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A CLASS OF ELLIPTIC EQUATIONS RELATED TO OPTICAL
DESIGN

J. Rubinstein and G. Wolansky

Abstract. We use a local geometric construction to derive a class of elliptic
differential operators. The requirement that the operator will be a derivative
of a functional leads to a natural characterization of a family of operators that
connect the classical Laplace operator to the mean curvature operator. We further
show that the elliptic operators derived here have a canonical interpretation in the
framework of optical design.

1. Introduction

A classical problem in optical design is to find an optical surface that converts
a given incident wavefront into a refracted wavefront with desired properties. An
optical surface is either a surface separating two media with different refraction
indices, or a reflecting surface (mirror). In this paper we shall provide a solution
for this problem in the case where the incident wavefront is a parallel surface,
and the refracted wavefront is described by its mean curvature at the point
of intersection with the refractive surface. Our solution is in the form of a
differential equation for the graph of the refractive surface.

We are particularly interested in the case where the refracted wavefront is a
minimal surface. In this case the differential equation has a simple variational
interpretation. The variational problem is particularly interesting in the case
where the refraction index in the domain of the incident wavefront is larger than
the refraction index in the domain of the refracted wavefront.

We start in the following section by providing a condition for a general family
of differential elliptic operators to be a derivative of a functional. We proceed in
section 3 to define a large family of elliptic operators through a local geometric
construction. The additional condition, that each operator in that large family
is a variational operator, gives rise to a geometric criterion that is similar to
Snell’s law from geometrical optics. Moreover, this condition restricts the large
family to a more specific family of operators that provide a natural link between
the Laplace operator and the mean curvature operator.

In section 4 we solve the eikonal equation in a local neighborhood of the
refractive surface. We then show that the variational operators derived geomet-
rically in section 3 provide a solution to the optical design problem referred to
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above for the case where the refracted wavefront has zero mean curvature. We
further derive an equation for the case where the refracted wavefront has any
prescribed mean curvature.

In section 5 we elaborate on the variational interpretation of the optical design
problem. In particular we discuss the case of wave propagation from a medium
of high refraction index to a medium with low refraction index. We also point
out the similarity between the optical design problem and the electrostatic Born-
Infeld model.

Remark. The case of wave reflection by mirrors can be considered as a special
case of refraction. This special case is analyzed towards the end of the paper.

2. Differential operators

Let D ⊂ R
2 be a smooth domain. For a given u ∈ C1(D), define ∂2

∇u to be
the operator of second derivative in the directions of ∇u := (ux, uy), and let ∂

2

∇u

be the second derivative in the perpendicular direction ∇u := (−uy, ux). Let q1,
q2 be a pair of positive valued functions on R

+ such that

q1(0) = q2(0) := q.(1)

Now define the following operator L on C2(D):

L(u) = q1

(|∇u|2) ∂2
∇u + q2

(|∇u|2) ∂
2

∇u.(2)

We remark that the derivatives ∂2
∇u and ∂

2

∇u are not defined only if ∇u = 0. In
that case we use (1) to define L(u) consistently as q∆u.

There are two special cases in which L reduces to well known operators. The
first case is q1 ≡ q2 ≡ 1, where L is the Laplacian operator. The second case is
q1(s) = (1 + s)−3/2, q2(s) = (1 + s)−1/2, where L becomes the mean curvature
operator of the graph of u, which, in a more standard notation, is given by
∇ · ∇u√

1+|∇u|2 . In these two examples, the operator L is a formal derivative of a

variational principle for a functional of the form:∫
D

Q(|∇u|2),(3)

where Q is given by Q(s) = s for the Laplacian, and Q(s) =
√

1 + s for the
mean curvature operator.

There are further cases where L is associated with a functional of the from
(3). They are characterized by the following Lemma.

Lemma 2.1. The operator L is formally derived from a variational principle∫
Q

(|∇u|2) if and only if

q2 + 2s
dq2

ds
= q1.

