \subset \mathbb{C}^2 \setminus r \overline{\mathbb{B}}$. Then the set $(r \overline{\mathbb{B}}) \cup \Phi(\overline{\Sigma})$ is polynomially convex.

Proof. Since Σ is a Jordan domain with smooth boundary it is easy to see that if $K \subset \mathbb{C} \setminus \overline{\Sigma}$ is a compact set, if $a, b \in (\mathbb{C} \setminus \overline{\Sigma}) \setminus K$, and if p is a path in $\mathbb{C} \setminus K$ joining *a* and *b* then there is a path \tilde{p} in $(\mathbb{C} \setminus \overline{\Sigma}) \setminus K$ joining *a* and *b*. Let $K = \{ \zeta \in \mathbb{C} \setminus \overline{\Sigma} : | \Phi(\zeta) | \leq r \}.$ Since $\Phi(b\Sigma) \subset \mathbb{C}^2 \setminus r \overline{\mathbb{B}}$ and since $|\Phi(\zeta)| \to +\infty$ as $|\zeta| \to +\infty$, the set *K* is compact. Suppose for a moment that $(\mathbb{C} \setminus \overline{\Sigma}) \setminus K$ is not connected. The preceding discussion implies that $\{\zeta \in \mathbb{C} : |\Phi(\zeta)| > r\}$ has a bounded component which contradicts the maximum principle. Thus, $(\mathbb{C}\backslash\Sigma)\backslash K$ is connected which implies that for each $q \in \Phi(\mathbb{C}) \setminus (\Phi(\Sigma) \cup rB)$ there is a path *η*: $[0,1) \rightarrow \Phi(\mathbb{C}) \setminus (\Phi(\overline{\Sigma}) \cup r\overline{\mathbb{B}})$ such that $\eta(0) = q$ and $|\eta(t)| \rightarrow +\infty$ as $t \rightarrow 1$. The statement of the lemma now follows from [BF, Lemma 3.1]. This completes the proof. \Box

Remark. It is easy to see that the proof of Lemma 3.1 in [BF] works for \mathbb{C}^N , $N \geq 2$, and so Lemma 5.1. holds for proper holomorphic embeddings $\Phi: \mathbb{C} \to \mathbb{C}^N, N \geq 2.$

Proof of the induction step, continued. We have already mentioned that for each *m*, $f_{m+1} = (\Psi_{m+1} \circ \Theta_{m+1} \circ A_m) \circ (G_{m+1} \circ g_m \circ p_{m+1}) = A_{m+1} \circ g_{m+1}$. Thus, $f_n = H_n \circ g_1 \circ (p_2 \circ \cdots \circ p_n)$ where $H_n = (\Psi_n \circ \Theta_n) \circ \cdots \circ (\Psi_2 \circ \Theta_2) \circ (G_n \circ \cdots \circ G_2)$ is a holomorphic automorphism of \mathbb{C}^2 . It follows that $f_n(K_n)$ is a compact subset of $(H_n \circ g_1)(\mathbb{C})$, a closed submanifold of \mathbb{C}^2 biholomorphically equivalent to \mathbb{C} , whose boundary $f_n(bK_n)$ is a smooth Jordan curve which is, by (ii), contained in $\mathbb{C}^2 \setminus r_n\overline{\mathbb{B}}$. By Lemma 5.1 the set $f_n(K_n) \cup r_n\overline{\mathbb{B}}$ is polynomially convex. By (ii) *f*^{*n*}(*K_n*)∪*r*^{*n*}^B contains no point of $f_n((K_{n+1} \setminus K_n) \cap S)$. Since f_n is one to one it follows that $f_n(\xi) \neq f_n(\eta)$ if $\xi, \eta \in (K_{n+1} \setminus K_n) \cap S$. By (i), $\varphi((K_{n+1} \setminus K_n) \cap S)$ does not meet $r_n\overline{\mathbb{B}}$. However, some points of $\varphi((K_{n+1}\setminus K_n)\cap S)$ may lie in $f_n(K_n)$. Since $f_n(K_n)$ is contained in $(H_n \circ g_1)(\mathbb{C})$, a closed one dimensional complex submanifold of \mathbb{C}^2 , one can change φ slightly on $K_{n+1} \cap S$ to $\tilde{\varphi}$ so that

