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INTERPOLATION BY PROPER HOLOMORPHIC
EMBEDDINGS OF THE DISC INTO C?

Josip GLOBEVNIK

Dedicated to the memory of my mother

1. The result

Let A be the open unit disc in C. A map f: A — C2 is called a proper
holomorphic embedding if it is a holomorphic immersion which is one to one and
such that the preimage of every compact set is compact. If f: A — C2? is a
proper holomorphic embedding then f(A) is a closed submanifold of C? which
is, via f, biholomorphically equivalent to A.

It is not trivial to prove that there are proper holomorphic embeddings from
A to C? [St, A, GS]. Tt is known that given a discrete set E C C? there is a
proper holomorphic embedding f: A — C? such that E C f(A) [FGS]. In the
present paper we prove a stronger result:

Theorem 1.1 Given a discrete set S C A and a proper injection ¢: S — C?
there is a proper holomorphic embedding f: A — C? that extends .

In other words, given an injective sequence {(;} C A such that |(;| — 1 and an
injective sequence {w;} C C? such that |w;| — +oo there is a proper holomor-
phic embedding f: A — C? such that f(¢;) = w; (j € N).

The proof of the Carleman approximation theorem of Buzzard and Forstneri¢
[BFo| can be adapted to prove such a result for proper holomorphic embeddings
f: C — C2. In the proof there one uses the fact that C admits particularly
simple embeddings into C? of the form (¢ — (¢,a(¢)) where a is an entire
function. There are no such embeddings for A so a different proof is necessary
in our case. In the induction step of our proof we use simultaneous composition
by automorphisms on the left and on the right, a novelty introduced by Buzzard
and Forstneric.

2. The scheme of the proof

Suppose that S C A is a discrete set and let p: S — C? be a proper injection.
With no loss of generality assume that S is infinite.

Denote by B the open unit ball in C2. We shall construct inductively a
sequence K, of compact subsets of A, such that bK,, is a smooth Jordan curve
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for each n € N and such that K,, CC K,,+1 (n € N), U22, K,, = A, an increasing
sequence 1, of positive numbers converging to +o0o, a decreasing sequence €, of
positive numbers and a sequence f, of holomorphic maps from A to C? which
are one to one and regular and such that the following hold:

(i) p((A\Kn)NS) CC2\7,B

(ii) fo(A\IntK,)C C?>\r,B

(iii) foi1(A\ K,) C C%?\r, 1B

(‘V) fn‘Kn ns = SO|Kn ns

V) | fn+1 — fu| <en/2" on K,

(vi) If h is a holomorphic map on IntK,, that satisfies |h — f,,| < €, on IntK,,

then h is one to one and regular on K,,_;
(vii) (1-1/n)A C K,

Suppose for a moment that we have done this. By (v) and (vii) f,, converges,
uniformly on compacta in A, to a holomorphic map f. By (v), |fn — f] <
Z;’;n |fi+1 — fi] < Zj’;n £;/2? < e, on K, which implies by (vi) that f is
regular and one to one on K, 1. As this holds for every n it follows that f is
regular and one to one on A . By (iv), f extends ¢. Let ¢ € K,11 \ K,. By
(V) [f51(Q) — f5(Q)] < 2;/20 (j > n+ 1) which, by (iii) implies that |£(C)] >
| fra1 (O] = 2272 [f5+1(Q) = F5(O] = ey = 307241 €5/27 2 a1 — enga
This holds for every n. Since r, increase to +o0o and since &, are decreasing it
follows that the map f is proper. Thus, f has all the required properties.

In the process we shall also construct two sequences S,,, T}, of positive numbers
such that S,,+1 = S, for even n and T,,+1 = T}, for odd n. Each map f,, will be
of the form f, = A, o g, where A, is a holomorphic automorphism of C? and
gn is a one to one and regular holomorphic map from an open neighbourhood
U, of A to C? which, for even n is transverse to {(z,w): |z| = S,} and satisfies
g t({]z] = Sn}) = bA, and for odd n, is transverse to {(z,w): |w| = T,} and
satisfies g, ! ({|w| = T,,}) = bA.

