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WAKIMOTO MODULES FOR TWISTED AFFINE LIE
ALGEBRAS

MATTHEW SZCZESNY

ABSTRACT. We construct Wakimoto modules for twisted affine Lie algebras, and
interpret this construction in terms of vertex algebras and their twisted mod-
ules. Using the Wakimoto construction, we prove the Kac-Kazhdan conjecture
on the characters of irreducible modules with generic critical highest weights in
the twisted case. We provide explicit formulas for the twisted fields in the case of

AP

1. Introduction

Wakimoto modules are an important family of highest weight representations
of affine Lie algebras. They were first constructed in [14] for sl,, and in [3]
for an arbitrary untwisted affine lie algebra g. The Wakimoto module W, j
of level k and highest weight x has the same character as the corresponding
Verma module My, ., yet may possess a different composition series. Wakimoto
modules have important applications in conformal field theory, representation
theory, integrable systems, as well as other areas.

In this paper, we construct Wakimoto modules for twisted affine Lie algebras.
These should have analogous applications, for example in conformal field the-
ory, where they can be used to bosonize orbifold models. We compute explicit
realizations of these representations for the twisted affine lie algebra Ag).

It is our goal to cast the Wakimoto construction in the language of vertex
algebras and their modules. In the untwisted case, the picture is as follows. To
g at level k, we can associate the vacuum module vertex algebra Vj(g). The
Wakimoto construction maps Vi (g) to a tensor product of two vertex algebras
M ® 7Fth where M is a By system, and mhth g Heisenberg vertex algebra.
7" has a family of modules 7%, and so Wy = M @ 7kt" an M @ nF+h
module, inherits a structure of Vj(g) module via the homomorphism ¢ : Vi(g) —
M ® ,n.kJrh‘

In the twisted case, a similar picture holds. Let o4 be a diagram automor-
phism of g, and let g° be the corresponding twisted affine Lie algebra. M has a
twisted module M, and 7" has a family of twisted modules "7, Thus we

obtain a family of twisted M ®@7*+% - modules Wg,. =M° ®7T>’z+7””. Wy¢ ., when
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viewed as a twisted Vi (g) - module via the embedding ¢ : Vi(g) — M ® 7F+h,
has the the structure of a g° module of level k.

Once Wakimoto modules for twisted affine algebras have been constructed,
they can be used to prove the Kac-Kazhdan conjecture about characters of
irreducible modules at the critical level k¥ = —h. In the final sections of this
paper we state and prove this conjecture in the twisted case. Our proof follows
the one in [7] for untwisted affine algebras.

2. Twisted Affine Lie Algebras

In this section we briefly review the definition of twisted affine algebras follow-
ing [11]. We begin by introducing some standard notation. Given a Kac-Moody
algebra €, we use the notation A(€), A(€), AT(E), A (€), and A} (), to denote
respectively, the root lattice of £, the set of non-zero roots of €, the positive roots,
the positive real roots, and the positive imaginary roots.

Let g be a finite-dimensional complex simple Lie algebra, possessing a non-
trivial diagram automorphism oy of finite order N. N =2 when g = A,,, D,,, E¢
and N = 3 when g = D4. We will use the notation oy both to refer to the action
of the automorphism on g, as well as the action on the root lattice of g. Let

GZ@EU

JEL/NZ

e =e~ , and let us write

where g; is the €/ eigenspace of o. Furthermore, if I C g is a subspace in g, let
[, =I[Ng;. Let
N—1 _
Ly =C-d& P g; @ t¥C((t))

j=0
with Lie bracket
[z@t"y@t™ = [z,y] @ "t
d,z@t"] =n(x®t")
Let 7 denote the dual Coxeter number of g. Lg” has a central extension g7 =
Lg? ® C - K defined by the cocycle
wEet",yt™) =n(r,y)dn,—mK

where (z,y) = 5=Tr (ad (z)ad (y)) denotes the normalized invariant inner prod-
uct on g. In our discussion we will also use the untwisted loop algebra

