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UNIVERSAL MATRICES AND STRONGLY UNBOUNDED
FUNCTIONS

Piotr Koszmider

Abstract. Fix an uncountable cardinal λ. A symmetric matrix M = (mαβ)α,β<λ

whose entries are countable ordinals is called strongly universal if for every pos-
itive integer n, for every n × n matrix (bij)i,j<n and for every uncountable set
A = {a : a ∈ A} ⊆ [λ]n of disjoint n-tuples a = {a0, ..., an−1}< there are a, a′ ∈ A
such that bij = maia′

j
for 0 ≤ i, j < n. We go beyond the recent dramatic dis-

coveries for λ = ω1, ω2 and address the question of the possibility of the existence
of a strongly universal matrix for λ > ω2. Due to the undecidibility of some
weak versions of the Ramsey property for λ ≥ ω2 the positive answer can be at
most consistent, but we show that some natural methods of forcing cannot yield
that answer for λ > ω2. We use our method of “forcing with side conditions
in semimorasses” to construct generically λ by λ strongly universal matrices for
any cardinal λ. The results are proved in more generality, related concepts are
investigated, some questions are stated and some application are given.

1. Introduction

1.1. General background. If λ is an uncountable cardinal, by a restriction
to the Ramsey property we will mean any partition (Pi)i∈κ of [λ]2 such that
there is no [X]2 ⊆ Pi of full size λ for any i ∈ κ or a similar partition.1 It has
been noted by Sierpiński in his paper [Si] of 1933 that there do exist restrictions
to the Ramsey property even for λ equal to the first uncountable cardinal and
κ = 2.

From this time on, it has been more and more clear that restrictions to the
Ramsey property on some uncountable cardinal can be quite a useful tool in
constructions of various mathematical structures. Recently new stronger results
were obtained. They originated in a spectacular new partition of [ω1]2 con-
structed by Todorcevic in his paper [T2] of 1987. In this partition, for every
uncountable X ⊆ ω1, the set [X]2 meets all parts Pi for i < ω1. This was
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followed by various readings of his proof (see [V3], [S2], [BSp]) which often in-
cluded stregthenings needed for particular applications which later turned out
to hold for the original partition (see [Be] and [T5]). These applications vary
from p-groups2 or Banach spaces 3 to constructions in quadratic vector spaces4

Aiming at strong restrictions to the Ramsey property above ω1 carries new
dangers. There are two weak versions of the Ramsey property which may con-
sistently hold for ω2, they are the Continuum Hypothesis (denoted CH in the
sequel) in the disguise of the Erdös-Rado theorem 5 and the Chang’s Conjecture
6(denoted CC in the sequel).

Thus the situation for ω2 is more complex. In many consistency results restric-
tions to the Ramsey property on ω2 obtained assuming some (strong) negations
of CC allow to construct forcing notions which add reals (hence the negation of
CH) and provide the generic constructions of the required structures.

Such are, for example, the constructions of a peculiar compact scattered space
of [BS], a coloring of ω2×ω2 nonconstant on the product of any two infinite sets
of [T3], a set mapping on ω2 with no infinite free set of [Kj], a generalization
of Shelah-Steprans Banach space result from [Ksz4], an increasing chain (aξ :
ξ < ω2) in ℘(ω1)/Fin such that aξ − aη is uncountable for η < ξ of [Ksz2], a
separation of any two disjoint closed sets in some topological spaces which gives
the normality of these spaces of [EGKTT] and the Kurepa tree of [Ve].

On the other hand, Todorcevic (see [T4]) keeps developing canonical restric-
tions to the Ramsey property for ω2 which are weaker than the above-mentioned
but exist without any special set-theoretic assumptions. This includes such re-
sults as the existence of a partition of triples (Pi)i∈N such that the triples of any
uncountable subset of ω2 hit all the colours. However, these results of Todorcevic
haven’t found yet their applications outside combinatorics.

Further lies the land of cardinals beyond ω2. If we want to talk about restric-
tions to the Ramsey property relevant to the constructions at the level ω1 or
ω2, not just shifting all the involved cardinals some levels up, we note that most
known negations of CC needed for the generic constructions of sizes ω2 mentioned
in the paragraph above such as a function with the ∆-property, (ω1, 1)-morass,
ρ-function do not generalize naturally above ω2

7. The main result of this paper
is the consistency of the possibility of generalizing to any cardinal λ another

2(Shelah, Steprans [SS2]) There is an uncountable extraspecial p-group (for any prime p)
with no uncountable abelian subgroup.

3(Shelah, Steprans [SS1]) There is a nonseparable Banach space where every operator is a
scalar multiple of the identity plus a separable range operator.

4(Baumgartner, Spinas [BSp]) There is an uncountably dimensional full-angled quadratic
vector space (V, Ψ), in particular, it has no uncountable biorthogonal system of vectors.

5The Erdös-Rado theorem applies to λ > 2ω and implies that given partition (Pi)i<ω of
[λ]2 there is an uncountable X ⊆ λ such that [X]2 ⊆ Pi for some i < ω.

6Chang’s Conjecture (see e.g. [Ka]) in particular implies that for every partition (Pi)i<ω1

of [ω2]2 there is an uncountable set X ⊆ ω2 such that [X]2 ⊆
⋃

i<δ Pi for some countable

ordinal δ.
7There exist also some highly profound principles called higher-gap morasses, however they

are consistent with GCH and due to their level of complexity they are rarely used (see [D]).
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statement equivalent to the negation of CC for λ = ω2. This statement affirms
the existence of certain functions f : [λ]2 → ω1. We will also see that a new
forcing method is needed to obtain these results as well as new combinatorial
phenomena occur at this higher level. A few new simple applications are also
given.

1.2. Notation. We follow the texts [K] and [B] and established notational cus-
toms, for example, if A and B are sets of ordinals, then A < B means that α < β
for all α ∈ A and β ∈ B; f |X denotes the restriction of a function f to a set X
and f ′′X denotes the image of X under f ; ordtp(A) denotes the order type of
the set of ordinals A. For an ordinal ν the notation {ai : i < ν}< means that ai

are ordinals and ai < aj for i < j < ν.