With no loss of generality assume that 0 ¢ S. To begin the induction, let
f1(¢) = (0,¢) and let ry, 0 < r; < 1/2 be such that 2r;A contains no point of
S. Put Ko = mA, K; =2r1A. Then (i), (ii) and (vii) are satisfied for n = 1
and (iv) is vacuously satisfied for n = 1. Put S; = 73 = 1 and A; = Id so
that f; = Ay o g1 where ¢1(¢) = (0,¢) and U; = C. Clearly g; is transverse to
{lw| = Ty} and g7 ' ({Jw| = T1}) = bA. Put 79 = r1/2. Then A;({jw| > T1/2})
misses 2roB. Put g = min{1,r;/2}.

Given f,, = A, o g, we shall have f,11 = A,41 0 gne1 with A7 = Upiq 0
O,,+10A,, where ©,,11 and ¥, are holomorphic automorphisms of C? and with
Gn+1 = Gpni1 O gn © Pry1 where p,11 is a conformal map from a neighbourhood
Upi1 of A to ppy1(Upt1) C C which is a slight perturbation of the identity on

A and G, is an automorphism of C? of the form

(2.1) Gri1(z,w) = (z + Sp+1 (TE)MnH, w) if n is odd,
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" z \Mntry :
(2.17) Gny1(z,w) = (z, w+ Tt (S_) ) if n is even.

3. The induction step, Part 1

Suppose for a moment that we have constructed f,, = A,0o¢n, Kn, Sn, Tn, T
and €,_1. We want to show how to obtain €,, K,+1, Spt1, Tht+1, The1 and
frs1 = Api1 0 gny1. Suppose that n is odd so that g,: U, — C? is transverse
to {(z,w): |w| = T,} and satisfies g,, ! ({|w| = T,,}) = bA. Put T}, 11 = T},. Since
gn is transverse to {|w| = T}, } and since S is discrete one can, after shrinking
U,, if necessary, choose T},1, Tn2, Tn3 such that

T,
> < T < Tho < T < T

where T3 is so close to T,, that for all T, T,3 < T < 1T, g, is transverse to
{|lw| =T} and g, ({|w| = T'}) is a smooth Jordan curve, that

Kn C g;1{|w‘ < Tn3}7

that g, 1 ({Tn3 < |w| < Tha}) contains no point of S, and that g, ({|w| < Tn1})
contains a point in .S that does not belong to K,,. Put

P =g, ({lw] < Tas}), Quir = g5 ({Jwl < Taz}), K = g, ({[w] < Tor}).

With no loss of generality assume that 7},3 has been chosen so close to T;, that
(vii) holds with n replaced by n + 1. We have

K, CC Pyy1 CC Quy1 CC K.

Clearly bK,, 11 is a smooth Jordan curve.
By (i), 7 < min{|¢(w)|: w € (A\ K,,)NS}. Thus, one can choose 1,11 > 7y,
such that
(3.1)
min{|p(w)|: w € (A\Kp4+1)NS}—1 < rpp1 < minf{|p(w)|: w € (A\K,+1)NS}.

Then (i) is satisfied with n replaced by n + 1. Choose ¢,,, 0 < &, < &,_1, such
that

(3.2) Sn < Tn - Tn—l’ 8’I’L < Tn—la

and such that (vi) holds. Since f,, is one to one and regular on A this is possible
by a lemma of Narasimhan [Na, p. 926].

Choose R, R > 2r,41, R > 2r, +&,, so large that f,(K,)+B C RB and
that ¢(K,+1 N S) C RB. We need the following lemma.

