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RATIONAL HOMOLOGY 5-SPHERES WITH POSITIVE RICCI
CURVATURE

Charles P. Boyer and Krzysztof Galicki

Abstract. We prove that for every integer k>1 there is a simply connected ra-
tional homology 5-sphere M5

k with spin such that H2(M5
k ,Z) has order k2, and M5

k

admits a Riemannian metric of positive Ricci curvature. Moreover, if the prime
number decomposition of k has the form k=p1···pr for distinct primes pi then M5

k

is uniquely determined.

0. Introduction

Recently, Stephan Stolz brought to our attention the fact that preciously little
is known about the existence of metrics of positive Ricci curvature on simply
connected 5-manifolds in the presence of torsion in H2(M, Z). Indeed up until
now there appears to be only one known non-trivial example of a rational homol-
ogy 5-sphere admitting a metric of positive Ricci curvature. This is somewhat
surprising in light of the fact that it is precisely in dimension 5 that there is
a diffeomorphism classification of closed oriented simply connected 5-manifolds
[Bar, Sm].

Regarding the question of positive Ricci curvature on such manifolds, there is
the well-known result of Sha and Yang [SY] which, in dimension 5, implies that
any k-fold connected sum of S2 ×S3 admits a metric of positive Ricci curvature
(an alternative proof using methods similar to this note was given in [BGN2]).
The non-trivial S3 bundle over S2 admits a metric of positive Ricci curvature
because of its bundle structure [Na]. Lastly, we have the two symmetric spaces
S5 and SU(3)/SO(3) which are actually Einstein [Bes]. The last example is the
rational homology 5-sphere mentioned above. It is non-spin with H2(M, Z) = Z2.
In this note we prove the following.
Theorem A. For every integer k > 1, there exists a simply connected rational
homology 5-sphere M5

k such that H2(M5
k , Z) has order k2, w2(M5

k ) = 0, and M5
k

admits a Sasakian metric with positive Ricci curvature.

Our result establishes the existence of metrics with positive Ricci curvature
on an infinite number of rational homology 5-spheres, but not all the ratio-
nal homology 5-spheres in Smale’s classification of simply connected closed 5-
manifolds with spin, that is vanishing second Stiefel-Whitney class, w2(M). It
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is worth mentioning that our examples are complementary to the homogeneous
manifold SU(3)/SO(3) whose second and third Stiefel-Whitney classes are both
non-vanishing, and thus admits neither a spin structure nor an almost contact
structure. In fact our methods use contact Riemannian geometry, and a result
of Geiges [Gei] says that any simply connected rational homology 5-sphere that
admits a contact structure must be spin. Recall that by Smale’s theorem [Sm]
any rational homology 5-sphere M5 with w2(M) = 0 can be written uniquely
as (for our purposes it is more convenient to rephrase Smale’s result in terms of
elementary divisors instead of invariant factors as he does):

(1) M5 = M5
p

s1
1

# · · ·#M5
psr

r

for some positive integers r, s1, · · · , sr where the pi’s are (not necessarily distinct)
primes, and H2(M5

p
si
i

, Z) = Zp
si
i
⊕Zp

si
i

. In particular, the order of H2(M5, Z) is
always a perfect square.

Our construction gives all possible orders of H2, but it does not pin down the
group precisely in all cases. However, the form of H2 given by Smale’s theorem
says that the elementary divisors of H2 must occur in pairs. Thus, when all of
the primes pi in equation (1) are distinct and all of the si’s equal 1, the order
of H2 uniquely determines the manifold. For example, if |H2(M5, Z)| = 36, the
elementary divisors must be {2, 2, 3, 3}. This determines M5 to be M5

2 #M5
3 .

However, if for example, |H2(M5, Z)| = 64 the elementary divisors can be
{23, 23}, {2, 2, 22, 22}, or {2, 2, 2, 2, 2, 2}, giving the possibilities for M5 as
M5

23 , M5
2 #M5

22 , or M5
2 #M5

2 #M5
2 . In this case we are unable to determine which

manifolds occur. Thus, we stop short of proving that all simply connected ra-
tional homology 5-spheres with w2(M) = 0 admit metrics with positive Ricci
curvature, although we certainly believe this to be the case. However, in cases
when the order determines the group we have the following corollary.

Corollary B. For every positive integer r and every list of distinct primes
p1, · · · , pr, the manifolds

M5 = M5
p1

# · · ·#M5
pr

admits Sasakian metrics with positive Ricci curvature.

