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WAKIMOTO MODULES FOR TWISTED AFFINE LIE
ALGEBRAS

Matthew Szczesny

Abstract. We construct Wakimoto modules for twisted affine Lie algebras, and
interpret this construction in terms of vertex algebras and their twisted mod-
ules. Using the Wakimoto construction, we prove the Kac-Kazhdan conjecture
on the characters of irreducible modules with generic critical highest weights in
the twisted case. We provide explicit formulas for the twisted fields in the case of

A
(2)
2 .

1. Introduction

Wakimoto modules are an important family of highest weight representations
of affine Lie algebras. They were first constructed in [14] for ŝl2, and in [3]
for an arbitrary untwisted affine lie algebra ĝ. The Wakimoto module Wχ,k

of level k and highest weight χ has the same character as the corresponding
Verma module Mk,χ, yet may possess a different composition series. Wakimoto
modules have important applications in conformal field theory, representation
theory, integrable systems, as well as other areas.

In this paper, we construct Wakimoto modules for twisted affine Lie algebras.
These should have analogous applications, for example in conformal field the-
ory, where they can be used to bosonize orbifold models. We compute explicit
realizations of these representations for the twisted affine lie algebra A

(2)
2 .

It is our goal to cast the Wakimoto construction in the language of vertex
algebras and their modules. In the untwisted case, the picture is as follows. To
ĝ at level k, we can associate the vacuum module vertex algebra Vk(g). The
Wakimoto construction maps Vk(g) to a tensor product of two vertex algebras
M ⊗ πk+ȟ , where M is a βγ system, and πk+ȟ a Heisenberg vertex algebra.
πk+ȟ has a family of modules πk+ȟ

χ , and so Wχ,k = M ⊗ πk+ȟ
χ , an M ⊗ πk+ȟ

module, inherits a structure of Vk(g) module via the homomorphism ι : Vk(g) →
M ⊗ πk+ȟ.

In the twisted case, a similar picture holds. Let σg be a diagram automor-
phism of g, and let ĝσ be the corresponding twisted affine Lie algebra. M has a
twisted module Mσ, and πk+ȟ has a family of twisted modules πk+ȟ,σ

χ . Thus we
obtain a family of twisted M⊗πk+ȟ - modules W σ

k,χ = Mσ⊗πk+ȟ,σ
χ . W σ

k,χ, when
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viewed as a twisted Vk(g) - module via the embedding ι : Vk(g) → M ⊗ πk+ȟ,
has the the structure of a ĝσ module of level k.

Once Wakimoto modules for twisted affine algebras have been constructed,
they can be used to prove the Kac-Kazhdan conjecture about characters of
irreducible modules at the critical level k = −ȟ. In the final sections of this
paper we state and prove this conjecture in the twisted case. Our proof follows
the one in [7] for untwisted affine algebras.

2. Twisted Affine Lie Algebras

In this section we briefly review the definition of twisted affine algebras follow-
ing [11]. We begin by introducing some standard notation. Given a Kac-Moody
algebra k, we use the notation Λ(k), ∆(k), ∆+(k), ∆+

re(k), and ∆+
im(k), to denote

respectively, the root lattice of k, the set of non-zero roots of k, the positive roots,
the positive real roots, and the positive imaginary roots.

Let g be a finite-dimensional complex simple Lie algebra, possessing a non-
trivial diagram automorphism σg of finite order N . N = 2 when g = An, Dn, E6

and N = 3 when g = D4. We will use the notation σg both to refer to the action
of the automorphism on g, as well as the action on the root lattice of g. Let
ε = e

2πi
N , and let us write

g =
⊕

j∈Z/NZ

gj

where gj is the εj eigenspace of σ. Furthermore, if l ⊂ g is a subspace in g, let
li = l ∩ gi. Let

Lgσ = C · d ⊕
N−1⊕
j=0

gj ⊗ t
j
N C((t))

with Lie bracket

[x ⊗ tn, y ⊗ tm] = [x, y] ⊗ tn+m

[d, x ⊗ tn] = n(x ⊗ tn)

Let ř denote the dual Coxeter number of g. Lgσ has a central extension ĝσ =
Lgσ ⊕ C · K defined by the cocycle