Lemma 3.1. Let R > 0 and let wi,ws,---w, € RB, w; # w; (i # j).
Given v > 0 there is a § > 0 such that whenever qi,qa,---q, € C? satisfy
lg; —w;| < 6, 1 < i < n, there is a holomorphic automorphism ¥ of C? such
that:

(i) ¥(g) =w; (1<i<n)

(i) |¥(w) —w| <~y (we RB).
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Lemma 3.1 provides a 6,,, 0 < 6,, < &,/2""2, such that

whenever 9: K,;1 NS — C? satisfies [ — | < 360, on
(3.3){ K,+1 NS there is a holomorphic automorphism ¥ of C? such that
Uo = ¢|K,y1 and such that |V —1Id| <¢e,/2""! on RB.

By (3.2) we may assume that
(3.4) Tn—30n >rp_1+en+0n, 2rp_1—0,>r,_1+ec,+ 0,

4. Proof of Lemma 3.1

Sublemma 4.1 Suppose that R > 0 and let ay,---a, € RA, o; # o (i # j).
There are n > 0 and L < oo such that whenever 1, -- (3, satisfy |5; — | <
n, 1 <4 < n, then for every j, 1 < j < n, there is a polynomial Q); such that

(1) Q;(Bi) = 055 (1 <45 <n) (it) |Q;(C)] < L (¢ € 2RA).

Proof. Choose 1 > 0 so small that a; +nA C RA (1 <i < n) and let |5; — a;| <
1 (1 <i<n). For each j, 1 <j <mn, the polynomial

Q)= 1] .

k=1,k#j Bi = Pr
satisfies (i). If || < 2R then
(3R)n—1
Q; (O] < — =
(min jx|8;5 — Brl)
Now, let v = minjx, |o; — ai|. Passing to a smaller n we may assume that
0<n<v/2 If |a; — Bi| <m, 1 <i<n,then minjx, |3; — Bx| >v—2n>0 so
Q; satisfies (ii) with L = [3R/(y — 2n)]"~!. This completes the proof. O

Proof of Lemma 3.1. Choose a coordinate system in C2? such that if w; =
(w}, w?) then w} # wjl-, w? # wjz» ifi # 4, 1 <4i,7 <n. By Sublemma 4.1
there are n > 0 and L < oo such that whenever g} satisfy |3} — w}| < n
and (3? satisfy |32 — w?| < n, 1 < i < n, then for each j, 1 < j < n,
there are polynomials Q} and Q? such that le, ([3]1) =1, Q} (BH) =0 (i # j),
Q2(B2) = 1, Q3(B3) = 0 (i # j) and |Q}| < L, [Q3| < L on 2RA. Let
|z; —w;| <n, 1 <j<n. Our map ¢ will be of the form ® =T o S where T, 5
are the automorphisms of C2

T, Q) = (& C+Qi(8), S(60) = (€+Q2(0),C)

such that
(4.1) S(RA x RA) C (2RA) x (RA),
(4.2) 1S(6,0) = (£, <7/2 ((£,¢) € (RA)?),

(4.3) T, = (&1 <v/2 ((§€) € CRA) x (RA)),
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and

(4.4) S(z}, 28 = (wh,22), T(w},z?) = (w},w?) (1<i<n).

197 197 197

By (4.1)-(4.4) the map ® satisfies (i) and (ii) in Lemma 3.1. To construct S,
put ﬁjz = zjz, 1 <j <n, and let Q?, 1 < j < n, be as above. In particular,
Q?(zf) =0j;, 1 <i,j <n. Put

n

Q2(¢) = Z(w; — 21Q3(Q).

We have

Qa(27) = > (w} —21)Q3(2]) = wj — 2]
=1

and so S(z},27) = (2} + w} — 2}, 22) = (w}, 2?). We have

Qa(Q)] < - max fu) — 23] L. (ic] < B)
which implies that
1S(€,¢) = (£, = [(Q2(),0)| < m- L+ max |w; — 2z, ([¢] <R).