Lg=C-dogoC((t))

with the same commutation relations as above, and its central extension g with
respect to the cocycle w. Given X € g, we will henceforth use the notation X,
to denote X ® t". The automorphism oy of g induces an automorphism org of
Lg and (which extends to g), which acts by or4(X,,) = 0¢(X),. We denote the
dual Coxeter number of §% by h. It is equal to the dual Coexter number of §.
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Let g = n_ ® b @ ny be the triangular decomposition of g. o4 preserves it,
and we have Lg? = Ln? @© Lh? & Ln7. The Lie subalgebra go fixed by oy is
simple, and each g;, (j =0,---, N —1) is an irreducible representation of go. In
the case N = 3, the go representations g; and g_; are equivalent. Let A; denote
the set of non-zero weights occurring in g; (viewed as a go representation), and
gja » & € Aj, the corresponding weight space. We have that A; C A(go),
dim (g, ) = 1, and [g; .83 C g(i+j)modN7a+ﬁ. Let us fix a basis E; , for
gj.0, € Aj, and H]a for hj, a = 1,--- ,dim (h;). Then {E, (), Hpn (j,a), d},
n € Z (resp. n € % + Z) forms a basis for Lg (resp. Lg?).

Let 14 = gj.a ﬂ ny, and let A;’ = {a € Aj|n;j o # 0} We therefore obtain
that

N-1

=P P n.otvC()

=0 aea}

Thus E,, (j,a), 7 € % +Z,a € Aj forms a basis for Ln?.

3. Vertex Algebras and Twisted Modules

For an introduction to vertex algebras see ([8], [12]). For a definition of
twisted module see [2] and [1]. We will denote the vacuum vector by >, and use
~ to denote the singular terms of the operator product expansion (OPE). If V
is a vertex algebra, and A € V is a vector of conformal weight p, then we write
Y(A, z) =3,z Aln]z7"7P - i.e. A[n] denotes the Fourier coefficient in front of
2z~ "7P. It is was shown in ([10], [5])that

Vk (g) = Indﬁ Ck

()]

(where Cj, denotes the one-dimensional representation on which g[[¢]] acts triv-
ially and K acts by k € C) has a vertex algebra structure. Given J € g, this
structure assigns the field

J(z) = YVk(g) (J_11>, 2) ZJ z7m 1
nez

The OPE is as follows:
(1) JH(z)J? (w) ~

The automorphism oy of g induces a vertex algebra automorphism oy, 4y of
Vi(g) which acts by

O-Vk(g)(‘]il e ‘]?I;:kl>) - JE(Jl)n1 T Ug(Jk)nk|>7 n; <0

P w) | )

z—w (z —w)?

To J € g; we can also assign the twisted field

Jg( ) YVk(g) J_]_D Z Z J Z
neEX+72
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If J* € g;,J? € g, the OPE of the twisted fields is as follows:
Z_i/Nwi/N[Jl, J2]a’(w)

(2 — w)

5—i/N yi/N

(2 — w)?
The commutation relations between the Fourier coefficients of fields can be
recovered from the singular terms in the OPE.

(2)  JMI(2) % (w) ~ + E(JY, J?)0y

4. Twisted Fock Spaces

We proceed to define various Bosonic vertex algebras and their twisted mod-
ules that will be used in the twisted Wakimoto realization.

4.1. The (v System. Let A (respectively A%) denote the Heisenberg Lie al-
gebra with generators {a’ Gy Ona(Ge)s 1} ,neZ,j=0,---,N—-1,a € Aj,
(respectively {afl’(j’a), Um,(j,a)s 1} ,m € —%—1—2, m e %—i—Z,j =0,---,N-1l,a €

A;r) and commutation relations
[@n,(j,a)s G, (k,3)] = On,—mj k00,51

(respectively, the same commutation relations with a, a* ’s replaced with a, a* ’s).
The element 1 is central. A (resp. A7) has a “positive” abelian Lie subalgebra

Ay (resp. A9 ) spanned by ELZ’(]» ay > 0, G, (j,a),m > 0 (resp. a;(j’a),n > 0,
Am,(5,a), TN > 0 )
Let C denote the 1-dimensional representation of A, ®C-1 (resp. A7 & C-1)

on which A, (resp. A9 ) acts trivially, and 1 acts by 1, and let
M =Ind? oc,C
and
o __ AT
M° = Ind ‘Ai @(C-IC