ω(x ⊗ tn, y ⊗ tm) = n(x, y)δn,−mK

where (x, y) = 1
2ř Tr (ad (x)ad (y)) denotes the normalized invariant inner prod-

uct on g. In our discussion we will also use the untwisted loop algebra

Lg = C · d ⊕ g ⊗ C((t))

with the same commutation relations as above, and its central extension ĝ with
respect to the cocycle ω. Given X ∈ g, we will henceforth use the notation Xn

to denote X ⊗ tn. The automorphism σg of g induces an automorphism σLg of
Lg and (which extends to ĝ), which acts by σLg(Xn) = σg(X)n. We denote the
dual Coxeter number of ĝσ by ȟ. It is equal to the dual Coexter number of ĝ.
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Let g = n− ⊕ h ⊕ n+ be the triangular decomposition of g. σg preserves it,
and we have Lgσ = Lnσ

− ⊕ Lhσ ⊕ Lnσ
+. The Lie subalgebra g0 fixed by σg is

simple, and each gj , (j = 0, · · · , N − 1) is an irreducible representation of g0. In
the case N = 3, the g0 representations g1 and g−1 are equivalent. Let ∆j denote
the set of non-zero weights occurring in gj (viewed as a g0 representation), and
gj,α , α ∈ ∆j , the corresponding weight space. We have that ∆j ⊂ Λ(g0),
dim (gj,α) = 1, and [gi,α, gj,β ] ⊂ g(i+j) mod N,α+β . Let us fix a basis Ej,α for
gj,α, α ∈ ∆j , and Hj,a for hj , a = 1, · · · ,dim (hj). Then {En,(j,α), Hn,(j,a), d},
n ∈ Z (resp. n ∈ j

N + Z) forms a basis for Lg (resp. Lgσ).
Let nj,α = gj,α ∩ n+, and let ∆+

j = {α ∈ ∆j |nj,α �= 0} We therefore obtain
that

Lnσ
+ =

N−1⊕
j=0

⊕
α∈∆+

j

nj,α ⊗ t
j
N C((t))

Thus En,(j,α), n ∈ j
N + Z, α ∈ ∆+

j forms a basis for Lnσ
+.

3. Vertex Algebras and Twisted Modules

For an introduction to vertex algebras see ([8], [12]). For a definition of
twisted module see [2] and [1]. We will denote the vacuum vector by ✄, and use
∼ to denote the singular terms of the operator product expansion (OPE). If V
is a vertex algebra, and A ∈ V is a vector of conformal weight p, then we write
Y (A, z) =

∑
n∈Z

A[n]z−n−p - i.e. A[n] denotes the Fourier coefficient in front of
z−n−p. It is was shown in ([10], [5])that

Vk(g) = Ind ĝ

g[[t]]Ck

(where Ck denotes the one-dimensional representation on which g[[t]] acts triv-
ially and K acts by k ∈ C) has a vertex algebra structure. Given J ∈ g, this
structure assigns the field

J(z) = YVk(g)(J−1✄, z) =
∑
n∈Z

Jnz−n−1

The OPE is as follows:

J1(z)J2(w) ∼ [J1, J2](w)
z − w

+
k(J1, J2)
(z − w)2

(1)

The automorphism σg of g induces a vertex algebra automorphism σVk(g) of
Vk(g) which acts by

σVk(g)(J1
n1

· · ·Jk
nk

✄) → σg(J1)n1 · · ·σg(Jk)nk
✄, ni < 0

To J ∈ gj we can also assign the twisted field

Jσ(z) = Y σ
Vk(g)(J−1✄, z) =

∑
n∈ j

N +Z

Jnz−n−1
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If J1 ∈ gi, J
2 ∈ g, the OPE of the twisted fields is as follows:

J1,σ(z)J2,σ(w) ∼ z−i/Nwi/N [J1, J2]σ(w)
(z − w)

+ k(J1, J2)∂w
z−i/Nwi/N

(z − w)2
(2)

The commutation relations between the Fourier coefficients of fields can be
recovered from the singular terms in the OPE.

4. Twisted Fock Spaces

We proceed to define various Bosonic vertex algebras and their twisted mod-
ules that will be used in the twisted Wakimoto realization.