1.3. Definitions and statements of the results.

Definition 1. Fix an uncountable cardinal λ and a regular cardinal κ < λ. A
symmetric matrix M = (mij)i,j<λ whose entries are the ordinals less than κ+

is called a λ by λ

1) κ+-strongly universal,
2) diagonally κ+-strongly universal,
3) κ+-strongly unbounded,
4) diagonally κ+-strongly unbounded,

if and only if for every ν < κ and for every ν × ν matrix (bij)i,j<ν with entries
from κ+, for every δ ∈ κ+ and for every set A = {a : a ∈ A} ⊆ [λ]ν of cardinality
κ+ of disjoint ν-tuples a = {ai : i < ν}< there are distinct a, a′ ∈ A such that
for all i, j < ν the following hold respectively:

1) bij = maia′
j ,

2) bii = maia′
i ,

3) δ < maia′
j ,

4) δ < maia′
i .

Besides the general statement of our results we will work only with the case
κ = ω in which we drop the κ+ = ω1 in the definitions. Most of the comments
have obvious generalizations to the general κ case. One can also multiply the
definitions of the related properties, e.g., one can consider matrices of matrices
etc. There is a considerable group of such properties which hold for our generic
construction of section 3, and which can be extracted from the forcing proof.

Note that the behaviour of the matrices M defined in Definition 1. on the
diagonal is irrelevant. One should also note that symmetric matrices are just
colorings of pairs c : [λ]2 → κ+. Thus, we are really interested in obtaining some
values (depending on cases 1–4 of Definition 1) on c′′[aξ⊗aη] for some ξ < η < κ+

and any family of disjoint ν-tuples aξ where aξ ⊗aη = {{α, β} : α ∈ aξ, β ∈ aη}.
In order to agree with the existing terminology, the colorings c : [λ]2 → κ+

which give (diagonally) κ+-strongly unbounded λ × λ matrices will be called
(diagonally) κ+-strongly unbounded functions on λ. If a property of a matrix,
from Definition 1. holds only for ν = 1, we drop the word “strongly”, e.g. we



552 PIOTR KOSZMIDER

will talk about of a function which is universal or unbounded. In the case of the
unbounded property this terminology agrees with the one of [T5], section 14,
but disagrees with the terminology of [EGKTT] section 5.

The case λ = ω1 is nowadays well investigated. Strongly unbounded functions
on ω1 are trivial i.e., max(i, j) serves. A breakthrough was obtained in [T2] where
Todorcevic constructed first ω1×ω1 universal matrix. Actually, as known today,
this matrix is ω1 × ω1 diagonally strongly universal (see [Be], [T5]; however the
property was introduced in [S2] for a coloring motivated by [T2]). As noted in
[SS2] there is no ZFC ω1 × ω1 strongly universal matrix: arbitrary behaviour
of the entries of the matrix on uncountable collections for n-tuples would give
the c.c.c. of a forcing which would add an uncountable subcollection with fixed
behaviour; in particular MA+¬CH implies that there is no such matrix. On the
other hand the CH or forcing with finite conditions gives a strongly universal
matrix.

For λ = ω2, κ = ω, to get even the weakest objects of our consideration we
need to assume the negation of the Chang’s Conjecture (CC) (see [Ka]). Actually
¬CC is equivalent to the existence of a strongly unbounded function on ω2 and to
the existence of an unbounded function on ω2 (see [T3], [T5]). To get any matrix
with some universal property we need to assume the negation of the continuum
hypothesis (CH) (Use the Erdös-Rado theorem for some partition of ω1 colors
into ω disjoint groups). As we note in general in section 2, the existence of a
κ+-strongly unbounded function on λ implies the existence of a κ+-c.c. forcing
which adds a λ by λ κ+-strongly universal matrix. However we do not know the
answer to the following:

Question 2. Is ¬CC+¬CH equivalent to the existence of (diagonally, strongly)
universal matrix on ω2? Equivalently (by [T3], see [T5] section 14.), does ¬CH
and the existence of a strongly unbounded function on ω2 imply the existence of
(diagonally, strongly) universal matrix on ω2?

If we skip the word “diagonal” but keep the word “strongly” then as in the case
of λ = ω1, for example MA+¬CH implies the nonexistence of such a function.

The subject of this paper is the case of λ > ω2 and its comparison with the
previous cases. Our main positive result which is a consequence of Theorem 33,
is the following:

Theorem 3. Let κ be a regular cardinal and λ a cardinal such that κ+++ ≤ λ.
It is consistent that there is a λ by λ κ+-strongly universal matrix and so it is
consistent that there is κ+-strongly unbounded function on λ.

However we obtain a series of results which show a very different behaviour
already of unbounded functions on λ for λ > ω2 compared to the case of λ = ω2.
We just mention the case κ = ω in the following summary, but similar results
hold for other values of κ.

Theorem 4. Suppose λ > ω2.
a) If there is a strongly unbounded function on λ, then λ ≥ 2ω.
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b) Suppose CH. There is no iteration of a σ-closed forcing followed by a c.c.c.
forcing which adds a strongly unbounded function on λ.

c) It is consistent that there is an unbounded function on λ but there is no
strongly unbounded function on λ.

d) It is consistent that the model theoretic transfer principle (λ, ω1) → (ω1, ω)
is false but there is no strongly unbounded function on λ.

Proof.
(a) is a special case of Theorem 14.
(b) follows from (a) as a σ-closed forcing preserves CH and a c.c.c. forcing

cannot add a strongly unbounded function on λ (every function into ω1 in the
extension is bounded by one in the ground model).

To prove (c), following [R], if T is a Kurepa tree with λ-many branches num-
bered as {bα : α < λ}, then f(α, β) = min{ξ < ω1 : bα(ξ) 
= bβ(ξ)} has the
property that the image of all pairs of any uncountable set is uncountable (this
function is also diagonally unbounded). It is well-known that the existence of
such trees is consistent with CH, thus (a) implies (c).

To prove (d), note as in (c) that it is consistent that there is a Kurepa tree
with λ-many branches (thus (λ, ω1) → (ω1, ω) fails) but there is no strongly
unbounded function on λ.

This should be contrasted with the fact that for λ = ω2 all of the above
conditions are false. The standard unbounded functions like ρ or the morass
coloring (see [M]) are compatible with CH. They also can be added over any
model of CH by a σ-closed forcing as morasses or the square can be added by
such forcings. Finally the conditions from (c), (d) are equivalent to the existence
of a strongly unbounded function on ω2 (see [T5] section 14).