$$
|\tilde{\varphi} - \varphi| < \theta_n \quad \text{on } K_{n+1} \cap S,
$$

so that $\tilde{\varphi}$ is one to one on $K_{n+1} \cap S$ and that $f_n(K_n) \cup r_n\overline{\mathbb{B}}$ contains no point of $\tilde{\varphi}((K_{n+1} \setminus K_n) \cap S)$. By [FGS] there is an automorphism Θ_{n+1} of \mathbb{C}^2 which fixes each point of $f_n(K_n \cap S)$, that moves each point $f_n(\zeta)$, $\zeta \in (K_{n+1} \setminus K_n) \cap S$ to $\tilde{\varphi}(\zeta)$, and that satisfies

(5.2)
$$
|\Theta_{n+1} - \text{Id}| < \theta_n \text{ on } f_n(K_n) \cup r_n \overline{\mathbb{B}}.
$$

By (iv) we have $f_n|K_n \cap S = \varphi|K_n \cap S$. Almost the same equality holds for $\Theta_{n+1} \circ f_n$ in place of f_n since $\Theta_{n+1} \circ f_n | K_{n+1} \cap S = \tilde{\varphi} | K_{n+1} \cap S$. Applying on both sides on the left an automorphism Ψ provided by Lemma 3.1 which satisfies $\Psi \circ \tilde{\varphi} = \varphi$ on $K_{n+1} \cap S$, would produce a map from Δ to \mathbb{C}^2 that would satisfy (iv) with *n* replaced by $n + 1$. However, such a map does not necessarily satisfy (ii) with $n+1$ in place of *n* or (iii) since we have no control over what Θ_{n+1} does with $f_n(\Delta \setminus K_n)$.

6. The induction step, Part 3

We perform our induction process in such a way that

(6.1')
$$
A_n(\{(z,w): |w| > T_n/2\}) \text{ misses } 2r_{n-1}\mathbb{B} \text{ if } n \text{ is odd.}
$$

(6.1")
$$
A_n(\{(z,w): |z| > S_n/2\})
$$
 misses $2r_{n-1}\mathbb{B}$ if *n* is even.

Recall that $(6.1')$ holds for $n = 1$. We are describing the induction step for odd *n* so assume that (6*.*1) holds. To handle the problem described at the end of the previous section we replace g_n in $\Theta_{n+1} \circ A_n \circ g_n = \Theta_{n+1} \circ f_n$ by $G_{n+1} \circ g_n$ where G_{n+1} is an automorphism of \mathbb{C}^2 of the form $(2.1')$. Passing to a slightly smaller U_n if necessary we may assume that $g_n(U_n)$ is bounded. We want that G_{n+1} changes g_n only slightly on K_n and on $K_{n+1} \cap S$ while it maps $g_n(U_n \setminus \text{Int}Q_{n+1})$ so far from the origin that

(6.2)
$$
(\Theta_{n+1} \circ A_{n+1}) \circ (G_{n+1} \circ g_n)(U_n \setminus \text{Int}Q_{n+1}) \subset \mathbb{C}^2 \setminus 2r_{n+1}\overline{\mathbb{B}}
$$

which, since $g_n(U_n)$ is bounded, and since $\Theta_{n+1} \circ A_{n+1}$ is an automorphism of \mathbb{C}^2 , holds if