4.1. The βγ System. Let A (respectively Aσ) denote the Heisenberg Lie al-
gebra with generators {ã∗

n,(j,α), ãn,(j,α),1} , n ∈ Z, j = 0, · · · , N − 1, α ∈ ∆+
j ,

(respectively {a∗
n,(j,α), am,(j,α),1} , n ∈ − j

N +Z, m ∈ j
N +Z, j = 0, · · · , N−1, α ∈

∆+
j ) and commutation relations

[ãn,(j,α), ã
∗
m,(k,β)] = δn,−mδj,kδα,β1

(respectively, the same commutation relations with ã, ã∗ ’s replaced with a, a∗ ’s).
The element 1 is central. A (resp. Aσ) has a “positive” abelian Lie subalgebra
A+ (resp. Aσ

+) spanned by ã∗
n,(j,α), n > 0, ãm,(j,α), m ≥ 0 (resp. a∗

n,(j,α), n > 0,
am,(j,α), m ≥ 0 )

Let C denote the 1-dimensional representation of A+⊕C ·1 (resp. Aσ
+⊕C ·1)

on which A+ (resp. Aσ
+) acts trivially, and 1 acts by 1, and let

M = Ind A
A+⊕C·1C

and

Mσ = Ind Aσ

Aσ
+⊕C·1C

It is well-known that M has a vertex algebra structure (see [8]), generated
in the sense of the reconstruction theorem (for the reconstruction theorem for
vertex algebras see [12], [9]) by the field assignments (here ✄ denotes the vacuum
vector):

ã∗
(j,α)(z) = YM (ã∗

0,(j,α)✄, z) =
∑
n∈Z

ã∗
n,(j,α)z

−n

ã(j,α)(z) = YM (ã−1,(j,α)✄, z) =
∑
n∈Z

ãn,(j,α)z
−n−1

M has a vertex algebra automorphism of finite order N , which we will denote
σM , induced from the automorphism of A taking

ã∗
n,(j,α) → ε−j ã∗

n,(j,α)

ãn,(j,α) → εj ãn,(j,α)



WAKIMOTO MODULES FOR TWISTED AFFINE LIE ALGEBRAS 437

Mσ carries the structure of a σM - twisted M -module. The vertex operation

Y σ
M : M → End (Mσ)[[z

1
N , z−

1
N ]]

is generated by the fields

a∗
(j,α)(z) = Y σ

M (ã∗
0,(j,α)✄, z) =

∑
n∈−j

N +Z

a∗
n,(j,α)z

−n

a(j,α)(z) = Y σ
M (ã−1,(j,α)✄, z) =

∑
n∈ j

N +Z

an,(j,α)z
−n−1

4.2. The Free Boson. Let H (resp. Hσ) denote the Heisenberg Lie algebra
with generators {b̃n,(i,a),1}, n ∈ Z, i = 0, · · · , N − 1, a = 1, · · · ,dim (hi), (resp.
{bn,(i,a),1}, n ∈ i

N + Z, i = 0 · · ·N − 1, a = 1, · · · ,dim (hi)) and commutation
relations

[b̃n,(i,a), b̃m,(j,b)] = n(Hi,a, Hj,b)δn,−m1

(resp. b̃’s replaced by b’s). The element 1 is central. H (resp. Hσ) has an abelian
subalgebra H+ (resp. Hσ

+) spanned by b̃n,(i,a), n ≥ 0 (resp. bn,(i,a), n ≥ 0). Let
Cr denote the one-dimensional representation of H+ ⊕ C · 1 on which H+ acts
trivially and 1 acts by r, and let

πr = Ind H
H+⊕C·1Cr

Then it is well-known that πr has a vertex algebra structure (see [8]), generated
by the fields

b̃i,a(z) = Yπ(b̃−1,(i,a)✄, z) =
∑
n∈Z

b̃n,(i,a)z
−n−1

Let χ ∈ h∗
0, and let ca = χ(H0,a). Let Cr,χ denote the one-dimensional

representation of Hσ
+ where b0,(0,a) acts by ca, all other generators of Hσ

+ act by
0, and 1 acts by r. Let

πr,σ
χ = Ind Hσ

Hσ
+⊕C·1Cr,χ

πr has a vertex algebra automorphism of order N , which we will denote σπ,
that is induced from the automorphism of H sending b̃n,(i,a) → εib̃n,(i,a). Then
πr,σ

χ has a structure of σπ - twisted πr - module, where the vertex operation
Y σ

π : πr → End (πr,σ
χ )[[z

1
N , z

−1
N ]] is generated by the fields

bi,a(z) = Y σ
π (b̃−1,(i,a)✄, z) =

∑
n∈ i

N +Z

bn,(i,a)z
−n−1
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4.3. Tensor Products of Fock Spaces. M⊗πr has a vertex algebra structure
with the vertex operation

YM⊗π(A ⊗ B, z) = YM (A, z) ⊗ Yπ(B, z), A ∈ M, B ∈ πr

and σM⊗π = σM ⊗σπ is an automorphism of M ⊗πr of order N . Mσ ⊗πr,σ
χ has

the structure of a σM⊗π - twisted M ⊗ π - module, with the vertex operation
given by