In the absence of known obstructions the question regarding the existence
of positive Ricci curvature metrics on any closed simply connected 5-manifold
is an intriguing one. However, in view of Geiges’ result mentioned above, the
answer to the general question is beyond the scope of our current techniques.
On the other hand, we believe that in the spin case one should be able to extend
Theorem A to many other cases and possibly obtain a complete classification.
First it is reasonable that actually all spin rational homology 5-spheres can be
realized as links with positive Sasakian structure. The main problem in proving
this is in computing the torsion group, for which one needs to work, not just
over C, but with the integral monodromy, and this is known to be difficult.
There is a conjectured algorithm due to Orlik [Or3] which has been verified in
certain special cases, and we plan to address this question in the future. Another
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approach would be to use surgery, assuming that one has the existence of positive
Ricci curvature metrics on the indecomposable pieces Mk. However, apparently
the only known method, e.g. [SY], entails finding 2-spheres in Mk such that the
metric in a neighborhood of the S2 is in standard form [St], and this appears to
be obstructed by the 2-torsion.

1. Positive Sasakian Geometry

Let (M, J) is a compact complex manifold and g a Kähler metric on M ,
with Kähler form M. Suppose that ρ′ is a real, closed (1, 1)-form on M with
[ρ′] = 2πc1(M). Then there exists a unique Kähler metric g′ on M with Kähler
form ω′, such that [ω] = [ω′] ∈ H2(M, R), and the Ricci form of g′ is ρ′. The
above statement is the celebrated Calabi Conjecture which was posed by Eugene
Calabi in 1954. The conjecture in its full generality was eventually proved by
Yau in 1976. In the Fano case when c1(M) > 0, i.e., when the first Chern class
can be represented by a positive-definite real, closed (1, 1)-form ρ′ on M , the
conjecture implies that the Kähler form of M can be represented by a metric of
positive Ricci curvature. The key idea behind the proof of Theorem A is based
on a more general Calabi Problem when M is not necessarily a smooth manifold
but rather a V -manifold or an orbifold [DK, Joy]. In the context of foliations
one actually can prove a “transverse Yau theorem” and this was done by El
Kacimi-Alaoui in 1990 [ElK]. In [BGN2] we adapted this to a very special case
of Sasakian foliations.

Recall [Bl, YK] that a Sasakian structure on a manifold M of dimension 2n+1
is a metric contact structure (ξ, η,Φ, g) such that the Reeb vector field ξ is a
Killing field and whose underlying almost CR structure is integrable. Briefly, let
(M,D) be a contact manifold, and choose a 1-form η so that η ∧ (dη)n 
= 0 and
D = ker η. The pair (D, ω), where ω is the restriction of dη to D gives D the
structure of a symplectic vector bundle. Choose an almost complex structure J
on D that is compatible with ω, that is J is a smooth section of the endomorphism
bundle End D that satisfies

(1.1) J2 = −I, dη(JX, JY ) = dη(X, Y ), dη(X, JX) > 0

for any smooth sections X, Y of D. Notice that J defines a Riemannian metric
gD on D by setting gD(X, Y ) = dη(X, JY ). One easily checks that gD satisfies
the compatibility condition gD(JX, JY ) = gD(X, Y ). Now we can extend J to
an endomorphism Φ on all of TM by putting Φ = J on D and Φξ = 0. Likewise
we can extend the metric gD on D to a Riemannian metric g on M by setting

(1.2) g = gD + η ⊗ η.

The quadruple (ξ, η,Φ, g) is called a metric contact structure on M. If in addition
ξ is a Killing vector field and the almost complex structure J on D is integrable
the underlying almost contact structure is said to be normal and (ξ, η,Φ, g)
is called a Sasakian structure. The fiduciary examples of compact Sasakian
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manifolds are the odd dimensional spheres S2n+1 with the standard contact
structure and standard round metric g.

Every Sasakian structure S = (ξ, η,Φ, g) has a 1-dimensional foliation Fξ

associated to it, defined by the flow of the Reeb vector field ξ and called the
characteristic foliation. Associated with this foliation are important invariants,
namely, the basic cohomology groups Hp

B(Fξ), (cf. [Ton]) and in particular one
can consider the basic first Chern class c1(Fξ) [ElK, BGN2] as an element in
H2

B(Fξ). These are not only invariants of the Sasakian structure, but of the entire
deformation class of Sasakian structures. Notice that on a compact Sasakian
manifold H2

B(Fξ) 
= 0 since [dη]B is a non-vanishing class.

Definition 1.3. A Sasakian manifold M is said to be positive if its basic first
Chern class c1(Fξ) can be represented by a basic positive definite (1, 1)-form.