It is well-known that M has a vertex algebra structure (see [8]), generated
in the sense of the reconstruction theorem (for the reconstruction theorem for
vertex algebras see [12], [9]) by the field assignments (here > denotes the vacuum
vector):

0(j,0)(2) = Yar (@5 j0)>2) = D @ Gay? "
nes

j,0)(2) = Yar(Go1,0)> 2) = Y lin ()2 "

neEL
M has a vertex algebra automorphism of finite order N, which we will denote
o, induced from the automorphism of A taking

~ %

—j %
. —_— .
n,(j,a) 77 € "0 (j,a)

~ j~
n,(j,a) 77 € n,(j,0)
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M? carries the structure of a oy - twisted M-module. The vertex operation

]

2|~

YG : M — End (M?)[[z~, 2

is generated by the fields

a?j,cx) (Z) = YJ\Z(&S,(]',&)I>7 Z) = Z a;,(j,a)z_n
ne XL +2

Gy (2) = V(a1 o> 2) = Y Gn ez "
neL+7

4.2. The Free Boson. Let H (resp. H?) denote the Heisenberg Lie algebra
with generators {Bn,(i,a)7 1}, n€Z,i=0,--- ,N—1,a=1,--- ,dim(b;), (resp.
{bn,(i,0), 1}, n € ﬁ +Z,i=0---N—-1,a=1,--- ,dim (h;)) and commutation
relations

B, (1.0)> b, () = N(Hi sy Hjp)6n,—m1

(resp. b’s replaced by b’s). The element 1 is central. H (resp. H?) has an abelian
subalgebra H (resp. H7) spanned by Z)n,(i,a)a n >0 (resp. by (i,a), 7 > 0). Let
C, denote the one-dimensional representation of H{; & C -1 on which J{, acts
trivially and 1 acts by 7, and let

ro__ H
™= Indg{+®c.lcy

Then it is well-known that 7" has a vertex algebra structure (see [8]), generated
by the fields

l;i,a(z) = Yﬂ([;—l,(i,a)[>7 Z) = Z En,(i,a)z_n_l
nez

Let x € b§, and let ¢, = x(Ho,,). Let C,, denote the one-dimensional
representation of Hq where by (g,4) acts by c,, all other generators of Hq act by
0, and 1 acts by r. Let

ro __ HT
77 = Ind 300 501 Crx

7" has a vertex algebra automorphism of order N, which we will denote o,
that is induced from the automorphism of H sending b,, (i,a) = € ib,, (i,a)- Then
77 has a structure of o, - twisted 7" - module, where the vertex operation

Y;r’ : " — End (W;"’)[[z% ,z~ || is generated by the fields

bi,a('z) (b—l(za)[> < Z b, (i,a) 7 —n-l

nex+7
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4.3. Tensor Products of Fock Spaces. M ®7" has a vertex algebra structure
with the vertex operation

Yier(A® B,z) =Y (A 2) @ Ye(B,2z), AeM,Ben

and oy gr = op ® 0, is an automorphism of M @ 7" of order N. M7 Qmp? has
the structure of a oprgr - twisted M ® 7 - module, with the vertex operation
given by

Vitgn(A® B,2) =Yy (A,2) @Y7 (B,2), ~AeM,Ben'

5. The Twisted Wakimoto Construction

In this section, we prove the existence of twisted Wakimoto modules using the
untwisted construction. By an embedding of vertex algebras we mean a vertex
algebra homomorphism which is both injective and surjective. The following
theorem follows from ([4], [6]) (see also [8] for the case g = sl,)

Theorem 1 (Untwisted Wakimoto Construction).

(i) There exists an embedding of vertex algebras

(3) Vi(g) —— M @ rhth

for any k € C.
(ii) When k = —h, there exists a vertex algebra homomorphism

) Voile) —— M
This homomorphism is neither surjective nor injective.

Note that when k& = —h (critical level), V_;(g) is not a conformal vertex
algebra.

Remark. Given vector spaces V, W, each equipped with an action of Z/NZ,
we will refer to a linear map f : V — W simply as “equivariant” if f commutes
with this action.

Z/NZ acts on Vi (g) via oy, (5) and on M @ 7*+P via 016 We can therefore
ask whether the vertex algebra homomorphisms ¢ and k are equivariant. This is
indeed the case:

Theorem 2. ¢ and k are equivariant vertex algebra homomorphisms.