Y σ
M⊗π(A ⊗ B, z) = Y σ

M (A, z) ⊗ Y σ
π (B, z), A ∈ M, B ∈ πr

5. The Twisted Wakimoto Construction

In this section, we prove the existence of twisted Wakimoto modules using the
untwisted construction. By an embedding of vertex algebras we mean a vertex
algebra homomorphism which is both injective and surjective. The following
theorem follows from ([4], [6]) (see also [8] for the case g = sl2)

Theorem 1 (Untwisted Wakimoto Construction).
(i) There exists an embedding of vertex algebras

Vk(g) ι−−−−→ M ⊗ πk+ȟ(3)

for any k ∈ C.
(ii) When k = −ȟ, there exists a vertex algebra homomorphism

V−ȟ(g) κ−−−−→ M(4)

This homomorphism is neither surjective nor injective.

Note that when k = −ȟ (critical level), V−ȟ(g) is not a conformal vertex
algebra.

Remark. Given vector spaces V, W , each equipped with an action of Z/NZ,
we will refer to a linear map f : V → W simply as “equivariant” if f commutes
with this action.

Z/NZ acts on Vk(g) via σVk(g) and on M ⊗πk+ȟ via σM⊗π. We can therefore
ask whether the vertex algebra homomorphisms ι and κ are equivariant. This is
indeed the case:

Theorem 2. ι and κ are equivariant vertex algebra homomorphisms.

Proof. Let G be the simply-connected algebraic group with Lie algebra g. σg

descends to G, preserving B−, the Borel subgroup with Lie algebra b−. Thus
σg descends to the Flag Manifold G/B−, and in particular preserves the big
cell N+ · B− ∼= n+. This induces an action of Z/NZ on Vect (N+ · B−) - the
Lie algebra of vector fields on N+ · B−, denoted σN+ . It follows from this that
the embedding of g into Vect (N+) induced by the left action of G on G/B− is
equivariant.
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Let {Eα, Fα}, α ∈ ∆+(g) be a basis of n−⊕n+ such that Eα ∈ gα, Fα ∈ g−α,
and σg(Eα) = Eσg(α), σg(Fα) = Fσg(α). Let {α1, · · · , αr} be the set of simple
roots, and set Hαi

= [Eαi
, Fαi

]. Then {Eα, Fα, Hαi
} is a basis for g.

We coordinatize N+ · B− ∼= n+ by xα, α ∈ ∆+(g), with xα dual to Eα, and
LN+ by xn,α, n ∈ Z, α ∈ ∆+(g), with xn,α dual to En,α. Then σN+ acts by
sending xα → xσg(α), ∂xα → ∂xσg(α) .

We introduce a Heisenberg algebra isomorphic to A with generators {ãn,α,
ã∗

n,α,1}, α ∈ ∆+(g), n ∈ Z and commutation relations

[ãn,α, ãm,β ] = [ã∗
n,α, ã∗

m,β ] = 0

[ãn,α, ã∗
m,β ] = δn,−mδα,β1

This change of basis for A simply corresponds to the change of basis on Ln+

from a root basis to one on which σLg acts diagonally. Under the identification
ãn,α → ∂xn,α, ã∗

n,α → x−n,α, A corresponds to the Weyl algebra of LN+ · LB−.
In this basis for A, σM (ãn,α) = ãn,σg(α), σM (ã∗

n,α) = ã∗
n,σg(α).

Similarly, we introduce a Lie algebra isomorphic to H with generators {b̃n,αi ,1}
n ∈ Z, i = 1, · · · , r, and commutation relations

[b̃n,αi , b̃m,αj ] = n(Hαi , Hαj )δn,−m1

Here, σπ(b̃n,αi) = b̃n,σg(αi).
If X ∈ g, let RX(xα) be the polynomial vector field on N+ · B− induced by

X. We write

RX(xα) =
∑

γ∈∆+(g)

Rγ
X(xα)∂xγ

We will use the notation RM
X to denote the vector of M given by the following

expression
∑

γ∈∆+(g)

Rγ
X(ã∗

0,α)ã−1,γ✄

where Rγ
X(ã∗

0,α) means that we replace xα by ã∗
0,α in the polynomial Rγ

X . It
follows from the untwisted Wakimoto construction ([4]) that

ι(E−1,αi✄) = RM
Eαi

ι(H−1,αi✄) = RM
Hαi

+ b̃−1,αi

ι(F−1,αi
✄) = RM

Fαi
+ λαi

ã∗
−1,αi

− ã∗
0,αi

b̃−1,αi

where λα is some constant depending on the level k. It suffices to verify the
lemma for these vectors, since {Eαi , Fαi , Hαi} generate g. Because the embed-
ding g → Vect (N+ · B−) is equivariant, it follows that σM⊗π(RM

X ) = RM
σg(X).