The condition (b) also shows that we cannot hope for adding a strongly un-
bounded functions on larger cardinals, the usual way i.e., by an iteration of the
type mentioned in this theorem. Our generic construction uses the method of
forcing with side conditions in semimorasses. A similar method of forcing with
side conditions in morasses has been successfully introduced in [Ksz3] to solve
a problem of A. Hajnal, the situation where also an iteration σ-closed forcing
followed by a c.c.c. forcing cannot be used. Both of these methods can be con-
sidered as versions of Todorcevic’s method of forcing with matrices of models as
side-conditions (see [T1]).

1.4. Towards applications outside combinatorics. The first place to look
for applications of our results outside combinatorics is to look at generalizations
of already existing results i.e., [BS], [BSp], [EGKTT], [Kj], [Ksz2], [Ksz3], [Ksz4],
[SSp], [SS1], [SS2], [T3], [Ve], [Z]. We found two immediate applications yielding
new consistency results.
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Theorem 5. It is consistent for every cardinal λ that the square of the sequen-
tial fan with λ-many spines times ω1 with the usual order topology is a normal
topological space. 8

Proof. Immediate applications of [EGKTT] 5.2. and Theorem 3 and Fact 12
which can be used to obtain a model with an unbounded function on λ that
satisfies MAλ.

Theorem 6. Suppose that λ ≥ κ++ and κ is a regular cardinal. It is consistent
that there is is a full-angled9 bilinear space of dimension λ over any field of
cardinality κ

Proof. Let {kα : α < κ} be an enumeration of a field K of cardinality κ. Define
the bilinear form to be ψ(eα, eβ) = kf(α,β) where f is a λ by λ κ+-strongly
universal matrix and {eα : α < λ} a basis of the vector space V . One easily
proves that ψ is full-angled.

We also note that the unbounded function may be used as an elegant axiom-
atization which implies known results. Below, using the existence of unbounded
functions we conclude the result of [Z].

Theorem 7. Assume MAλ and the existence of a strongly unbounded function
on λ, then there is a family of functions {fα : α < λ} ⊆ ωω1 which is almost
disjoint i.e., {ξ ∈ ω1 : fα(ξ) = fβ(ξ)} is finite for every distinct α, β ∈ λ.

Proof. Let f : [λ]2 → ω1 be a strongly unbounded function on λ. Let P be
forcing consisting of conditions of the form p = (ap, bp, {fα

p : α ∈ ap}) where:

1) ap ∈ [λ]<ω, bp ∈ [ω1]<ω, fα
p : bp → ω,

2) fα(ξ) 
= fβ(ξ) for ξ > f(α, β). We define p ≤ q if and only if
3) ap ⊇ aq, bp ⊇ bq and fα

p |bq = fα
q for α ∈ aq,

4) whenever α, β ∈ aq and ξ ∈ bp − bq, then fα
p (ξ) 
= fβ

p (ξ).
Simple density arguments show that it is enough to prove that P satisfies the
c.c.c. For this we choose an uncountable sequence (pξ : ξ < ω1) of conditions
of P . We may w.l.o.g. assume that apξ

’s form a ∆-system with root ∆ and
that bpξ

’s form a “head-tail-tail” ∆-system with root Γ and that the conditions
are isomorphic and agree on ∆ × Γ. Let p, q be any two conditions like above
which moreover satisfy f(α, β) > Γ for any α ∈ ap − aq and β ∈ aq − ap and

8This result is related to the question whether Lašnev spaces (images of metric spaces under
closed mappings) have normal Σ-products. It was proved in [EGKTT] that this generalization
of the theorem of Gulko and Rudin about normality of Σ-products of metric spaces is consis-
tently false. Actually the consistent non-normality of S(ω2)2 × ω1 was used for this purpose.
The search for ZFC counterexamples naturally faced spaces of the form S(λ)2 × ω1 and the
above result is a part of it. On the other hand it is open weather S(2ω1 )2 ×ω1 is non-normal,
and so this space could be a ZFC counterexample.

9A bilinear space i.e. a vector space with a symmetric bilinear form (V, Ψ) is said to be
full-angled if it assumes all values (from the field) on any set of vectors (see [BSp], §3, we are
generalizing the definition to fit our generalization) of cardinality κ+
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f ′′[∆]2 ∩ (bq − Γ ∪ bp − Γ) = ∅. This can be accomplished by the fact that f is
strongly unbounded on λ.

Define an amalgamation r of p and q as r = (ap ∪ aq, bp ∪ bq, {fα
r : α ∈ ar})

where
• fα

r = fα
p ∪ hα for α ∈ ap − aq,

• fα
r = fα

q ∪ gα for α ∈ aq − ap,
• fα

r = fα
p ∪ fα

q for α ∈ ap ∩ aq.
Note that hα’s and gα’s can be easily chosen (just take all distinct and new

values) so that 2) and 4) are satisfied if {α, β} ∈ [ap]2 ∪ [aq]2 − [∆]2 and 2) is
satisfied if {α, β} ∈ [ap −∆]2 ⊗ [aq −∆]2 and ξ 
∈ Γ. 2) for {α, β} ∈ [ap −∆]2 ⊗
[aq − ∆]2 and ξ ∈ Γ does not need to be checked by the assumption about p
and q which follows from the unboundedness of f . So we are left with the case
α, β ∈ ∆ to be checked. Now 2) is trivial by 2) for p and q and 4) follows from
2) for p and q and the the assumption f ′′[∆]2 ∩ (bq − Γ ∪ bp − Γ) = ∅.

Many other constructions of the above listed papers apparently depend on
properties of colorings which cannot be generalized above ω2. Consider the
following weakening of the ∆-property of [BS] quite often sufficient to obtain
the applications.

Definition 8. F : [ω2]2 → [ω2]≤ω is said to have the weak ∆-property if and
only if whenever (aξ : ξ < ω1) is a family finite subsets of ω2, then there are
distinct ξ, η ∈ ω2 such that

aξ ∩ aη ∩ min(α, β) ⊆ f(α, β)

for all α ∈ aξ − aη and β ∈ aη − aξ.

It is implicitly proved in [T3] and [T5] that the existence of a function with the
weak ∆-property is equivalent to the existence a strongly unbounded function
on ω2. It is also easy to see that there cannot be any function with the weak
∆-property on cardinals above ω2.