As in [BGN2, BGN4] we consider deformation classes F(Fξ) of Sasakian
structures that have the same characteristic foliation. Recall that two Sasakian
structures S = (ξ, η,Φ, g) and S ′ = (ξ′, η′,Φ′, g′) in F(Fξ) on a smooth mani-
fold M are said to be a-homologous if there is an a ∈ R

+ such that ξ′ = a−1ξ
and [dη′]B = a[dη]B . On a rational homology sphere every S ∈ F(Fξ) belongs
to precisely one of two a-homology classes corresponding to a given Sasakian
structure or its conjugate. In [BGN2] we proved, using El-Kacimi-Alaoui’s [ElK]
“transverse Yau Theorem”:

Theorem 1.4. [BGN2] Let S = (ξ, η,Φ, g) be a positive Sasakian structure
on a compact manifold M of dimension 2n + 1. Then M admits a Sasakian
structure S ′ = (ξ′, η′,Φ′, g′) with positive Ricci curvature a-homologous to S for
some a > 0.

Theorem 1.4 says that to prove the existence of a Sasakian metric with positive
Ricci curvature it suffices to prove the existence of positive Sasakian structures.
In the next section we shall discuss how to construct positive Sasakian structures
on homotopy 5-spheres, and prove Theorem A of the Introduction.

2. The Construction

Our 5-manifolds are constructed as k-fold branched covers of S5 branched over
certain Seifert manifolds that are in turn S1 orbifold V-bundles over a compact
Riemann surface of genus g. Our construction is similar to that in [Sav]. Let
f3(z1, z2, z3) be a weighted homogeneous polynomial of an isolated hypersurface
singularity in C

3 with weights w = (w1, w2, w3) and degree d. The link Lw

defined by Lw = {f3 = 0} ∩ S5 is a Seifert fibration over an algebraic curve Cw

in the weighted projective space P(w). Let g = g(w) denote the genus of the
curve Cw. Then,

Proposition 2.1. Let Lf denote the link of the weighted homogeneous polyno-
mial

f = zk
0 + f3(z1, z2, z3)
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with weights (d, kw) where k is an integer > 1 where f3 is a weighted homoge-
neous polynomial of degree d with weights w = (w1, w2, w3) as above. Suppose
further that gcd(d, k) = 1. Then the link Lf is a smooth simply connected ratio-
nal homology 5-sphere such that the order of H2(Lf , Z) is k2g. Furthermore, Lf

admits Sasakian metrics with positive Ricci curvature.

Proof. Let us briefly recall the construction of the Alexander (characteristic)
polynomial ∆3(t) in [MO] associated to a 3-dimensional link Lf3 . It is the char-
acteristic polynomial of the monodromy map I − h∗ : H2(F, Z)−−→H2(F, Z) in-
duced by the S1

w action on the Milnor fibre F. Thus, ∆3(t) = det(tI − h∗). Now
both F and its closure F̄ are homotopy equivalent to a bouquet of 3-spheres, and
the boundary of F̄ is the link Lf3 . Now Lf3 is connected and its Betti numbers
b1(Lf3) = b2(Lf3) equal the number of factors of (t − 1) in ∆3(t). Now since
the curve Cw is algebraic, b1(Lf3) = 2g where g is the genus of Cw. Following
Milnor and Orlik we let Λj denote the divisor of tj − 1 in the group ring Z[C∗].
Then the divisor of ∆3(t) is given by

(2.2) div ∆3 =
3∏

i=1

(
Λui

vi
− 1)

where we write d
wi

= ui

vi
in irreducible form. Using the relations ΛaΛb =

gcd(a, b)Λlcm(a,b), equation 2.2 takes the form
∑

ajΛj − 1, where aj ∈ Z and
the sum is taken over the set of all least common multiples of all combinations
of the u1, · · · , un. The Alexander polynomial is then given by

(2.3) ∆3(t) = (t − 1)−1
∏
j

(tj − 1)aj ,

and

(2.4) b1(Lf3) = 2g =
∑

j

aj − 1.

Now we compute the divisor div ∆4 of the Alexander polynomial ∆4(t) for
f. We have

div ∆4 = (Λk − 1)div ∆3 = (Λk − 1)
(∑

ajΛj − 1
)

=
∑

j

gcd(k, j)ajΛlcm(k,j)
−

∑
j

ajΛj − Λk + 1.

Since the j’s run through all the least common multiples of the set {u1, · · · , un}
and gcd(k, ui) = 1 for all i, we see that for all j, gcd(k, j) = 1. This implies

b2(Lf ) =
∑

j

aj −
∑

j

aj − 1 + 1 = 0.