Proof. Let G be the simply-connected algebraic group with Lie algebra g. o4
descends to G, preserving B_, the Borel subgroup with Lie algebra b_. Thus
oy descends to the Flag Manifold G/B_, and in particular preserves the big
cell Ny - B_ = n,. This induces an action of Z/NZ on Vect (N - B_) - the
Lie algebra of vector fields on Ny - B_, denoted oy, . It follows from this that
the embedding of g into Vect (N4 ) induced by the left action of G on G/B_ is
equivariant.
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Let {E,, F,}, a € AT(g) be a basis of n_ @®n, such that E, € go, Fa € §_a,
and 04(Eo) = Eo,(a);0(Fa) = Fo,(a)- Let {a1,---,a;} be the set of simple
roots, and set H,, = [E,,, Fs,]. Then {E,, F,, H,,} is a basis for g.

We coordinatize Ny - B_ & n, by z,,a € At(g), with 2, dual to E,, and
LNy by p o, n € Z,oc € AT(g), with x, o dual to E, o. Then oy, acts by

sending To — Zo, (o) Oz, — 8%9((1).
We introduce a Heisenberg algebra isomorphic to A with generators {ay q,

1}, a € At (g), n € Z and commutation relations

*

Ap o

[@n.0 @m,p] = (A Gy 5] = 0

[@n,0 @ 5] = On,—m0a,p1

This change of basis for A simply corresponds to the change of basis on Ln,
from a root basis to one on which or4 acts diagonally. Under the identification
An,a — OTn o,y o — T—n,a, A corresponds to the Weyl algebra of LN, - LB_.

In this basis for A, oar(n,a) = Gnoy(a), oM (@), o) = @ og(a)”

Similarly, we introduce a Lie algebra isomorphic to H with generators {i)ma” 1}
ne€s,1=1,---,r, and commutation relations

[i)mal—a Bm,aj] = n(Hai ) Haj )57%*7”1

Here, O-W(bn,ai) = l;n,a'g(ai)'
If X € g, let Rx(z4) be the polynomial vector field on Ny - B_ induced by
X. We write

Rx(za) = Z Ry (xa)02y
YEAT(g)

We will use the notation RY to denote the vector of M given by the following
expression

> RX(a5,0)a1,0
Y€A*(9)
where RY (ag ) means that we replace zo by ag, in the polynomial Ry. It
follows from the untwisted Wakimoto construction ([4]) that
L(E—l,oéib) = R%ai
L(H_l»aib) = R]I\{/[ai + B—l,ai

M ~ % ~% 7
L(F—l,oéib) = RFai + )\aia‘ 1,0 aO,aib—l,ai

where )\, is some constant depending on the level k. It suffices to verify the
lemma for these vectors, since {E,,, F,,, Ha, } generate g. Because the embed-
ding g — Vect (N - B_) is equivariant, it follows that opre.(RY) = R%(X).
Therefore the embeddings of «(E_14,>),t(H_1,,>) are already equivariant,
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and it remains to prove that Ao, = As(a,)- To shorten notation, we denote the
image of X € Vi(g) under ¢, «(X), by X*, and suppress the vacuum vector. Let

Sai = O-M®7F(Fil,ai) - (JVk(Q)(F_lyai))L = ()‘ai - )‘ag(ai))dil,ag(ai)

Using the fact that ¢ is a vertex algebra homomorphism, and that Yasgr (0 pmex(v),
2) = opgr Ymen (v, z)a;j@m, we have:

YM®7T(O-M®7T(EL—1,O@)7 Z)YM®7r(Saww)

~ YM®W(0M®W(EL—1,ai)’ Z)YM®W(UM®W(Fil,ai)v w)

- YM®7T(O-M®TF(EL—1,047;)’ Z)YM®W((UVk(g) (F—Lai))L? U))

~ O-M®7FYM®7T(EL—1,0¢¢7Z)7 Z)YM®7T(Fi1,ai7w)U]T/[1®7r

- YP]\4®7T(‘EL—1,0'g (ai)? Z)YM®7T(Fil,ag(ai)7w)

UM®7TYM®7T(HL—1,amw)O-]T/[1®7r k(EOCi7FOéi)

~

(z —w) (z —w)?
~ Yaron(HL 000 W) k(Eog(an)s Fog(an)
(z —w) (z —w)?