Finally, we note that the strongly unbounded functions alone apparently do
not advance the matter of most prominent problems in the area, the generaliza-
tion of the result from [BS], i.e., a generic construction of a superatomic Boolean
algebra of hight ω3 and width ω, and the generalization of the result from [T3],
i.e., a generic construction of a coloring c : ω3 ×ω3 → ω nonconstant on product
of any two infinite sets.

2. The universal and the unboundedness properties

2.1. The unboundedness property and c.c.c. forcings. In this section we
work with κ = ω, but all results have natural generalizations to higher cardinals.

Definition 9. A strongly unbounded function f : [λ]2 → ω1 is called c.c.c.
indestructible on λ if and only if it remains strongly unbounded in every generic
extension obtained by a c.c.c. forcing.
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Fact 10. f : [λ]2 → ω1 is c.c.c. indestructible strongly unbounded if for every
uncountable pairwise disjoint family {aξ : ξ < ω1} of finite subsets of λ and every
countable ordinal δ there is an uncountable A ⊆ ω1 such that f ′′[aξ ⊗aη] > δ for
every ξ, η ∈ A.

Proof. Suppose f satisfies the property from the fact and let P be a c.c.c. forcing
notion. Suppose that f is not strongly unbounded in V P . It must be witnessed
by a countable ordinal δ and an uncountable pairwise disjoint family {aξ : ξ <
ω1} of finite subsets of λ. Let p ∈ P decide δ and let pξ be a condition of P
below p which decides aξ. Let A be as in the property stated in the fact. Then
{pξ : ξ ∈ A} must form an antichain which contradicts the c.c.c. of P .

It is proved in [T5] corollary 14.7, that if there is a strongly unbounded
function f : [ω2]2 → ω1, then there is one which satisfies the property from the
fact, in particular one that is c.c.c. indestructible. We do not know if the same
is true for λ > ω2. Note that two well-known unbounded functions on ω2, ρ ( see
[Be]) and the morass coloring (first investigated in [M], see also [EGKTT]) are
both subadditive (see Section 14 of [T5]) and hence they are c.c.c. indestructible.
Our generic constructions of section 3.3. provide apparently first examples of
strongly unbounded functions which are not c.c.c. indestructible (see remark 34).
It is not difficult to make a strongly unbounded function a c.c.c. indestructible
one as seen in the following results.

Lemma 11. Suppose A is a family of disjoint finite subsets of λ. Suppose f :
[λ]2 → ω1 is strongly unbounded. Suppose δ < ω1. Let Q(A, δ) be the forcing
consisting of finite subcollections A of A such that for every distinct a, b ∈ A we
have f ′′[a ⊗ b] > δ. Then Q satisfies the c.c.c. and Q ‖− f̌ is unbounded.

Proof. Let {Aξ : ξ < ω1} be an uncountable sequence of elements of Q. For
every ξ < ω1 define aξ =

⋃
Aξ. aξ’s are finite as Aξ’s were finite families of

finite sets. We may w.l.o.g. assume that aξ’s form a ∆-system with root ∆ and
that Aξ ∩ ℘(∆) = Aξ′ ∩ ℘(∆) for every ξ, ξ′ < ω1. Let bξ = aξ − ∆. Now apply
the unboundedness of f , to δ and bξ’s obtaining ξ1, ξ2 < ω1 such that for all
α ∈ bξ1 and β ∈ bξ2 we have f(α, β) > δ. It is easy to see that this is enough for
the compatibility of Aξ1 and Aξ2 .

Now suppose that f is no longer unbounded in V Q. Let {Aξ : ξ < ω1} and
(Fξ : ξ < ω1) and (Ḟξ : ξ < ω1) be such that Q forces that (Ḟξ : ξ < ω1) and
δ < ω1 witness the failure of the unboundedness of f and

Aξ ‖−Ḟξ = F̌ξ

Perform similar construction as in the proof of the c.c.c., but now define

aξ =
⋃

Aξ ∪ Fξ

By disjointness of (Fξ : ξ < ω1) it can be seen that similar argument as in the
proof of the c.c.c give us compatible Aξ1 and Aξ2 such that for α ∈ Fξ1 , β ∈ Fξ2

we have f(α, β) > δ contradicting the choice of (Ḟξ : ξ < ω1).
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Fact 12. Suppose f : [λ]2 → ω1 is strongly unbounded on λ. There is a c.c.c.
forcing notion Q such that in V Q the function f is c.c.c. indestructible.

Proof. Q is an iteration of length λ+ with finite supports of the forcings Q(A, δ)
of Lemma 11, so that every δ ∈ ω1 and every uncountable family of disjoint finite
sets of λ in some intermediate model are taken care of. Note that if Q is c.c.c,
it works. Indeed in V Q for every family of disjoint finite sets A in λ and δ < ω1

there is an uncountable family B ⊆ A such that for every distinct a, b ∈ B we
have f ′′[a ⊗ b] > δ.

So now, let’s see that Q is c.c.c. For this it is enough to prove by induction
on α < λ+ that any iteration of length α of forcings like Q(A, δ) satisfies the
c.c.c. This follows from the fact that finite support iteration of forcings satisfying
the c.c.c. satisfy the c.c.c and the previous lemma, provided we know that the
iteration preserves the unboundedness of f . We prove it by induction as well.
The successor stage is taken care of by the previous lemma. The limit stage
of cofinality different than ω1 is trivial. Now consider (Qβ , Q̇β)β<α for α of
cofinality ω1, and assume that you know that in each V Pβ f is unbounded. Let
δ < ω1, {qξ : ξ < ω1}, (Gξ : ξ < ω1), (Fξ : ξ < ω1) and (Ḟξ : ξ < ω1) be such
that Qα forces that (Ḟξ : ξ < ω1) and δ witness the failure of the unboundedness
of f and

qξ ‖−Ḟξ = F̌ξ

and supp(qξ) = Gξ. We may w.l.o.g. assume that (Gξ : ξ < ω1) form a ∆-system
with the root below β0 < α.