In this case, Q
′
= q2.
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Proof. If L is formally derived from a variational functional of this form, then

1
2
Lu =

∂
(
Q

′
(|∇u|2)u′

x

)
∂x

+
∂

(
Q

′
(|∇u|2)u′

y

)
∂y

.

Since the functional is invariant under rotation, we may apply a rotation of the
coordinates centered at a given point (x, y) without changing Lu at this point.
Applying such a rotation for which u

′
y = 0. implies

u
′′
xx → ∂2

∇uu , u
′′
yy → ∂

2

∇u |∇u|2 →
(
u

′
x

)2

(4)

at the given point. In these local coordinates, the operator L takes the form

1
2
Lu(x, y) =

[
Q

′
((

u
′
x

)2
)

+ 2Q
′′

((
u

′
x

)2
) (

u
′
x

)2
]

u
′′
xx +

[
Q

′
((

u
′
x

)2
)]

u
′′
yy.

Transforming back to the coordinate-independent notation (4) and comparing
with (2) we obtain

q2(s) = Q
′
(s) ; q1(s) = Q

′
(s) + 2sQ

′′
(s).

3. A geometric construction

We construct a class of operators of the form L through a canonical geomet-
rical procedure. Let e1, e2, e3 be the canonical base of coordinates in R

3. The
graph of a function u on D is given by xe1 + ye2 + u(x, y)e3. The unit normal
to this graph above a point (x, y) ∈ D is given by

N =
(
1 + |∇u|2)−1/2

(
−u

′
x,−u

′
y, 1

)
.

Consider a point (x0, y0, u(x0, y0)) on the graph of u, and assume |∇u(x0, y0)| 
=
0. Then the plane P (e3,N) spanned by e3 and N is defined at this point.

Let ê3 to be a unit vector in P (e3,N), obtained by a rotation of N by an
angle θ towards e3. Note that the angle γ between e3 and N is given by

cos γ = N · e3 =
1√

1 + |∇u|2 .

We complete ê3 to a normal triplet {ê1, ê2, ê3} centered at the point (x0, y0,
u(x0, y0)). Let û be the function whose graph x̂ê1 + ŷê2 + û(x̂, ŷ)ê3 coincides
with the graph of u in the neighborhood of (x0, y0, u(x0, y0)). Define

∆θu(x0, y0) =
∂2û

∂2x̂

∣∣∣∣
(0,0)

+
∂2û

∂2ŷ

∣∣∣∣
(0,0)

≡ ∆̂û(0, 0) if |∇u(x0, y0)| 
= 0.

Notice that θ is still unspecified at this stage. We shall later specialize to the
case where θ depends on |∇u|. However, we set, at this stage, θ = γ if |∇u| = 0,
so that ∆θu coincides with the usual Laplacian at critical points of u, namely

∆γu(x0, y0) = ∆u(x0, y0) if |∇u(x0, y0)| = 0.
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Remark. The above definition is well posed for any twice differentiable u.
In particular, it is independent of the choice of the pair (ê1, ê2), as long as
{ê1, ê2, ê3} makes an orthogonal triplet.

We obtain, in this way, a family of operators ∆θ. Evidently, ∆γ ≡ ∆ - the
classical Laplacian. It can also be seen that ∆0 is the mean curvature operator.
Indeed, if θ = 0 then ê3 coincides with the local normal N and (0, 0) is thus a
critical point of û. Since the mean curvature of a graph of a function is identical
to half its Laplacian at a critical point, on the one hand, and is invariant to
rotation of the graph on the other, our claim follows.