1<j<n

In particular, if n > 0 is small enough then |Q2(¢)| < R, (|¢| < R), so that (4.1)
and (4.2) hold. To construct T, put ﬁ} = wjl, 1 <j <mn,and let Q}, 1<j<n,

be as above. Put
n

Q1(0) =D _(w] = 2)Q;(0).
j=1
We have Qi(wj) =w} — 25 (1 <j<n), soT(wf,z2}) = (wj,z +w] —27) =
(wilaw?)’ (1 <1< n) Again, |Q1(C)| S N-Maxi<i<n |w]2 - Zg2| L, (|<| < 2R)a
which implies that
T(&,¢) = (&1 =1(0,Q1 (&) < m- max w; — 2| - L, (|| <2R).

1<j<n

In particular, if 6 = 7 is small enough then (4.3) holds. The equality (4.4) is clear.
This completes the proof. O

Remark. Lemma 3.1 holds for CV, N > 2. The proof is an easy elaboration of
the proof above.

5. The induction step, Part 2
We need the following:

Lemma 5.1 Letr > 0 and let ®: C — C? be a proper holomorphic embedding.
Let 3 CC C be a domain bounded by a smooth Jordan curve and assume that
®(bX) C C?\ rB. Then the set (rB) U ®(X) is polynomially convex.
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Proof. Since ¥ is a Jordan domain with smooth boundary it is easy to see that
if K ¢ C\ X is a compact set, if a,b € (C\ ¥) \ K, and if p is a path in
C\ K joining a and b then there is a path p in (C\ ¥) \ K joining a and b. Let
K={¢CeC\X: |®(¢)| <r}. Since ®(b%) C C?\ rB and since |®(¢)| — +oo
as |¢| — 400, the set K is compact. Suppose for a moment that (C\ ¥) \ K is
not connected. The preceding discussion implies that {( € C: |®(¢)| > r} has a
bounded component which contradicts the maximum principle. Thus, (C\X)\ K
is connected which implies that for each ¢ € ®(C) \ (®(X) UrB) there is a path
n: [0,1) — &(C) \ (®(X) UrB) such that n(0) = ¢ and |n(t)| — +oo as t — 1.
The statement of the lemma now follows from [BF, Lemma 3.1]. This completes
the proof. O

Remark. It is easy to see that the proof of Lemma 3.1 in [BF] works for
CN, N > 2, and so Lemma 5.1. holds for proper holomorphic embeddings
o: C—-CN, N>2.

Proof of the induction step, continued. We have already mentioned that for each
M, frt1 = (Yimi1 0 Omy1 0 Ap) 0 (Grag1 © Gm © Pmt1) = A1 © gmy1. Thus,
fn = Hn°91©(P2°' : 'opn) where Hn = (\Ijno@n)o : 'O(Q2O@2)O(Gno' ' ‘OG2) is
a holomorphic automorphism of C2. It follows that f,,(K,) is a compact subset
of (H, o g1)(C), a closed submanifold of C? biholomorphically equivalent to C,
whose boundary f,, (bK,) is a smooth Jordan curve which is, by (ii), contained
in C?\7,B. By Lemma 5.1 the set f,(K,)Ur,B is polynomially convex. By (ii)
fn(Ky,)Ur,B contains no point of f,,((K,11\K,)NS). Since f, is one to one it
follows that f,,(§) # fn(n) i &0 € (Knt1 \ Kn)NS. By (i), p((Knt1 \ Kn) N S)
does not meet r,B. However, some points of ¢o((K,+1 \ K,) N S) may lie in
fn(K,). Since f,(K,,) is contained in (H, o g1)(C), a closed one dimensional
complex submanifold of C?, one can change ¢ slightly on K, ;1 NS to ¢ so that

| —¢| <6, on K,11NS,

so that ¢ is one to one on K, 11 NS and that f,(K,)Ur,B contains no point of
P((Knt1\ Kn)NS). By [FGS] there is an automorphism ©,,11 of C? which fixes
each point of f, (K, NS), that moves each point f,(¢), ¢ € (Knt+1 \ Kn) NS to
&(¢), and that satisfies

(5.2) |©,41 —1Id| < 6,, on f,(K,)Ur,B.