YM®7F(UM®7T(HL—1,ai)’w) YM@T"(Hil,ag(ai)’w)

N (z —w) O Gw
~0
However, we know from the Wakimoto construction that R%’a = —1, so that

Sa; = 0, which implies that Ao, = As (a,) as desired. This Zproves that ¢ is
equivariant. The equivariance of x is shown similarly. O

Theorem 3. M? ® 7r>]2+h"’ has the structure of a §° representation of level k
and highest weight x.

Proof. The homomorphism ¢ is ¢ - equivariant, so that M? ® ﬂﬁ*‘h"’ inherits

a structure of o - twisted Vi(g) - module. Let J! € g;,J? € g. Consider the
twisted fields Y («(JL11>),2), I = 1,2. Using the associativity property for
twisted modules (see [1]) and the fact that ¢ is a vertex algebra homomorphism,
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we get (the vacuum > is suppressed for brevity):
YM@n( (Jl ), Z)YA‘ZI(@W(L(le),w)

2T NINY (T [0]e(J2), w)

~

(=~ w)
Va2 ) 000 S
N z‘i/Nwi/NY]\‘Z[@W(L(J&JEl), w)
=
Va2 ) 000 T

TN Y g ([T, I%)-0), w)
(z —w)
5=/ N i/ N

~

b IO

This implies that the fields Yo (:(JL,), z) have the same OPE as (2 ), and
hence their Fourier coefficients generate g°. O

‘We will henceforth use the notation W,g X for M° ® Wi*h"’. We call W,g X the
twisted Wakimoto module of level k and highest weight .

Theorem 4. The g% module Wy . has the same formal character as My, - the
Verma module of level k with hzghest weight x.

Proof. The Cartan subalgebra h? = ho ® C- K @ C - d of g7 is spanned by
{Ho,0,0), K,d}, a = 1,--- ,dim (ho). When the level k is understood, we write
elements v € h>* in the form ¥ + nd, n € %Z, where % is the orthogonal
projection of v to b, and ¢ is dual to d.

Unraveling the homomorphism ¢, we see that Hy (g 4) acts on M7 ® W)’z“‘h"’ as

the operator
> > alHow) 6 ayontie o0

G, a) ne,J+Z
aGA

M ® Wi”“" has a basis of monomials of the form

H (a;‘%(j’a))%u,a) H (@, (ja))"m o0 H (B (i.0)) ™

(Gra),aead G,a),aeaTt (i,a)
j J i J n€ xr +2%,n<0
ne—+4+2,n<0 nefr+2,n<0
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where A, (o) and 7, (; 4) are non-negative integers. Now
[Ho,(0,a)s @, (j.)) = —0(Ho,(0,0))
[Ho,(0,a): n,(j,a)] = (Ho,(0,0))
[HO,(O,a)v bn,(i,c)] =0

An easy computation shows that the above monomial lies in the

X + Z )\ (]a)( OZ-F?I(S Z ,un(Ja)a+n5 Z m‘n(,a)é

(ra),aeaf (ra),aead (i,2)
) J ) J n€ fr +2,n<0
nE—%—}—Z,nSO 7LE77\—7+Z,7L<0

k+h,o

weight space. The formal character of M7 ® 7 is therefore given by:

Ch(M° ® W];Jrh"’) =
1 1 1
(5) e H 1 — e—(atnd) H 1 — e—(—a+nd) H 1 —e N

(G,a),aeat Gia),aeaT (i,a)
. J X J ne 4 +2,n>0
ne—4+2,n>0 ne 4 +2,n>0

1
— X | |
=¢ (1 — = )mult(5)
BEAL(87)

which is the character of My, , - the Verma module. O

6. Critical Level
6.1. Restricted Wakimoto Modules. The H? module 7r0 ? has a proper

N

submodule 7T spanned by all non-constant monomials in by, (; ), n < 0, and

in the notatlon of section 4.2 707 /707 2 Cy,y, where we have extended Co
by 0 from H] & C- 1

Thus when k& = —h, the fields Yio- can be made to act on the smaller
Fock-space

Wx = M? ® Co,y
We obtain

Theorem 5v Wi has the structure of a §° representation of highest weight x
and level —h.