To obtain an explicit expression for ∆θ, assume that the graph is rotated at
the (x, y) plane (leaving e3 unchanged), so that u

′
y = 0 at (x0, y0). We may also

assume that x0 = y0 = u(x0, y0) = 0. Then

u(x, y) = xu
′
x +

1
2

(
x2u

′′
x + 2xyu

′′
x,y + y2u

′′
y

)
+ O(x3 + y3)(5)

Let us now rotate e3 by an angle θ+γ without changing e2, i.e. we take ê2 = e2.
In that case

x̂ = x cos(θ + γ) + u sin(θ + γ),
ŷ = y,

û = −x sin(θ + γ) + u cos(θ + γ).(6)

Inverting these equations and using (5), we obtain an expansion for x(x̂, ŷ):

x =
x̂

cos(θ + γ) + u′
x sin(θ + γ)

− sin(θ + γ)
cos(θ + γ) + u′

x sin(θ + γ)

[
u

′′
xxx̂2

2(cos(θ + γ) + u′
x sin(θ + γ))2

+
u

′′
xyx̂ŷ

cos(θ + γ) + u′
x sin(θ + γ)

+
u

′′
yy ŷ2

2

]
+ O

(
x̂3 + ŷ3

)
.(7)

Substituting (7) in the third equation of (6), and using (5) we obtain

∆θû(0, 0) =
u

′′
xx

(cos(θ + γ) + u′
x sin(θ + γ))3

+
u

′′
yy

cos(θ + γ) + u′
x sin(θ + γ)

.(8)

We now use the formula sin γ = u
′
x/

√
1 + (u′

x)2 and some trigonometric identi-
ties to obtain

cos(θ + γ) + u
′
x sin(θ + γ) =

cos θ

cos γ
.

Finally we rotate back to the original x and y variables by removing the restric-
tion u

′
y = 0. This amounts to replacing u

′
x by |∇u|, u

′′
xx by ∂2

∇u and u
′′
yy by ∂

2

∇u.
As a result we obtain

∆θu = q3
(|∇u|2) ∂2

∇u + q
(|∇u|2) ∂

2

∇u,(9)
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where

q(s) =
1

cos θ
√

1 + s
.(10)

Lemma 3.1. The operator ∆θ is a formal derivative of a functional of the form∫
Q(|∇u|2) if and only if there exists a constant µ ∈ R for which

sin θ = µ sin γ,(11)

i.e

θ(|∇u|) = arcsin

[
µ

|∇u|√
1 + |∇u|2

]
.

Proof. By Lemma 2.1, the condition for the existence of a variational principle
for ∆θ is that q will be a solution of

q + 2s
dq

ds
= q3.

However, all solutions of this equation are of the form q(s) = (1+αs)−1/2, where
α ∈ R. Using (10) we obtain

cos θ(s) =

√
1 + αs

1 + s
→ sin θ = µ sin γ,

where µ = ±√
1 − α.

4. Optical design

The condition (11) derived in Lemma 3.1 has an optical interpretation. Con-
sider a ray in the direction of the original e3 direction propagating in a medium
with a refraction index n1 towards the surface u. Assume further that the re-
fraction index in the medium above u is n2, and denote the ratio between the
refraction indices by µ = n1/n2. Then, since (11) can be identified with Snell’s
law of geometrical optics, the ray will be refracted by the surface u into a new
ray in the direction of ê3. This observation motivates us to consider whether
the differential operator ∆θ has an optical meaning.

To answer this question, let us indeed consider the surface u as a refrac-
tive optical element. Specifically, we assume that the subgraph {z < u(x, y)}
is occupied by a medium with a refraction index n1, while in the supergraph,
{z > u(x, y)} the refraction index is n2. Consider an incoming planar wavefront
orthogonal to the z axis, i.e. a parallel beam of rays in the direction of the
positive z axis. The rays are refracted at the interface u according to Snell’s
law. Therefore the wavefront will be distorted. The local optical power of u is
determined by the mean curvature of the new front at each point. The curva-
ture of the distorted wavefront was calculated by Keller and Keller [3] and by
Kneisly [4]. We present a different calculation method that leads to an explicit
differential equation for the refractive surface.
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A common goal in optics is to design an optical element with a prescribed
optical power. Therefore we want to find u such that the mean curvature of
the refracted wavefront at its intersection point with u is a prescribed func-
tion H(x, y). In addition we may require u to satisfy certain conditions on the
boundary of a domain D ⊂ R