By (iv) we have f,|K, NS = ¢|K, NS. Almost the same equality holds for
O,41 © frn in place of f, since O,,11 0 fr|Kpt1 NS = @|K,,11 NS. Applying on
both sides on the left an automorphism ¥ provided by Lemma 3.1 which satisfies
Vop=¢on K, NS, would produce a map from A to C? that would satisfy
(iv) with n replaced by n + 1. However, such a map does not necessarily satisfy
(ii) with n + 1 in place of n or (iii) since we have no control over what ©,,41
does with f,(A\ K,,).
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6. The induction step, Part 3

We perform our induction process in such a way that

(6.1 An({(z,w): |w| > T,/2}) misses 2r,_1B if n is odd.
and
(6.17) A ({(z,w): |z| > S,/2}) misses 2r,_1B if n is even.

Recall that (6.1") holds for n = 1. We are describing the induction step for odd
n so assume that (6.1”) holds. To handle the problem described at the end of the
previous section we replace g, in ©,1104,0¢9, = O,110 f, by Gn110g, where
G11 is an automorphism of C? of the form (2.1’). Passing to a slightly smaller
U, if necessary we may assume that g, (U,) is bounded. We want that G,,4+1
changes g, only slightly on K,, and on K,,11 NS while it maps g, (U, \ IntQ,+1)
so far from the origin that

(6.2) (On+10 Ant1) 0 (Grg1 0 90) (Un \ IntQns1) € C*\ 21 B

which, since g, (U, ) is bounded, and since 0,41 o A,,+1 is an automorphism of

C?, holds if
My g1
w
Snt1 <T_n>

provided that p,, is sufficiently large. Choose 7,, > 0 so small that
(6.4) |(Ont1045)(p) — (On+10A) (@) < On (¢ € gn(Prt1)s |p— gl <270).

We want that
Mn+1
w
Sn+1 <T_n>

which will imply that G,,+1 changes g,, on P,11 for at most 7,,. Let

Tn My 41
Sn+1 = Pn T—2 .
n

Notice that S,11 is arbitrarily large provided that M, is large enough. The
choice of Sj,+1 implies (6.3) while (6.5) becomes equivalent to

T My 1
6.7 n Znl < Tp
(6.7) p (Tm)

which will hold provided that M, 1 is large enough. Choose M,, 1 so large that
Sp+1 becomes so large that

(6.8) (O©n110A)({|2] > Sni1/2}) misses (2r, +¢e,)B.

Notice that if an automorphism G: C? — C? satisfies |G(2) — z| < 7 (2 €
RB) where 0 < 7 < R then (R — 7)B C G(RB). Choose a compact set

(6.3) Zpn (Jw] = Th2)

(6.5) <7 (lwl<Twu)
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K] C IntK, such that f,(A\ K]) C fo(A\ K,,) + 0,B. Now, (ii) implies that
An(gn(A\ K)) = fn(A\ K) misses (r, — 0,,)B and (5.2) implies that

(6.9) (©pi10A4,00,)(A\K) C C?\ (r, — 26,)B.

By (6.5), |Gnt1 0 gn — gn| < 7n on P,iq so by (6.4)
[(On410An0Gny109n)(C) = (Ony10An0gn)(Q)] < bn (€€ Prya)

which, by (6.9) gives

(6.10) (Ony10A,0G04100)(Payi \K)) C C2\ (1, — 36,,)B.

Let ¢ € Qny1 \ Pot1. Since gn(Qnt1 \ Poy1) C {|lw| > T,/2} and since Gp41
does not change the w coordinate we have (G,11 0 g,)(¢) € {|w| > T,,/2} and
50 (Ap 0 Gpi109n)(C) € Ap({Jw| > T,,/2}). By (6.1") A, ({|w| > T},/2}) misses
2r,,_1B which implies that (A, 0G,4109,)(¢) € C*\2r,_1B. By (5.2) it follows
that (0,41 04,0G,1109,)(¢) € C?\ sB where s =min{r, —0,,2r,_1 —0,},
by (3.4), satisfies s > r,_1 + 6, +,,. By (6.10), (6.2) and (3.4) it follows that

(6.11) (Ony10A,0G1109,) (U \K.) CC*\ (rn_1 40, +e,)B.