(6.3)
$$
\left| S_{n+1} \left(\frac{w}{T_n} \right)^{M_{n+1}} \right| \ge \rho_n \quad (|w| \ge T_{n2})
$$

provided that ρ_n is sufficiently large. Choose $\tau_n > 0$ so small that

(6.4)
$$
|(\Theta_{n+1} \circ A_n)(p) - (\Theta_{n+1} \circ A_n)(q)| < \theta_n
$$
 $(q \in g_n(P_{n+1}), |p-q| < 2\tau_n)$.
We want that

(6.5)
$$
\left| S_{n+1} \left(\frac{w}{T_n} \right)^{M_{n+1}} \right| \leq \tau_n \quad (|w| \leq T_{n1})
$$

which will imply that G_{n+1} changes g_n on P_{n+1} for at most τ_n . Let

$$
S_{n+1} = \rho_n \left(\frac{T_n}{T_{n2}}\right)^{M_{n+1}}
$$

.

Notice that S_{n+1} is arbitrarily large provided that M_{n+1} is large enough. The choice of S_{n+1} implies (6.3) while (6.5) becomes equivalent to

(6.7)
$$
\rho_n \left(\frac{T_{n1}}{T_{n2}}\right)^{M_{n+1}} < \tau_n
$$

which will hold provided that M_{n+1} is large enough. Choose M_{n+1} so large that S_{n+1} becomes so large that

(6.8)
$$
(\Theta_{n+1} \circ A_n)(\{|z| > S_{n+1}/2\}) \text{ misses } (2r_n + \varepsilon_n)\overline{B}.
$$

Notice that if an automorphism $G: \mathbb{C}^2 \to \mathbb{C}^2$ satisfies $|G(z) - z| < \tau$ ($z \in \mathbb{C}$ *R* B) where $0 < \tau < R$ then $(R - \tau)$ $\overline{\mathbb{B}} \subset G(R \overline{\mathbb{B}})$. Choose a compact set $K'_n \subset \text{Int}K_n$ such that $f_n(\Delta \setminus K'_n) \subset f_n(\Delta \setminus K_n) + \theta_n \mathbb{B}$. Now, (ii) implies that $A_n(g_n(\Delta \setminus K'_n)) = f_n(\Delta \setminus K'_n)$ misses $(r_n - \theta_n)\overline{\mathbb{B}}$ and (5.2) implies that

(6.9)
$$
(\Theta_{n+1} \circ A_n \circ g_n)(\Delta \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_n - 2\theta_n)\overline{\mathbb{B}}.
$$

By (6.5), $|G_{n+1} \circ g_n - g_n| \leq \tau_n$ on P_{n+1} so by (6.4)

$$
|(\Theta_{n+1}\circ A_n\circ G_{n+1}\circ g_n)(\zeta) - (\Theta_{n+1}\circ A_n\circ g_n)(\zeta)| \leq \theta_n \quad (\zeta \in P_{n+1})
$$

which, by (6.9) gives

(6.10)
$$
(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(P_{n+1} \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_n - 3\theta_n)\overline{\mathbb{B}}.
$$

Let $\zeta \in Q_{n+1} \setminus P_{n+1}$. Since $g_n(Q_{n+1} \setminus P_{n+1}) \subset \{|w| > T_n/2\}$ and since G_{n+1} does not change the *w* coordinate we have $(G_{n+1} \circ g_n)(\zeta) \in \{ |w| > T_n/2 \}$ and so $(A_n \circ G_{n+1} \circ g_n)(\zeta) \in A_n(\{|w| > T_n/2\})$. By $(6.1') A_n(\{|w| > T_n/2\})$ misses 2 r_{n-1} B which implies that $(A_n \circ G_{n+1} \circ g_n)(\zeta) \in \mathbb{C}^2 \setminus 2r_{n-1}$ B. By (5.2) it follows that $(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(\zeta) \in \mathbb{C}^2 \setminus s\overline{\mathbb{B}}$ where $s = \min\{r_n - \theta_n, 2r_{n-1} - \theta_n\},\$ by (3.4), satisfies $s > r_{n-1} + \theta_n + \varepsilon_n$. By (6.10), (6.2) and (3.4) it follows that