‘We will henceforth refer to the module W; as the restricted Wakimoto module
of critical level, following [4].

2. Restricted Contragredient Wakimoto Modules. We will also make
use of the contragredient Wakimoto module W;* In this section we give an
explicit realization of W;* in terms of a Fock space, analogous to that of W;
Let w denote the Chevalley anti-involution of g9. w fixes hp @ C-d@C- K , and
maps F,, (; o) to a multiple of E_,, _; _.).
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Given an bh - diagonalizable category O module V with finite-dimensional
weight spaces, we define its contragredient module V* to be the restricted dual
of V on which g7 acts by

where z € g7, v €V, 0 € V™.
Let A7y C A? denote the abelian subalgebra generated by a,, (), a, (k.53

n <0,m < 0. Let M = Ind ﬁ—;C, where C denotes the trivial representation
of A7 . M? has a basis of monomials of the form

Z(A7 M) = H (anrv(jT7047‘)))‘7,,7‘1([/7*,&1‘) H (a;kls’(js,as))uns,(js,as) >

ny, (Jr,ar) ns,(Js,os)
n,<0 ns<0

We define Z(\, u) € M? by

Z()\’ M) e H (a;klr,(jr,Oér))AnT,(j’maT.) H (ans’(js’as))‘u'“sa(jsaas) >

np, (Jr,or) ng,(js,os)
np,<0 ng <0

We now define a non-degenerate bilinear pairing (, ) : M@ M? — C by

ZOw,Z0wy =[] 2tean! TI  HeeGoan)!

ny,(Gr,ar) ng,(Js,os)
ne<0 ng<0

For v € M”,w € M°?, we have
<v7 A, (j,a) * w) = (a—m(—jya)v’ U}>
<v7 a”tL,(j»Oé) ) w> = <_ain’(_jua) U w>
Let T': End (M?) — End (]Tj ?) denote the “transpose” map defined by

T(an7(jva)) = a_nv(_jva)

T(a:,(j,oa)) = _ain,(—j,a)
and the property T(A- B) =T(B) -T(A), A,B € End (M?). We have
(6) <1), A- ’U)) = <T(A) ", w>

It follows from (6) that if z € g then
(v, w(@) - w) = (T(w(@)) - v, w)

Thus, if we identify M?¢ with the restricted dual M7* via the pairing (, ), then
the action

identifies M with the g% module contragredient to M = WS. A simple compu-
tation shows that at the level of fields, the formula for E; ,(z) acting on M7 is
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the old formula for w(E; ,)(z) acting on M, possibly with some sign changes
among the monomials. Let

—0,* o
W™ = M? ®Co,y

. . . . 7 0
In the same manner as in section 6.1, we extend the g7 action on M? to W, .

7. Proof of the Kac-Kazhdan Conjecture in the Twisted Case

In this section, let (,) denote the inner product on h?* defined as in ([11]).
At the critical level k = —h, a §° highest weight x € h7* automatically satisfies
the Kac-Kazhdan equation (see [13])

(7) 2(x + p, 8) = n(B,5)

corresponding to imaginary roots B € A (§°). This implies that the Verma
module M, is reducible. Let L, denote the irreducible quotient of M,. In [13],
it is conjectured that for y generic, i.e. such y that do not satisfy the equation
(7) for any real roots 3, the formal character of L, is

Ch(Ly) =eX ] !

1_ —«
achr@n 177

In the case of untwisted affine algebras, the Kac-Kazhdan conjecture was proved
in [7]. In this section, we treat the twisted case using the same approach. The
conjecture follows immediately from the following theorem:

Theorem 6. The g° representation Wi 1s 1rreducible for generic critical .