7. The induction step, Part 4

Note first that ©,,4104,,09,|K,,+1NS = @|K,,+1NS. This does not necessarily
hold if we replace g,, by G,+1 0 g,. However, since all points of K, .1 N S lie in
Py y1, since |Gpy1 0 gn — gn| < 7 on P41 and since |p — @| < 0, on K11 NS
it follows by (6.4) that

(7.1) |©n4+10A4,0G1109, — | <20, on K,11NS.

The problem now is that (G,y1 0 gn) '({(2,w): |z| = Sn41}) is not neces-
sarily equal to bA so we cannot use ©,1 0 A, 0 G410 gy as fry1 even after
composing with a correction automorphism provided by Lemma 3.1. However,
(Gna109n) Y ({|z| = Sni1}) is a real analytic curve that is arbitrarily small C!
perturbation of bA independently of M, if only S, 11 is large enough [G, Sec.
5]; in our case this means if only M, ;; is large enough.

Thus, provided that M, 1 is large enough the conformal map p,i1 map-
ping A to the domain (G110 g,) 1 ({|z] < Sni1}) and satisfying p,1(0) =
0, p,41(0) > 0, is arbitrarily close to the identity on A provided that A,
is sufficiently large [P, p. 286]. Once we have chosen M,, 11 the map p,4+1 ex-
tends holomorphically to a neighbourhood U,, 1 C U,, of A so that the extended
map pnp4+1 maps U,11 biholomorphically onto p,,+1(U,+1) and so that the map
Gni1 = Gni10Gnopni1: Unp1 — C? is transverse to {(z,w): |z| = S,41} and
satisfies g, 11 ({|2] = Sn41}) = bA [G].

Passing to a larger M,,; if necessary we may assume that p, 41 is so close to
the identity on A that

(7.2) |gn © Pnt1 — gn| < Tn on A
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and that
(7.3) {Kn1 C Ppi1(Pat), fin1+1 NS Cppiy(Pogr)
Py (@ny1) CItKy 1, p,(K)) C K.
Since |Gpt+109n —gn| < T on Py, it follows that |G410Gn0Pnt1— gnOPnt1| <
Tp ON p;il(PnH) which, by (7.2) and (7.3) implies that
|Grt1 0 gn © Pyt — gn| <27, on K, U (Kpp1 NS).
Since K, U (K,,+1 NS) C P41, (6.4) implies that

[(©n+1040,0G1n+1091Pn+1)(C) = (Ont10A4,09,)(C)] < On (¢ € KnU(Kp11N9)).
By (5.2), [On+1fn() — fn(Q)] <0, (¢ € K,) so it follows that

(7.4) [(On+41 0 Ap 0 Gyt 0 gn © put1)(C) — fulQ)] <20, (¢ € Kn).

Further, since (©,,4+10A4,,0¢,)|K,+1NS = ¢ and since |¢p—¢| < 6, on K,, 11 NS
it follows also that

(75)  |(Ong10 A4, 0Gni10gn0pni1)(Q) — ()] <36, (C€ Knp1NS).

The choice of R and (3.3) imply that there is a holomorphic automorphism ¥, ;1
of C? such that

(7.6) U, 1 —Id| <e,/2"" on RB
and such that

(77) (\Ijn—}—l © @n+1 © An © Gn+1 ©gn Opn—i—l)(C) - SO(C) (C € Kn+1 N S)

Put fn+1 = An+1 O gn+1, where An+l = \Iln—i-l © Gn—l—l © Ana and gn+1 = Gn+1 ©
Gn ©Pn+1- By (7.7), (iv) is satisfied with n+ 1 in place of n. Since 6,, < &, /2" 2
and since f,(K,)+ B C RB, (7.4) and (7.6) imply that |f,11({) — fn(Q)] <
20,, + e, /2" < g,/2" (¢ € K,,) so that (v) is satisfied.