(6.11)
$$
(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(U_n \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_{n-1} + \theta_n + \varepsilon_n) \overline{\mathbb{B}}.
$$

7. The induction step, Part 4

Note first that $\Theta_{n+1} \circ A_n \circ g_n | K_{n+1} \cap S = \tilde{\varphi} | K_{n+1} \cap S$. This does not necessarily hold if we replace g_n by $G_{n+1} \circ g_n$. However, since all points of $K_{n+1} \cap S$ lie in *P*_{*n*+1}, since $|G_{n+1} \circ g_n - g_n| < \tau_n$ on P_{n+1} and since $|\varphi - \tilde{\varphi}| < \theta_n$ on $K_{n+1} \cap S$ it follows by (6.4) that

(7.1)
$$
|\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n - \varphi| < 2\theta_n \text{ on } K_{n+1} \cap S.
$$

The problem now is that $(G_{n+1} \circ g_n)^{-1}(\{(z,w): |z| = S_{n+1}\})$ is not necessarily equal to $b\Delta$ so we cannot use $\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n$ as f_{n+1} even after composing with a correction automorphism provided by Lemma 3.1. However, $(G_{n+1} \circ g_n)^{-1}(\{|z| = S_{n+1}\})$ is a real analytic curve that is arbitrarily small \mathcal{C}^1 perturbation of $b\Delta$ independently of M_{n+1} if only S_{n+1} is large enough [G, Sec. 5]; in our case this means if only M_{n+1} is large enough.

Thus, provided that M_{n+1} is large enough the conformal map p_{n+1} mapping Δ to the domain $(G_{n+1} \circ g_n)^{-1}(\{|z| < S_{n+1}\})$ and satisfying $p_{n+1}(0) =$ 0, $p'_{n+1}(0) > 0$, is arbitrarily close to the identity on Δ provided that M_{n+1} is sufficiently large [P, p. 286]. Once we have chosen M_{n+1} the map p_{n+1} extends holomorphically to a neighbourhood $U_{n+1} \subset U_n$ of Δ so that the extended map p_{n+1} maps U_{n+1} biholomorphically onto $p_{n+1}(U_{n+1})$ and so that the map $g_{n+1} = G_{n+1} \circ g_n \circ p_{n+1} : U_{n+1} \to \mathbb{C}^2$ is transverse to $\{(z,w): |z| = S_{n+1}\}\$ and satisfies $g_{n+1}^{-1}(\{|z| = S_{n+1}\}) = b\Delta$ [G].

Passing to a larger M_{n+1} if necessary we may assume that p_{n+1} is so close to the identity on $\overline{\Delta}$ that

$$
(7.2) \t\t |g_n \circ p_{n+1} - g_n| < \tau_n \text{ on } \overline{\Delta}
$$

and that

(7.3)
$$
\begin{cases} K_n \subset p_{n+1}^{-1}(P_{n+1}), & K_{n+1} \cap S \subset p_{n+1}^{-1}(P_{n+1}) \\ p_{n+1}^{-1}(Q_{n+1}) \subset \text{Int} K_{n+1}, & p_{n+1}^{-1}(K'_n) \subset K_n. \end{cases}
$$

Since $|G_{n+1} \circ g_n - g_n| \leq \tau_n$ on P_{n+1} it follows that $|G_{n+1} \circ g_n \circ p_{n+1} - g_n \circ p_{n+1}| \leq$ τ_n on $p_{n+1}^{-1}(P_{n+1})$ which, by (7.2) and (7.3) implies that

$$
|G_{n+1} \circ g_n \circ p_{n+1} - g_n| < 2\tau_n \quad \text{on} \quad K_n \cup (K_{n+1} \cap S).
$$