7.1. Proof of Theorem 6. The proof of the theorem will require several steps.
i v, which
generate a Lie algebra isomorphic to Ln7 and commute with E,, (; 4),n € % +
Z,a € A;r. They arise from the right action of Lg? on the big cell of the twisted

semi-infinite Flag Manifold LG? /LB?. Let

There exist operators E’n’(jya),n € % +Z,o € AT, acting on W

Ej@(z) = Z E_'n’(jﬂ)z_n_l
ne 4 +7

The nilpotence of Ln7 implies that the En,(j’a)’s are given by formulas of the
form

(8) Bia(2) =aal)+ Y. arns(x)PE0) (0l (2)

(k,B)
ogk<N,ﬁEA2‘

B)

o) are polynomials.

where > « and 3 > v in the root lattice of gg, and P((f

The operators E,, n < 0 generate a Lie algebra isomorphic to

(G0

L.n =LnlNnget NC[t™~]]
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Let F' be the subspace of W; generated by E,, n < 0 from the vacuum. We

have a map

(G0

7: F®Clag, ;wlh<o — W;z

]7a)
sending a vector of the form

Enh(jhal) e 'Enm(jkﬂr) > ®a:11,(k1,/31) T a:na(ksﬁs)D

to the element of W; given by

Enlv(jlval) T Enk7(jkvar)a;kn17(k1aﬁl) T a;knsy(ksvﬁs)b

Lemma 1. The map 7 is an isomorphism

Proof. Tt is clear that j is injective. The expression (8) for Ej o (z) implies that
we can solve for a;,(2) in terms of aj ;5(z) and E; ,(2). In other words,

0j.0(2) = Eja(2) + Y Brp(2)RD (a5 (2)

where in the summation, 3 > « in the root lattice of go, and RE?S )) are polyno-

mials. Now, W; has a basis of monomials of the form

* *
anl,(jl,al) e a’”r,(jrvas)aml,(kl,ﬁl) T amsa(ksaﬁs)D

where n, < 0,m, < 0. Thus we see that j is surjective.
O

We use the map j to identify F' ® Claj, ; ,\ln<o and Wi The operators

En,(j,a) commute with the action of Ln7 € g7, and so under this identification,
if Pe F,Q € Cla* In<o

n?(j7a)

Ep k) (PRQ)=P& (Ep k) Q)
Let

Lyn? = Ln? Ng@t~¥C[[t¥]] C g7
Then Lyn% acts co-freely on Cla;, (; ,)In<o, i-e. given X € U(L4nT) (here U()

stands for enveloping algebra), there is a unique @ € Cla G a)]

n<o such that
X - =>. Now suppose that v € WZ is a singular vector. Then in particular,
it must be killed by L;nq, and so must be of the foorm P ® >, P € F. Thus

all potential singular vectors must lie in the subspace F@> C F®Cla (j a)]nSO'

The module Wi is graded by A(g?) (if v € W;TC belongs to the u weight space,
deg (v) = x — p). Using the notation of Theorem 4, we write deg (v) = 3 =
B+ md, where 8 € A(g),m € +Z.

Lemma 2. Ifv € F® >, deg(v) = 3, then 3 # 0

Proof. The degree of the operator E'm(jﬂ), n < 0,a € A*(j)is a+nd. It follows
that repeated application of such operators to the vacuum can never result in a
vector with degree mJd. O
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We can apply the same line of argument to the contragredient module Wi*
The operators E, ;o) n>0,a € Aj generate the Lie algebra

Lin® =n_@t~C[[t~]] C §°
The operators Eny(j@) act on W;* as before, and commute with the action
of Lyn?. Let F denote the subspace generated by En’(j’a), n < 0 from the

vacuum in W;* We can show as before that W;* =F®Cla;, (j.a)In<0, that if
En,(j,a) S L+n‘i, P e F, Q S C[az,(j,a)

En,(j,a) : (P ® Q) =P® (En,(j,a) ’ Q)
and that the action of Lyn? on Cla;, ; ]
vector v € W;* lies in F' ® 1>, and can be shown to have degree deg (v) =

B, B#0.

We are now ready to prove Theorem 6.

|n<o, then

n<o 18 co-free. Thus, any singular

Proof. The formal character Ch(V) of a category O g° module V' can be uniquely
expressed as a linear combination of characters of irreducible highest-weight
modules Ch(Ly ), € h7*. Let C$ € Z denote the coefficient with which Ch(Ly)

occurs in Ch(V).