Now work in V Qβ0 . By the inductive assumption about the c.c.c. of Qβ0 we
know that for an uncountable set X ⊆ ω1 and ξ ∈ X condition qξ|β0 is in the
generic filter raising to the extension V Pβ0 . Apply the unboundedness of f in
V Pβ0 to (Fξ : ξ ∈ X) and δ obtaining ξ1, ξ2 ∈ X such that f ′′[Fξ1 ⊗ Fξ2 ] > δ.
Now note that since Gξ’s formed a ∆-system with the root below β0 and qξ1 |β0

and qξ2 |β0 were compatible, we have that qξ1 and qξ2 are compatible, which gives
the required contradiction.

Fact 13. (Implicitly [S2], section 4) Suppose there is an unbounded function
f : [λ]2 → ω1. Then, there is a c.c.c. forcing P such that in V P there is a λ×λ
strongly universal matrix.

Proof. Let f : [λ]2 → ω1 be strongly unbounded. Define a forcing P to have
conditions of the form (ap, (mp(α, β) : {α, β} ∈ [ap]2)) where ap is a finite subset
of λ and mp(α, β) < f(α, β)’s are countable ordinals. The order is the inverse
inclusion.

We claim that λ is preserved by P and that
⋃

{mp(α, β) : {α, β} ∈ [ap]2, p ∈ G}

is a strongly universal matrix, where G is a P -generic over V . We will actu-
ally prove that P satisfies the c.c.c. and the strong universal property in one
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argument. Let (pξ : ξ < ω1) be conditions of P and let (Ḟξ : ξ < ω1) be P -
names for disjoint n-element subsets of λ and let B : n × n → ω1 be an n by
n matrix. By extending the conditions, we may w.l.o.g. assume that there are
finite sets (Fξ : ξ < ω1}, with Fξ = {ai

ξ : i < n} such that pξ ‖−Ḟξ = F̌ξ and
that apξ

’s form a ∆-system of sets with its root ∆ and that Fξ ⊆ apξ
. Note

that by the disjointness of Fξ’s one can assume that they are disjoint from ∆.
Further, by the fact that mp(α, β) < f(α, β) holds, we can assume that all the
conditions agree on the root. Finally using the unboundedness property of f we
can find two distinct ordinals ξ < η < ω1 such that f(α, β) > max(ran(B)) for
all α ∈ apξ

−apη and β ∈ apξ
−apη . Now it is easy to construct an amalgamation

r of pξ and pη defining mr on (apξ
− apη

) ⊗ (apξ
− apη

) arbitrarily as long as it
has values below f(α, β) > max(ran(B)). In particular one can define it so that
mr(αi

ξ, α
j
η) = B(i, j) for any i, j < n. This completes the proof of the c.c.c. for

P and the strongly universal property.

2.2. It is hard to get strongly unbounded functions on bigger cardi-
nals.

Theorem 14. If 2κ < λ and λ > κ++, then there is no κ+-strongly unbounded
function on λ.

Proof. Suppose 2κ < λ and λ > κ++, and that f : [λ]2 → κ+. We will show
that f is not strongly unbounded. We need an elementary submodel M of the
structure H(θ) for θ big enough such that f, λ ∈ M , [M ]κ ⊆ M and there is
an ordinal β ∈ λ − M such that cf(β) = κ++ and M ∩ λ is unbounded in β.
For this one can take ζ = max(κ++, 2κ) < λ note that ζκ = ζ and so one can
construct a chain of models closed under κ-sequences of cardinality ζ so that
Mξ ∩ ζ+ < Mη ∩ ζ+ for ξ < η < κ++. The union works together with its
supremum in ζ+ ≤ λ.

Consider F : β → κ+ defined by F (α) = f(α, β) for α < β. Note that as
cf(β) = κ++ we have δ ∈ κ+ as well as a set A ⊆ M ∩ β of cardinality κ++

unbounded in β such that F (α) = δ for each α ∈ A. Now construct by induction
two sequences {αξ : ξ < κ+} ⊆ A and {βξ : ξ < κ+} ⊆ M ∩ α such that

i) For every ξ < η < κ+ we have αξ < βξ < αη < βη < β.
ii) For every ξ < η < κ+ we have f(αξ, βη) = δ.
Suppose we are done below η. Now as [M ]κ ⊆ M , we have {αξ : ξ < η} ∈ M .

Choose as αη any element of A above sup({βξ : ξ < η}). Clearly, in H(θ) there
is an ordinal β such that αη < β < min(M − β) such that f(αξ, β) = δ for all
ξ < η. By the elementarity, in M , choose such an ordinal and call it βη. Now
note that {{αξ, βξ} : ξ < κ+} contradicts the unboundedness property, and so
f is not unbounded.

3. The generic construction

3.1. Semimorasses. In [Ksz1], we introduced some generalization of Velle-
man’s simplified morasses (see [Ve1], [Ve2]). A natural way of looking at morasses
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or semimorasses is to see them as families similar to {M ∩ ω2 : M ≺ H(ω3)}
with some extra coherence properties (which actually make it impossible for a
morass to include a club set unlike the set above). To follow our notation we
quote below this definition in the special case of a successor cardinal.

Definition 15. Let κ be a regular cardinal. A simplified (κ+, λ)-semimorass is
a family F ⊆ [λ]κ which satisfies the following conditions.

1) F is well-founded with respect to inclusion.
2) F is locally small i.e. ∀X ∈ F |F|X| ≤ κ where F|X = {Y ∈ F : Y ⊂ X}
3) F is homogeneous i.e. if X, Y ∈ F , rank(X) = rank(Y ) = α, then X, Y

have the same order type (denoted θα) and if fXY is the unique order
preserving mapping from X onto Y , then F|Y = {f ′′(Z) : Z ∈ F|X}.

4) F is directed i.e. ∀ X, Y ∈ F ∃Z ∈ F s.t.X, Y ⊆ Z
5) F is locally semi directed, i.e.,

a) F|X is directed or
b) ∃ X1, X2 ∈ F s.t. rank(X1) = rank(X2) & X = X1∗X2 where X =

X1 ∗ X2 means that X = X1 ∪ X2, F|X = F|X1 ∪ F|X2 ∪
{X1, X2} and for every α ∈ X1 ∩ X2 we have

ordtp(X1 ∩ α) = ordtp(X2 ∩ α)

6) F covers κ+ i.e.
⋃
F = κ+.

Semimorasses have some properties analogous to the properties of Velleman’s
morasses.