Since $K_n \cup (K_{n+1} \cap S) \subset P_{n+1}$, (6.4) implies that

$$
|(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n \circ p_{n+1})(\zeta) - (\Theta_{n+1} \circ A_n \circ g_n)(\zeta)| < \theta_n \ (\zeta \in K_n \cup (K_{n+1} \cap S)).
$$

By (5.2), $|\Theta_{n+1} f_n(\zeta) - f_n(\zeta)| < \theta_n \ (\zeta \in K_n)$ so it follows that

$$
(7.4) \qquad \qquad |(\Theta_{n+1}\circ A_n\circ G_{n+1}\circ g_n\circ p_{n+1})(\zeta)-f_n(\zeta)|<2\theta_n \quad (\zeta\in K_n).
$$

Further, since $(\Theta_{n+1} \circ A_n \circ g_n)|K_{n+1} \cap S = \tilde{\varphi}$ and since $|\tilde{\varphi} - \varphi| < \theta_n$ on $K_{n+1} \cap S$ it follows also that

$$
(7.5) \qquad |(\Theta_{n+1}\circ A_n\circ G_{n+1}\circ g_n\circ p_{n+1})(\zeta)-\varphi(\zeta)|<3\theta_n \quad (\zeta\in K_{n+1}\cap S).
$$

The choice of *R* and (3.3) imply that there is a holomorphic automorphism Ψ_{n+1} of \mathbb{C}^2 such that

(7.6)
$$
|\Psi_{n+1} - \text{Id}| < \varepsilon_n/2^{n+1} \text{ on } R \mathbb{B}
$$

and such that

$$
(7.7) \qquad (\Psi_{n+1} \circ \Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n \circ p_{n+1})(\zeta) = \varphi(\zeta) \quad (\zeta \in K_{n+1} \cap S).
$$

Put $f_{n+1} = A_{n+1} \circ g_{n+1}$, where $A_{n+1} = \Psi_{n+1} \circ \Theta_{n+1} \circ A_n$, and $g_{n+1} = G_{n+1} \circ$ $g_n \circ p_{n+1}$. By (7.7), (iv) is satisfied with $n+1$ in place of *n*. Since $\theta_n < \varepsilon_n/2^{n+2}$ and since $f_n(K_n) + \mathbb{B} \subset R \mathbb{B}$, (7.4) and (7.6) imply that $|f_{n+1}(\zeta) - f_n(\zeta)| <$ $2\theta_n + \varepsilon_n/2^{n+1} < \varepsilon_n/2^n \ (\zeta \in K_n)$ so that (v) is satisfied.

By (7.3) , $\zeta \in \Delta \setminus \text{Int}K_{n+1}$ implies that $p_{n+1}(\zeta) \in U_n \setminus Q_{n+1}$ which, by (6.2) implies that $(\Theta_{n+1} \circ A_n \circ g_{n+1})(\zeta) \in \mathbb{C}^2 \setminus 2r_{n+1}$. By (7.6), by the fact that $R > 2r_{n+1}$ and by (3.2) it follows that $f_{n+1}(\zeta) \in \mathbb{C}^2 \setminus (2r_{n+1} - \varepsilon_n/2^{n+1})\mathbb{B} \subset$ $\mathbb{C}^2 \setminus (2r_{n+1} - r_1) \mathbb{B} \subset \mathbb{C}^2 \setminus (r_{n+1}\overline{\mathbb{B}})$. Thus (ii) holds with *n* replaced by $n+1$. By (6.11)

$$
(\Theta_{n+1} \circ A_n \circ G_{n+1} \circ g_n)(U_n \setminus K'_n) \subset \mathbb{C}^2 \setminus (r_{n-1} + \theta_n + \varepsilon_n) \overline{\mathbb{B}}.
$$