2.
To derive an equation for u we recall from the theory of geometrical optics

that the wavefronts are the level surfaces of the eikonal function S. The eikonal
satisfies the equation [1]

|∇S| = n(x, y, z),

where n(x, y, z) = n1 if z < u(x, y) and n(x, y, z) = n2 if z > u(x, y). Since the
beam is parallel to the (x, y) plane, we may set S(x, y, z0) ≡ 0, (x, y) ∈ D, on the
plane z = z0 < u. For simplicity we set z0 = 0. Hence, S(x, y, u(x, y)) = n1u(x, y)
on D. The solution of the eikonal in the domain z > u is determined by the
hyperbolic problem

|∇S| = n2, S(x, y, u(x, y)) = n1u(x, y),(12)

in the supergraph domain. Since the optical power of the lens is given by the
mean curvature of the eikonal surface at the interface, we formulate the following
problem:

P: Find a function u defined on a planner domain D for which the level sur-
faces of the solution S of (12) have a prescribed mean curvature at each point
(x, y, u(x, y)).

To solve this problem we define a coordinate triplet {ê1, ê2, ê3} for each point
on the graph, where ê3 is directed along the outgoing ray at this point. Then,
we need to compute the Laplacian of S at this point with respect to these co-
ordinates. Moreover, we shall express this Laplacian in terms of the refractive
surface u. For this purpose we need to compute, up to second order, the value
of S on the tangent plane to the wavefront at this point. Since this plane is
perpendicular to ê3 by definition, we can do it by a direct geometrical consider-
ation:

Let (x̂, ŷ, ẑ) be the coordinates of a point in the basis {ê1, ê2, ê3}. The origin
of this system is at some point P0 = (x0, y0, u(x0, y0)) on the graph (see Figure
1). A point P1 on the graph in a neighborhood of P0 is represented in the new
coordinates by �r ≡ x̂ê1 + ŷê2 + ûê3. We have

S(P1) − S(P0) = n1�r · e3(13)

where e3 is the direction of the incoming ray.
Let P be an arbitrary point in the neighborhood of P0. We express the eikonal

at P by expanding it in a Taylor series in the ẑ variable:

S(P ) = S(P0) + S0(x̂, ŷ) + ẑ(n2 + S1(x̂, ŷ)) +
ẑ2

2
S2(x̂, ŷ) +

ẑ3

6
S3(x̂, ŷ, ẑ).(14)
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Figure 1. The coordinate systems used in the geometric construction

Substituting the expansion (14) in equation (12) we obtain (to second order
in ẑ):

(15) |n2 + S1 + ẑS2 +
ẑ2

2
S3|2 + |∂x̂S0 + ẑ∂x̂S1 +

ẑ2

2
∂x̂S2|2

+ |∂ŷS0 + ẑ∂ŷS1 +
ẑ2

2
∂ŷS2|2 = n2

2.

Expanding in ẑ we obtain to leading order

(n2 + S1)2 + |∂x̂S0|2 + |∂ŷS0|2 = n2
2.(16)

The choice of the coordinates system implies at once

∂x̂S0(0, 0) = ∂ŷS0(0, 0) = 0.(17)

Therefore it follows from (16) that

S1(0, 0) = 0.

Moreover, differentiating (16) with respect to x̂ and ŷ, we obtain also

∂x̂S1(0, 0) = ∂ŷS1(0, 0) = 0.

Proceeding to the linear (in ẑ) terms in (15), we similarly find

S2(0, 0) = 0.

We now choose P = P1 in (14), and use (13) to write the the eikonal on the
plane tangent to the wavefront at P0 in terms of û (up to second order in û):

S0(x̂, ŷ) = n1�r · �e3 − n2û − ûS1 − û2

2
S2,(18)

i.e.