Lemma 16 (The main lemma for semimorasses.). ([Ksz1]) Let F be a (κ+, λ)-
semimorass. Let X, Y ∈ F , rank(X) = rank(Y ), α ∈ X ∩ Y , then ordtp(X ∩
α) = ordtp(Y ∩ α).

Lemma 17 (Density lemma for semimorasses). ([Ksz1]) Let F be a (κ+, λ) -
semimorass. Then the following conditions are satisfied:

(a) ∀Y ∈ F ∀X ∈ (F|Y ) ∀rank(X) < α < rank(Y ) ∃Z ∈ F rank(Z) = α,

X ⊆ Z ⊆ Y

i.e. for example ht(F) ≤ κ,since F is locally small.

(b) ∀X ∈ F ∀α < ht(F)[rank(X) < α ⇒ ∃Z ∈ F(rank(Z) = α, X ⊆ Z)]

In this paper we will assume that the semimorass in question which we will
be denoting by F is a stationary coding set (see [Zw]). This means that F , is
stationary subset of [λ]κ and there is a one-to-one function c : F → λ such that

∀X, Y ∈ F X ⊂ Y ⇒ c(X) ∈ Y.

The forcing proof of the consistency of the GCH below κ+ with the existence
(for any regular κ and λ ≥ κ+) of a (κ+, λ)-semimorasses which are stationary
coding sets which is based on a proof of Velleman from [V2] is published in [Ksz1]
(Theorem 3, section 2). Let’s note two simple facts about stationary coding sets
in general which we learned from S. Todorcevic.
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Fact 18 (folklore). Suppose that F ⊆ [λ]κ is a stationary coding set and F ∈
M ≺ H(λ+), |M | = κ, M ∩ λ ∈ F . If X ∈ F and X ⊂ M , then X ∈ M .

Proof. Suppose X ∈ F and X ⊂ M . As F ∈ M ≺ H(λ+), we have that M
thinks that F is a stationary coding set, so there is c : F → λ witnessing this fact
in M . In particular α = c(X) ∈ M ∩λ, so M knows c−1(α), hence X ∈ M ∩ [λ]κ

as required.

Fact 19 (folklore). Suppose that F ∈ M ≺ H(λ+), |M | = κ, X = M ∩ λ ∈ F .
Then rank(X) = M ∩ κ+.

Proof. As F ∈ M we have that κ ∈ M and so M ∩ κ+ ∈ κ+. Put rank(X) = δ.
If δ ∈ M , then we would have in M an element Y of F of rank δ and this would
give rise by homogeneity to an isomorphism between F|Y and F|X which would
contradict well-foundedness of F .

In M there are all ordinals less than δ and so there are also elements of F of
all ranks less than δ. They are included in M ∩ λ = X, so rank(X) is at least
δ.

The facts below are crucial in our method of forcing with side condition in
semimorasses. The property below resembles the definition of Kurepa family
(see [T5]). Actually a Kurepa family which is a stationary coding set (coexisting
with CH) would be sufficient for our applications, but we do not know if such a
family can consistently exist.

Fact 20. Suppose that a (κ+, λ)-semimorass F is a stationary coding set and
F ∈ M ≺ H(λ+), |M | = κ, M ∩λ = X0 ∈ F . Let Y ∈ F , rank(Y ) < M ∩κ+ =
δ. Then there is Z(Y ) ∈ M such that

1) Y ∩ X0 ⊆ Z(Y ).
2) rank(Z(Y )) = rank(Y ).

Proof. By density lemma, find Y ′ ⊇ Y , Y ′ ∈ F such that rank(Y ′) = rank(X0) =
δ. Now use the isomorphism fY ′X0 to find a copy Z(Y ) of Y below X0. Note
that Y ∩X0 ⊆ Y ′∩X0 and fY ′X0 is constant on Y ′∩X0 so Y ∩X0 = Y ∩M ⊆ Z.
Now use Fact 18, to conclude that Z(Y ) ∈ F|X0 implies Z(Y ) ∈ M .

Fact 21. Suppose that a (κ+, λ)-semimorass F is a stationary coding set and
F ∈ M ≺ H(λ+), |M | = κ, M ∩ λ = X0 ∈ F , [M ]<κ ⊆ M . Let A ∈ [F ]<κ,
Then there is Z ∈ M such that

⋃
{X ∩ M : X ∈ A, rank(X) < M ∩ κ+} ⊆ Z

Proof. Consider sets Z(Y ) obtained from Fact 20, for Y ∈ A such that rank(Y ) <
M ∩ κ+. Now as [M ]<κ ⊆ M the set of all these Z(Y )s is in M and hence its
union as well. Put Z to be this union.
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3.2. Side conditions in semimorasses. To use elements of a semimorass F
as side conditions in the simplest case κ = ω, means to use forcings P whose
conditions are of the form (p, A) where p is a finite condition of a natural forcing
adding the structure in question and A is a finite subset of F . This is like using
models as side conditions in the method of forcing with models as side conditions
developed by S. Todorcevic. The order is given by the forcing order on the first
coordinate and the inverse inclusion on the second coordinate. In addition we
require the existence of some natural projections of p onto the elements of A as
a part of the definition of the forcing notion.

In the case of forcings described above, special combinatorial properties of
semimorasses allow us to perform many manouvers with ease as well as the def-
initions are simplified. This method seems equivalent to the variant of Todorce-
vic’s method when one employs matrices of models (see [T1] section 4., for an
example with detailed definitions). Instead of a more complicated forcing that
adds a version of a semimorass and the structure in question “in one blow” we
factor this forcing into one adding a semimorass (or we actually just assume the
existence of it) and another simple forcing employing the semimorass. The price
we need to pay for this convenience is that P is not proper (unlike Todorcevic’s
forcings,) but only F-proper, i.e., There is a club C ⊆ [λ]ω such that for models
M ≺ H(λ+) such that M ∈ F ∩C and p ∈ P ∩M , there are (P, M)-generic con-
ditions stronger than p. As F may be assumed to be stationary, F-properness
implies the preservation of ω1 (proof like for proper forcings, see [B]). The preser-
vation of bigger cardinals follows from the ω2-chain condition. Note that it is
no limitation in the applications that one seeks here, i.e., consistent existence of
structures of sizes bigger than ω1.