If $\zeta \in \Delta \setminus K_n$ then, by (7.3), $p_{n+1}(\zeta) \in p_{n+1}(\Delta) \setminus K'_n \subset U_n \setminus K'_n$ so

$$
(\Theta_{n+1}\circ A_n\circ g_{n+1})(\Delta\setminus K_n)\subset \mathbb{C}^2\setminus (r_{n-1}+\theta_n+\varepsilon_n)\overline{\mathbb{B}},
$$

and since $R_{n-1} + \theta_n + \varepsilon_n < R$ it follows by (7.6) that $f_{n+1}(\Delta \setminus K_n) \subset \mathbb{C}^2 \setminus r_{n-1}$ that is, (iii) is satisfied.

Finally, (6.8) implies that

$$
(\Psi_{n+1}\circ\Theta_{n+1}\circ A_n)(\{|z|>S_{n+1}/2\})\text{ misses }\Psi_{n+1}((2r_n+\varepsilon_n)\overline{\mathbb{B}}).
$$

Since $2r_n + \varepsilon_n < R$, (7.6) implies that $2r_n \mathbb{B} \subset \Psi_{n+1}((2r_n + \varepsilon_n) \mathbb{B})$ so $A_{n+1}(\{|z| >$ $S_{n+1}/2$ }) misses $2r_n\mathbb{B}$, that is, (6.1'') holds with *n* replaced by $n+1$.

This completes the proof of the induction step.

Since the map φ is proper, (vii) and the fact that (3.1) holds for every *n* imply that $r_n \to +\infty$ as $n \to \infty$. The proof of Theorem 1.1 is complete. \Box

8. Remarks

Theorem 1.1 holds with \mathbb{C}^2 replaced by \mathbb{C}^N , $N \geq 2$.

Theorem 8.1 Let $N \geq 2$. Given a discrete set $S \subset \Delta$ and a proper injection $\varphi: S \to \mathbb{C}^N$ there is a proper holomorphic embedding $f: \Delta \to \mathbb{C}^N$ that extends *ϕ*.

If $N \geq 3$ then one proves Theorem 8.1. as in the case $N = 2$ with a slight modification: Let $\iota: \mathbb{C}^2 \to \mathbb{C}^N$ be the standard embedding $\iota(\zeta_1, \zeta_2)$ $(\zeta_1, \zeta_2, 0, \dots, 0)$. In the proof we replace $f_n = A_n \circ g_n$ by $f_n = A_n \circ \iota \circ g_n$ where A_n is a holomorphic automorphism of \mathbb{C}^N and g_n , as in the proof in the case $N = 2$, is a one to one and regular holomorphic map from an open neighbourhood *U_n* of $\overline{\Delta}$ to \mathbb{C}^2 which, for even *n* is transverse to $\{(z,w): |z| = S_n\}$ and satisfies $g_n^{-1}(\{|z| = S_n\}) = b\Delta$, and for odd *n*, is transverse to $\{(z,w): |w| = T_n\}$ and satisfies $g_n^{-1}(\{|w| = T_n\}) = b\Delta$. Also, in the induction step, the maps Θ_{n+1} and Ψ_{n+1} are automorphisms of \mathbb{C}^N and G_{n+1} is an automorphism of \mathbb{C}^2 . In (6.1') and (6.1") we replace A_n by $A_n \circ \iota$.

We say that two proper holomorphic embeddedings $f_1, f_2: \Delta \to \mathbb{C}^N$ are Aut (\mathbb{C}^N) -equivalent if there is an automorphism $\Psi: \mathbb{C}^N \to \mathbb{C}^N$ such that $f_2 = \Psi \circ f_1.$

Corollary 8.2 Let $N \geq 2$. The set of Aut(\mathbb{C}^N)-equivalence classes of proper holomorphic embeddedings of Δ into \mathbb{C}^N is uncountable.