Thus, Lf is a rational homology sphere. Next we compute the Alexander poly-
nomial for Lf .

∆4(t) =
(t − 1)
(tk − 1)

∏
j

(tkj − 1)aj

(tj − 1)aj
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(2.5) = (tk−1 + · · · + t + 1)−1
∏
j

( tkj−1 + · · · + t + 1
tj−1 + · · · + t + 1

)aj

.

This gives

∆4(1) = k−1
∏
j

(kj

j

)aj

= kΣjaj−1 = k2g.

So by [MO] the order of H2(Lf , Z) is ∆4(1) = k2g.

To finish the proof it suffices by Theorem 1.4 to show that the induced
Sasakian structure on Lf is positive, i.e. that the basic first Chern class c1(Fξ) ∈
H2

B(Fξ) is positive. Now from our previous work [BG1-2,BGN1-4] Lf is the total
space of a V-bundle over a Kähler orbifold Zf . Moreover, c1(Fξ) is just c1(Zf )
pulled back to Lf . Thus, it is enough to prove that Zf is Fano. This follows
from Lemma 2.6 below which is a special case of Lemma 3.12 of [BGN4].

Lemma 2.6. As algebraic varieties Zf is isomorphic to the weighted projective
space P(w). Hence, its Fano index is |w| =

∑
i wi > 0.

This concludes the proof of Proposition 2.1.

Next we want to show that every order of H2 can be realized. First we show
that f3 realizes curves of any genus. In fact there is a formula due to Orlik and
Wagreich [OW] for the genus of the curve Cw which generalizes the well known
genus formula for curves in P

2 (See also the books [Dim, Or1]). It is

(2.7) g(Cw) =
1
2

( d2

w1w2w3
− d

∑
i<j

gcd(wi, wj)
wiwj

+
∑

i

gcd(d, wi)
wi

− 1
)
.

We are interested in the case g > 0 which implies w1 + w2 + w3 ≤ d [Or2]. It
is easy to see that there are quasi-smooth weighted homogeneous polynomials
f3 with arbitrary genus, but we claim that genus one will suffice to realize all
rational homology spheres of the form given in our main theorem.

Proposition 2.8. For every integer k > 1, there exists a rational homology
5-sphere M5

k whose second homology group H2(M5
k , Z) has order k2 and that

can be realized as the link Lf of a weighted homogeneous polynomial f given in
Proposition 2.1 where f3 cuts out a projective curve of genus one. Furthermore
if k has the form k = p1 · · · pr for distinct primes pi, the manifold M5

k is uniquely
determined up to diffeomorphism.

Proof. By Smale’s classification theorem [Sm] and Proposition 2.1 it suffices
to exhibit for each integer k > 1 an infinite family of weighted homogeneous
polynomials f3 of prime degree p with g(Cw) = 1. For then for a given k we can
choose p such that gcd(k, p) = 1. The infinite family of polynomials is given by

fp(z1, z2, z3) = zp
1 + z2

2z3 + z2
3z1
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with weights w = (1, p+1
4 , p−1

2 ) and degree p where p is a prime of the form
p = 4l − 1. It is well known that there are an infinite number of such primes.
The genus formula then gives

g =
1
2

( 8p2

p2 − 1
− p(

4
p + 1

+
2

p − 1
+

8
p2 − 1

) + 1 +
4

p + 1
+

2
p − 1

− 1
)

=
1
2

1
p2 − 1

(2p2 − 6p + 6p − 2) = 1,

where we have used the fact that gcd(p+1
4 , p−1

2 ) = gcd(l, 2l − 1) = 1, and this
proves the first statement. The second statement follows from the classification
of finite Abelian groups and Smale’s classification theorem [Sm].

Remarks 2.9.
(1) In the case that k = p1 · · · pr for distinct primes pi, the links cannot be

realized using curves of higher genus (g > 1).
(2) It is still an open question as to whether all simply connected rational

homology 5-spheres can be realized by our methods, and if so how does
one distinguish the different elementary divisors. The curves of higher
genus should play a role here.

(3) For each k > 1 there are an infinite number of p’s that satisfy gcd(k, p) =
1. This gives rise to an infinite number of Sasakian deformation classes
F(Fξ) each with Sasakian metrics of positive Ricci curvature. It is also
quite plausible that the different deformation classes belong to distinct
underlying contact structures, but we have not proven this.
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525–556.

[Dim] A. Dimca, Singularities and topology of hypersurfaces, Universitext. Springer-Verlag,
New York, 1992.
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