By (7.3), ¢ € A\ IntK,, 11 implies that p,11(¢) € Uy, \ Qn+1 which, by (6.2)
implies that (0,41 0 A, 0 gnt1)(¢) € C*\ 2r,11B. By (7.6), by the fact that
R > 2r,,1 and by (3.2) it follows that f,,11(¢) € C?\ (21,41 — &,/2" 1B C
C2\ (241 —71)B C C2\ (r,,4.1B). Thus (ii) holds with n replaced by n + 1.

By (6.11)

(Oni10A,0G1100.) Uy \KL) CC?*\ (r_1 + 0, +,)B.
If < €A \ K, then7 by (73)7 pn-l—l(c:) € pn—l—l(A) \ Kvlz C U, \ K;L 80
(Oni10A4,00011)(A\K,) CC?\ (rp_1 + 6, +,)B,

and since R,,_1 +0,, +¢, < R it follows by (7.6) that f,11(A\K,) C C?\r,_1B,
that is, (iii) is satisfied.
Finally, (6.8) implies that
(Vi1 005110 A4,)({]2] > Sns1/2}) misses ¥, 11((27, +2,)B).

Since 21, +¢, < R, (7.6) implies that 2r,B C ¥,,11((2r, +¢,)B) so A,+1({|z] >
Sp+1/2}) misses 2r, B, that is, (6.1”) holds with n replaced by n + 1.
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This completes the proof of the induction step.
Since the map ¢ is proper, (vii) and the fact that (3.1) holds for every n imply
that r,, — 400 as n — oo. The proof of Theorem 1.1 is complete. O

8. Remarks
Theorem 1.1 holds with C? replaced by CN, N > 2.

Theorem 8.1 Let N > 2. Given a discrete set S C A and a proper injection
p: S — CV there is a proper holomorphic embedding f: A — CN that extends

@Y.

If N > 3 then one proves Theorem 8.1. as in the case N = 2 with a
slight modification: Let :: C? — C¥ be the standard embedding ¢((1,(2) =
(¢1,¢2,0,-+-,0). In the proof we replace f,, = A, 0g, by fn, = A, otog, where
A, is a holomorphic automorphism of C and g,, as in the proof in the case
N = 2, is a one to one and regular holomorphic map from an open neighbourhood
U, of A to C? which, for even n is transverse to {(z,w): |z| = S, } and satisfies
g ({]z] = Sp}) = bA, and for odd n, is transverse to {(z,w): |w| = T,,} and
satisfies g, ! ({Jw| = T,,}) = bA. Also, in the induction step, the maps ©,,11 and
W, 1 are automorphisms of CV and G, 41 is an automorphism of C2. In (6.1')
and (6.1") we replace A,, by A, o .

We say that two proper holomorphic embeddedings fi, fa: A — CV are
Aut(CN)-equivalent if there is an automorphism W: CN¥ — CV such that

Ja=Vo f1.

Corollary 8.2 Let N > 2. The set of Aut(CY)-equivalence classes of proper
holomorphic embeddedings of A into CN is uncountable.

Proof. [BFo] It is known [RR, Remark 5.2] that there is an uncountable family
E of discrete injective sequences in CV such that if {z,,, n € N}, {w,, n € N}
are distinct elements of E then there is no automorphism ¥ of CV such that
U(z,) =w, (ne€N). Let {¢,} C A be an injective sequence, lim,, . |(,| = 1,
and let {z,, n € N}, {w,, n € N} be distinct elements of E. By Theorem 8.1
there are proper holomorphic embeddings f1, fo: A — C¥ such that f1(¢) =
zj, f2(¢;) = wj (j € N). Every automorphism ¥ of CV such that fo = Wo f;
would have to satisfy ¥(z,) = w, (n € N) and there is no such ¥. Thus,
in this way, each element of E produces a proper holomorphic embedding of
A into CV and the embeddings associated with distinct elements of E are not
Aut(CN)-equivalent. This completes the proof. O
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