Proof. [BFo] It is known [RR, Remark 5.2] that there is an uncountable family *E* of discrete injective sequences in \mathbb{C}^N such that if $\{z_n, n \in \mathbb{N}\}, \{w_n, n \in \mathbb{N}\}\$ are distinct elements of *E* then there is no automorphism Ψ of \mathbb{C}^N such that $\Psi(z_n) = w_n$ $(n \in \mathbb{N})$. Let $\{\zeta_n\} \subset \Delta$ be an injective sequence, $\lim_{n \to \infty} |\zeta_n| = 1$, and let $\{z_n, n \in \mathbb{N}\}\$, $\{w_n, n \in \mathbb{N}\}\$ be distinct elements of *E*. By Theorem 8.1 there are proper holomorphic embeddings $f_1, f_2: \Delta \to \mathbb{C}^N$ such that $f_1(\zeta_i) =$ z_j , $f_2(\zeta_j) = w_j$ ($j \in \mathbb{N}$). Every automorphism Ψ of \mathbb{C}^N such that $f_2 = \Psi \circ f_1$ would have to satisfy $\Psi(z_n) = w_n$ ($n \in \mathbb{N}$) and there is no such Ψ . Thus, in this way, each element of *E* produces a proper holomorphic embedding of ∆ into C*^N* and the embeddings associated with distinct elements of *E* are not $Aut(\mathbb{C}^N)$ -equivalent. This completes the proof. \Box

Acknowledgements

The author is indebted to Frank Kutzschebauch for a helpful remark.

This work was supported in part by a grant from the Ministry of Science and Technology of the Republic of Slovenia. A part of work was done in January 2000 during the author's visit at Bar Ilan University, Ramat Gan, Israel which was supported by a Slovene-Israeli grant.

References

- [A] H. Alexander, *Explicit imbedding of the (punctured) disc into* \mathbb{C}^2 , Comment. Math. Helv. **52** (1977), 539–544.
- [BF] G. T. Buzzard, J. E. Fornaess, *An embedding of* ^C *into* ^C ² *with hyperbolic complement,* Math. Ann. **306** (1996), 539–546.
- [BFo] G. T. Buzzard, F. Forstnerič, *A Carleman type theorem for proper holomorphic embeddings,* Ark. Mat. **35** (1997), 157–169.
- [DK] H. Derksen, F. Kutzschebauch, *Global holomorphic linearization of actions of compact Lie groups on* \mathbb{C}^n , Contemp. Math. **222** (1999), 201–210.
- [FGR] F. Forstnerič, J. Globevnik, J.-P. Rosay, *Nonstraightenable complex lines in* \mathbb{C}^2 , Ark. Mat. **34** (1996), 97–101.
- [FGS] F. Forstnerič, J. Globevnik, B. Stensones, *Embedding holomorphic discs through discrete sets,* Math. Ann. **305** (1996), 559–569.
- [G] J. Globevnik, *On Fatou-Bieberbach domains,* Math. Z. **229** (1998), 91–106.
- [GS] J. Globevnik, B. Stensones, *Holomorphic embeddings of planar domains into* ^C ²*,* Math. Ann. **303** (1995), 579–597.
- [Na] R. Narasimhan, *Imbedding of holomorphically complete complex spaces,* Amer. J. Math. **82** (1960), 917–934.
- [P] Ch. Pommerenke, *Univalent functions*, Vandenhoeck & Ruprecht, Göttingen, 1975.
- [RR] J.-P. Rosay, W. Rudin, *Holomorphic maps from* \mathbb{C}^n to \mathbb{C}^n , Trans. Amer. Math. Soc. **310** (1988), 47–86.
- [St] J.-L. Stehle, *Plongements du disque dans* \mathbb{C}^2 , Séminaire Pierre Lelong (Analyse), Année 1970–1971, pp. 119–130. Lecture Notes in Math., Vol. 275, Springer, Berlin, 1972.

Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Ljubljana, Slovenia.

E-mail address: josip.globevnik@fmf.uni-lj.si