(19) S0(x̂, ŷ) = (n1ê3 · e3 − n2) û(x̂, ŷ) + n1 (x̂ê1 · e3 + ŷê2 · e3) −

û(x̂, ŷ)S1(x̂, ŷ) − û2

2
S2(x̂, ŷ).
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The mean curvature of the level surface of S at the point P0 is given by half
the Laplacian of S0 divided by n2 at the point x̂ = ŷ = 0. From the formula we
derived for S1 and its gradient and for S2 at (0, 0), and since û(0, 0) = 0, then
twice the required optical power is given by the following operator:

Dn1,n2u(x, y) =
1
n2

(n1ê3 · e3 − n2) ∆û(x̂, ŷ).

Using (9, 10) we return to the original coordinates and write:

Dn1,n2u =
1
n2

(n1 cos θ − n2) ∆θu

where θ is the angle between e3 and ê3, i.e. the angle between an incoming ray
and its refracted outgoing ray. To write the operator explicitly in terms of the
(x, y) coordinates, we use Snell’s law. It is convenient to recall the parameter µ
defined above, and to introduce the additional notation β = 1 − µ2. The angle
ψ between the incoming ray e3 and the normal to surface N is

sinψ =
|∇u|√

1 + |∇u|2 ,

while the angle ψ
′
between N and the outgoing ray ê3 satisfies

sinψ
′
= µ sin ψ.

The angle θ between e3 and ê3 is θ = ψ − ψ
′
. A direct computation yields

cos θ + |∇u| sin θ =
√

1 + β|∇u|2,(20)

while

ê3 · ê = cos
(
ψ − ψ

′)
=

√
1 + β|∇u|2 + µ|∇u|2

1 + |∇u|2 .

We substitute (20) in (8) to obtain an expression for the optical power oper-
ator Dn1,n2u in the (x, y) variables. We obtain

Dn1,n2u = p(|∇u|2)
[(

1 + β|∇u|2)−3/2
∂2
∇u +

(
1 + β|∇u|2)−1/2

∂
2

∇u

]
,(21)

where

p(s) = µ

√
1 + βs + µs

1 + s
− 1.(22)

Problem P can now be written in the form Dn1,n2u = 2H(x, y). Using the
proof of Lemma 3.1, we can write a divergence form for the homogeneous version
of P.

Lemma 4.1. Any solution of the equation

∇ · ∇u√
1 + β|∇u|2 = 0(23)

represents a solution of problem P with mean curvature 0.
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Remark. It is useful to notice at this point that the case in which the surface
u is a mirror, reflecting the incoming parallel wavefront, can be considered as a
special case of refraction. all we have to do is to set n2 = −n1 in the preceding
analysis. Note that this implies an appropriate change of sign in some of the
formulas.

5. The variational principle

We want to analyze the boundary value problem consisting of (23) and the
boundary condition

u = g, (x, y) ∈ ∂D,(24)

where g a smooth (Lipschitz) function. The homogeneous equation (23) can be
derived from a variational principle. Consider the functional

Fβ(u) =
∫

D

1
β

√
1 + β|∇u|2.(25)

Clearly the operator on the left hand side of (23) is the first derivative of Fβ . We
expect the solutions to (23) to be minimizers of (25) subject to the boundary
constraint (24).

The functional (25) has two interpretations besides the optical and geometri-
cal problems we mentioned so far 1. Both interpretations are for negative values
of β. The first example is in the special case β = −1. The variational problem is
now to maximize the functional

∫
D

√
1 − |∇u|2, i.e. to find a maximal space-like

surface in the Minkowsky metric. This problem was considered over R
n in [2].

The second example is the electrostatic Born-Infeld model. This problem was
considered, e.g. by Yang [5], again for the case of the entire space.

To proceed with the boundary value problem we shall consider separately
three cases. We first consider refraction of a wavefront propagating from one
medium into another medium with a higher refraction index. In this case we
have

Theorem 5.1. Assume n1 < n2. Given a bounded Lipschitz domain D ⊂ R
2

and a boundary condition (24), there exists a smooth solution for (23), subject
to the boundary condition. The solution is a minimizer (subject to a similar
boundary constraint) of the functional Fβ.