One can actually generalize this method to higher cardinals where the working
part of the condition has size < κ and the collection of side conditions is also
of size less than κ. First let’s define some simple generalizations related to
properness.

Definition 22. Suppose F ⊆ [λ]κ. We say that a forcing notion P is F-proper
on the level of κ (we skip the phrase “on the level of κ” if κ = ω) if and only if
there is θ > (2|P |)+ and a club set C ⊆ [H(θ)]κ such that whenever p ∈ M ∈ C
and M ∩ λ ∈ F then there is a (P, M)-generic p0 ≤ p, i.e., D ∩ M is predense
below p0 for every D ∈ M which is dense in P .

Fact 23. Suppose F ⊆ [λ]κ is a stationary set and P is an F-proper on the
level of κ forcing notion, then P preserves κ+.

Proof. The proof is a straightforward version of Shelah’s paradigmatic proof of
preservation of ω1 by proper forcings (see [S1] or [B]).

The following definition and lemmas are formulations of well-known tech-
niques (originated in Shelah’s use of elementary submodels in forcing) and will
simplify our further arguments.
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Definition 24. Let P be a notion of forcing, and q ∈ P . Suppose M ≺ H(θ)
and P, π1, ..., πk ∈ M . We say that a formula φ(x0, x1, ..., xk) well reflects q in
(M ;π1, ..., πk) whenever the following are satisfied:

i) φ(q, π1, ..., πk) holds in H(θ)
ii) whenever s ∈ M is such that φ(s, π1, ..., πk) holds in M , then q and s are

compatible.

Definition 25. Suppose that F ⊆ [λ]κ and suppose P is a notion of forcing. We
say that P is simply F-proper on the level of κ if there is θ such that whenever

a) p ∈ P ,
b) M ≺ H(θ),
c) p, P, F ∈ M ,
d) M ∩ λ ∈ F ,

then there is p0 ≤ p such that if q ≥ p0, then there are π1, ..., πk ∈ M and a
formula φ(x0, x1, ..., xk) which well reflects q in (M, π1, ..., πk).

Lemma 26. If P is simply F-proper on the level of κ, then P is F-proper on
the level of κ.

Proof. We will prove that whenever M, p are as in (a)–(d) of Definition 25 then
p0 is a (P, M)-generic condition. Let D ∈ M be dense, we will show that D∩M
is predense below p0. Let q ≤ p0, we may w.l.o.g. assume that q ∈ D. Let
π1, ..., πk ∈ M and φ(x0, x1, ..., xk) be such that φ(x0, x1, ..., xk) well reflects q
in (M, π1, ..., πk). By i) of Definition 24, we have φ(q, π1, ...πk) in H(θ). By the
elementarity M satisfies the formula “∃x ∈ P φ(x, π1, ...πk) & x ∈ D”. So let
s ∈ M witness this fact. Now by Definition 24 s and q are compatible, so D∩M
contains a condition compatible with q which proves that D ∩ M is predense
below q which completes the proof.

3.3. The forcing. Fix a regular κ, a cardinal λ ≥ κ+ and a (κ+, λ)-semimorass
F which is a stationary coding set and assume that κ<κ = κ and 2κ = κ+. The
consistency of these conditions is proved in [Ksz1].

We consider the following forcing P whose conditions p are of the form
p = (ap, fp, Ap) where:

a) ap ∈ [λ]<κ

b) fp : [ap]2 → κ+.
c) Ap ∈ [F ]<κ

d) fp(α, β) ≤ rank(X) for X ∈ Ap and α, β ∈ X.
The order is just the inverse inclusion, i.e., p ≤ q if and only if ap ⊇ aq, fp ⊇ fq,
Ap ⊇ Aq.

Fact 27. P is simply F-proper on the level of κ.

Proof. Let θ = λ+ and let M, p be as in (a)–(d) of Definition 25. with [M ]<κ ⊆
M . The existence of such an M follows from our assumptions about F and the
cardinal arithmetic assumptions. Let X0 = M ∩λ. Let p0 = (ap, fp, Ap ∪{X0}).
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Finally, let q ≤ p0. The proof consists of finding the parameters π1, ..., πk ∈ M
and a formula φ(x0, x1, ..., xk) which well reflects q in (M, π1, ..., πk).

Define q|M = (aq ∩ M, fq|M, Aq ∩ M).
Introduce notation δ = M ∩ κ+ = rank(M) (the second equality follows from

Fact 19).
Note that Aq ∩ M = Aq|M = {X ∈ Aq : X ∈ M, X ⊂ X0}. This follows from

the fact that F is a stationary coding set i.e., Fact 18. The assumption that
[M ]<κ ⊆ M implies that aq|M , Aq|M ∈ M . Also as (d) of the definition of the
forcing is satisfied for q ∈ P and X = X0; α, β ∈ X0 = M ∩ λ, we may conclude
that fq|M ,∈ M , in other words we have q|M ∈ M ∩ P .

It is clear that q|M ≤ p.
By Fact 20 and the fact that [M ]<κ ⊆ M , in M there is a family Z of elements

of F such that
⋃
{X ∩ M : rank(X) < δ, X ∈ Aq} ⊆

⋃
Z. By the cofinality

(which follows from the stationarity) of F in [λ]κ and the elementarity of M we
may find Z ∈ F ∩ M such that

⋃
{X ∩ M : rank(X) < δ, X ∈ Aq} ⊆ Z.

Let φ(x0, x1, x2, x3, x4) be the formula which says that x0 is a condition of the
partial order x4 which extends in x4 the condition x3 and such that the difference
between the first coordinate of x0 and x2 is disjoint from x1

Subfact 28. φ(x0, x1, x2, x3, x4) well-reflects q in (M, Z, aq|M , q|M, P ). More-
over whenever φ(s, Z, aq|M , q|M, P ) holds in M , then the common extension
r ≤ q, s can be chosen to satisfy fr|(as − aq|M ) ⊗ (aq − aq|M ) = h for any
function h : (as − aq|M ) ⊗ (aq − aq|M ) → δ.

Proof. It is clear that φ(q, Z, aq|M , q|M, P ) holds in H(λ+).
Now let s ∈ M be a condition satisfying φ(s, Z, aq|M , q|M, P ) i.e., s extends in

P the condition q|M and as −aq|M is disjoint from Z, and let h be any function
such that

h : (as − aq|M ) ⊗ (aq − aq|M ) → δ.