Suppose that W; has a proper submodule. Then either W; or WZ* has a
singular vector v # >. Suppose first that v € Wi, and that v has weight p. It
follows that C%; > 0. Now, W; is a quotient of Wjﬁ,x = M’ ® W?("’, which
by Theorem 4 has the same character as the Verma module M _ hox: It follows
that Cﬁf/[?h’x > 0. By Lemma 2, x — = 3, 5 # 0. Proposition (4.1) from [13]
then implies that M_j, | contains a singular vector of weight i, and hence degree

B + md, contradicting the following Lemma.

The case where v € W;* is treated in the same way. O

Lemma 3. Let x € h7* be a generic critical highest weight, and v € M_j, , a
singular vector. Then deg (v) = mé,m € +Z

Proof. Suppose that v has weight p. By Theorem 2 in [13], there exists a se-

quence of positive roots 1, -+ , 7% € AT(g7), and a sequence of positive integers
N, -+ ,ng such that
2(x +p—n1y1 — = nim1%i-1, %) = ni(Vis Vi)

fori =1,---kand x — u = Zlen,-’yi. Now x —pu = f+mé, § # 0, so
v € Af,(§7) for some r. Let us choose the smallest such r. We have that
2(X +pop—nmim—-— nrflf)’rflyr)/r) = nr(’)/ry’)’r)

and since real and imaginary roots are orthogonal, 2(x + p,vr) = 1 (Vr, V1),
contradicting the assumption that x is generic. O
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8. Wakimoto Realization of Af)

In this section we give explicit realizations of the twisted affine algebra Aéz).
Let R; ; denote the 3 x 3 matrix with a 1 in position (4, j).

Here g = sl;, where we take the standard realization as traceless 3 x 3 matrices.
Under o, g = go @ g1, where go = sl,. As a gg - representation, g; is isomorphic
to the irreducible 5 - dimensional representation. Let « denote the highest root
of sl,. We choose a basis as follows

Eo o =R+ Re23)
Eia=Ra1) — Reags)
Ey 00 = —2R(13)
Ho1 =Ry — Rz3)
Hi1=Raja —2Re2) + B33
Eo,—a = R(2.1) + R3.2)
Ei—a=R@1) — R
Ei 20 = —2R3)
The Wakimoto realization in this case looks as follows (we omit the fields

F1 24(2), E1.—24(2) as these can be calculated via the OPE from the other gen-
erators ):

E(0,0)(2) = —a(0,0)(2) = 1/2: a(y o) (2)a,20)(2) :
E1,0)(2) = —a@,a)(2) + 1/2: af, a)( )a(i,2q)(2) :
Ho1)(2) = a(o a) (2)ag,a)(2) : —: a?l,cx)(z)a(l,a) (2)
= 2:a{1 20)(2)a(1,20)(2) * +b0,1)(2)
Hen(z) = -3 a(o,a)(z)a(o,a)( z) =3 a?l,a)( )a,0)(2) + +b,1)(2)
E0,—a)(2) = 1/2: (a{p,0)(2))*a(0,0)(2) : +3/2 : (a{1,0)(2))*(0,0)(2) :
+ 21 a{y,0)(2)a(1,0)(2)a(1,0)(2) 1 =21 a{1 20y (2)a(1,0)(2) : +
1/ 7y ) () (@) (2))200200 () - ~1/4 (afy 00 () 01201 (2) £ +
L 0{0,0) (2)(1,20) (2)0(1,20) (2) : +(=1 = 2k):a( o (2) — a5, (2)b(0,1)(2)
E1,—a)(2) = 2 1 a{1,90)(2)a(0,0) (2) 1 +2 1 ag o) (2)a(1,0) (2)a(0,0)(2)
£3/2 () () 2a(1.00 ()  +1/2 (afy o0 ()10 (2) :
+1/4: (aZ‘O,a)(z))ga(l’Qa)(z) c—1/4: az‘oya)(z)(a?‘l’a)(z))za(lga)(z) :
+ 1 a(1,0)(2)a(1 20) (2)a(1,20)(2) : +(=1 = 2k)0Da] ,(2)
—ai o(2)ba,1)(2)
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Remark. After this work was completed, we were informed by Prof. T. Takebe
that some of our results had been obtained independently by Prof. G. Kuroki.
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