The proof is straightforward, since under the Theorem’s assumptions β is
positive. The functional Fβ is convex (which implies existence of minimizers),
and the elliptic equation guarantees smoothness for the solution.

The second special case is when u is a mirror surface. As mentioned earlier,
this is equivalent to setting n2 = −n1, i.e. β = 0. The functional Fβ then
collapses into the Dirichlet integral, and the operator (23) becomes the Laplace
operator. We thus obtain the following theorem

1We thank Y. Yang for bringing references [2] and [5] to our attention
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Theorem 5.2. A mirror reflects a parallel wavefront into a wavefront whose
mean curvature is zero if and only if the mirror surface is a harmonic function.
More generally, a mirror reflects a parallel wavefront into a wavefront whose
mean curvature at its intersection points with the mirror is given by H(x, y) if
and only if the mirror surface u satisfies

∆u = 2H(1 + |∇u|2).(26)

Finally we consider the difficult case in which n1 > n2. Since now µ > 1, it
follows that β < 0, and there may be no solutions to equation (23). For example,
one might prescribe on ∂D boundary data g, such that each smooth extension
of it into D satisfies |∇u| ≥ −1/β on some set in D. The physical interpretation
of such boundary data is that every extension of it into D has, on some set in
D, sufficiently large gradient to enforce total reflection. Therefore, a necessary
condition for the existence of a solution to (23) is that the boundary data g
satisfies a condition of the following form.

The SG condition: The boundary data g will be said to satisfy the small
gradient (SG) condition if there exists a smooth extension u0 of g into D, such
that |∇u0| < −1/β everywhere in D.

We conjecture that this condition is also sufficient.

Conjecture 5.3. Assume n1 > n2. Given a bounded Lipschitz domain D ⊂ R
2

and a boundary condition of the form (24), a smooth solution of (23), subject to
the boundary condition, exists if and only if g satisfies the SG condition.

The conjecture can be easily verified for simple special cases such as one-
dimensional or radial setups. To study it for general domains, we want to use
the variational formulation. To emphasize that we only deal with ’space-like’
surfaces, we define Fβ to be ∞ if |∇u| > −1/β over a set of positive measure.
Clearly there exists a minimizer for Fβ even for boundary constraint g that do
not satisfy the SG condition. But in this case the minimizer will hit the obstacle
|∇u| = −1/β on some set in D. When the SG condition holds, the following
estimate can be obtained

Proposition 5.4. Assume n1 > n2. Let ū be a minimizer of Fβ subject to (24).
If g satisfies the SG condition, then∫

D

1√
1 + β|∇ū|2 < ∞.

Proof. We set for simplicity, and without loss of generality G(u) = −F−1(u) =∫
D

√
1 − |∇u|2. The variational problem is, therefore, to maximize G under the

constraint (24). Consider the functional

H(v, |∇u|) =
∫

v +
1
4v

− v|∇u|2.(27)
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One can readily verify that

inf
v≥0

H(v, |∇u|) = G(u),

implying that H is the Legendre transform of G. The infimum is obtained at
v̄ = 1

2
√

1−|∇u|2 . Moreover,

sup
u

inf
v

H = inf
v

sup
u

H ≤ C2.

Since g satisfies the SG condition, there exists a function u0 such that u0|∂D = g,
and |∇u0| < C1 < 1 in D. Therefore∫

D

v̄ +
1
4v̄

− v̄|∇u|2 ≥
∫

D

v̄ +
1
4v̄

− C2
1 v̄ =

∫
D

(1 − C2
1 )v̄ +

1
4v̄

.

Hence
∫

D
v̄ < C3.

We therefore rephrase Conjecture 5.3 as follows:

Conjecture 5.5. Assume n1 > n2. The functional Fβ, subject to boundary
condition (24), is minimized at a function u that is space-like, in the sense that
|∇u| < −1/β in D, if and only if g satisfies the SG condition.
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