Define the common extension r as follows: ar = as ∪ aq, fr = fs ∪ fq ∪ h,
Ar = As ∪ Aq. Clearly all clauses of the definition of the forcing P but d) are
trivially satisfied for r. So let us prove (d). Let α, β ∈ ar and X ∈ Ar, we will
consider a few cases.
Case 1. α, β ∈ as, X ∈ As

It is trivial because s ∈ P .

Case 2. α, β ∈ aq, X ∈ Aq

It is trivial because q ∈ P .

Case 3. α, β ∈ as, X ∈ Aq.
Since φ(s, Z, aq|M , q|M, P ) holds in M , we have that either rank(X) ≥ δ =
M ∩ κ+ in which case (d) is satisfied because fr(α, β) = fs(α, β) < δ as s ∈ M ,
or rank(X) < δ and then by the definition of φ and Z we get that α, β ∈ as ∩aq,
so we are again in case 2.

Case 4. α, β ∈ aq, X ∈ As.
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This means that α, β ∈ M , i.e., α, β ∈ as ∩ aq so we are again in case 1.

Case 5. α ∈ as − aq and β ∈ aq − as.
Then X ∈ Aq and so by the definition of φ and Z, we have that rank(X) ≥ δ,
but fr(α, β) = h(α, β) < δ, so (d) is satisfied.

The proof of the subfact completes the proof of Fact 27.

Definition 29. For p ∈ P by support of p, denoted supp (p) we mean the set
ap ∪

⋃
Ap.

Definition 30. We say that two conditions p, q of P are isomorphic (via π :
supp (p) → supp (q)) if and only if π : supp (p) → supp (q)) is an order preserv-
ing bijection constant on supp (p) ∩ supp (q) and

• π′′[ap] = aq,
• {π′′[X] : X ∈ Ap} = Aq,
• fq(π(α), π(β)) = fp(α, β) for all α, β ∈ ap.

Remark. Note that if p, q, π are as in the above definition and X ∈ Ap, then
rank(π′′[X]) = rank(X).

Lemma 31. Suppose p, q ∈ P are isomorphic via π : supp (p) → supp (q). Let
∆ = supp (p) ∩ supp (q) and r ≤ p be such that supp (r) ∩ supp (q) = ∆. Then
for any function h : (ar −∆)⊗ (aq −∆) → κ+ there is a condition s ≤ r, q such
that as = ar ∪ aq, As = Ar ∪ Aq, fs = fr ∪ fq ∪ h.

Proof. The only non-automatic condition of the definition of P which needs to
be checked is (d).
Case 1. α, β ∈ ar.
If X ∈ Ar, we are trivially done. If X ∈ Aq and α, β ∈ X, then α, β ∈ ∆, hence
α, β ∈ π−1[X] ∈ Ap ⊆ Ar.

Case 2. α, β ∈ aq.
Similar to the previous case.

Case 3. α ∈ ar − aq, β ∈ aq − ar.
Note that there cannot be any X ∈ As which contains both α and β, hence
fs(α, β) can be arbitrary.

Fact 32. Assuming 2κ = κ+, P is κ-closed and κ++-c.c. Thus by Fact 27,
Lemma 26 and Fact 23, P preserves cardinals.

Proof. It is clear that P is κ-closed (the conditions are of sizes less than κ and
κ is regular).

The proof of the κ++-chain condition is also a standard application of the
∆-system lemma to the sequence of supports {supp (pξ) : ξ < κ++} of some
conditions pξ ∈ P under our cardinal arithmetic assumption. The natural
amalgamation (apξ1

∪ apξ2
, fpξ1

∪ fpξ2
∪ h, Apξ1

∪ Apξ2
) for arbitrary h :

(apξ1
− apξ2

) ⊗ (apξ2
− apξ2

) → κ+ of two isomorphic conditions pξ1 and pξ2

is a condition by the previous lemma.
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Theorem 33. In V P there is a λ × λ, κ+-strongly universal matrix and hence
a κ+-strongly unbounded function on λ.

Proof. Clearly, we claim that f =
⋃
{fp : p ∈ G} defines such a matrix, where

G is a P -generic over V .
Let ν be an ordinal less than κ and let B = (bi,j)i,j<ν be a ν × ν matrix

with entries from κ+. Fix a set A = {ȧ : a ∈ A} ⊆ [λ]ν of P -names for disjoint
ν-tuples ȧ = {ȧi : i < ν} of elements of λ. Fix a condition p ∈ P .
Take a model M ≺ H(λ+) such that M ∩λ = X ∈ F and p ∈ P ∩M ; B,F ∈ M
and {ȧξ : ξ < κ+} ∈ M . We will show that there are ξ1 < ξ2 < κ+ and r ≤ p
such that

r ‖− ∀i, j < ν ḟ(ȧξ1
i , ȧξ2

j ) = b̌i,j

First take a condition p0 ≤ p as in Fact 27, i.e., ap = ap0 , fp = fp0 , Ap =
Ap0 ∪ X0. Take q ≤ p0 and ξ1 ∈ κ++ such that there is a ∈ [λ − M ]<κ such
that q ‖−ȧξ1 = ǎ and a ⊆ aq. This can be done as {ȧξ : ξ < κ+} is a
sequence of names for disjoint sets and |M | = κ. proceed as in the proof of Fact
27. Let s ≥ q|M satisfy φ(s, Z, aq|M , q|M, P ) from Subfact 27. Again by the
disjointness of the sets and the elementarity of M , we can find an s and ξ2 such
that φ(s, Z, aq|M , q|M, P ) holds in M and moreover there is b ∈ [M −Z]<κ such
that q ‖−ȧξ2 = b̌ and b ⊆ as. Now by Fact 28 (the second part) we can design h
so that h|(a⊗ b) = B. Now r as in Fact 28 is an extension of p which forces the
required equality.

Finally, note that as P is κ-closed by Fact 32, the matrix B can be assumed
to be in the ground model.

Remark. By Subfact 28, h can be constantly equal to 0, thus the function we
obtained in the case κ = ω does not have the property from Fact 10. Similar
arguments show that the natural forcing which adds uncountable family of dis-
joint finite sets witnessing the failure of the strong unbounded property is c.c.c.
thus the function is not c.c.c. indestructible (see Definition 9).
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