Therefore the embeddings of ι(E−1,αi
✄), ι(H−1,αi

✄) are already equivariant,
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and it remains to prove that λαi
= λσg(αi). To shorten notation, we denote the

image of X ∈ Vk(g) under ι, ι(X), by Xι, and suppress the vacuum vector. Let

Sαi = σM⊗π(F ι
−1,αi

) − (σVk(g)(F−1,αi))
ι = (λαi − λσg(αi))ã

∗
−1,σg(αi)

Using the fact that ι is a vertex algebra homomorphism, and that YM⊗π(σM⊗π(v),
z) = σM⊗πYM⊗π(v, z)σ−1

M⊗π, we have:

YM⊗π(σM⊗π(Eι
−1,αi

), z)YM⊗π(Sαi , w)

∼YM⊗π(σM⊗π(Eι
−1,αi

), z)YM⊗π(σM⊗π(F ι
−1,αi

), w)

− YM⊗π(σM⊗π(Eι
−1,αi

), z)YM⊗π((σVk(g)(F−1,αi))
ι, w)

∼σM⊗πYM⊗π(Eι
−1,αi

, z), z)YM⊗π(F ι
−1,αi

, w)σ−1
M⊗π

− YM⊗π(Eι
−1,σg(αi)

, z)YM⊗π(F ι
−1,σg(αi)

, w)

∼ σM⊗πYM⊗π(Hι
−1,αi

, w)σ−1
M⊗π

(z − w)
+

k(Eαi
, Fαi

)
(z − w)2

−
YM⊗π(Hι

−1,σg(αi)
, w)

(z − w)
− k(Eσg(αi), Fσg(αi))

(z − w)2

∼ YM⊗π(σM⊗π(Hι
−1,αi

), w)
(z − w)

−
YM⊗π(Hι

−1,σg(αi)
, w)

(z − w)
∼0

However, we know from the Wakimoto construction that Rαi

Eαi
= −1, so that

Sαi
= 0, which implies that λαi

= λσg(αi) as desired. This proves that ι is
equivariant. The equivariance of κ is shown similarly.

Theorem 3. Mσ ⊗ πk+ȟ,σ
χ has the structure of a ĝσ representation of level k

and highest weight χ.

Proof. The homomorphism ι is σ - equivariant, so that Mσ ⊗ πk+ȟ,σ
χ inherits

a structure of σ - twisted Vk(g) - module. Let J1 ∈ gi, J
2 ∈ g. Consider the

twisted fields Y σ
M⊗π(ι(J l

−1✄), z), l = 1, 2. Using the associativity property for
twisted modules (see [1]) and the fact that ι is a vertex algebra homomorphism,
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we get (the vacuum ✄ is suppressed for brevity):

Y σ
M⊗π(ι(J1

−1), z)Y σ
M⊗π(ι(J2

−1), w)

∼ z−i/Nwi/NY σ
M⊗π(ι(J1

−1)[0]ι(J2
−1), w)

(z − w)

+ Y σ
M⊗π(ι(J1

−1)[1]ι(J2
−1), w)∂w

z−i/Nwi/N

(z − w)

∼ z−i/Nwi/NY σ
M⊗π(ι(J1

0J2
−1), w)

(z − w)

+ Y σ
M⊗π(ι(J1

1J2
−1), w)∂w

z−i/Nwi/N

(z − w)

∼ z−i/Nwi/NY σ
M⊗π(ι([J1, J2]−1), w)
(z − w)

+ k(J1, J2)∂w
z−i/Nwi/N

(z − w)

This implies that the fields Y σ
M⊗π(ι(J l

−1), z) have the same OPE as ( 2 ), and
hence their Fourier coefficients generate ĝσ.

We will henceforth use the notation W σ
k,χ for Mσ ⊗πk+ȟ,σ

χ . We call W σ
k,χ the

twisted Wakimoto module of level k and highest weight χ.

Theorem 4. The ĝσ module W σ
k,χ has the same formal character as Mk,χ - the

Verma module of level k with highest weight χ.

Proof. The Cartan subalgebra hσ = h0 ⊕ C · K ⊕ C · d of ĝσ is spanned by
{H0,(0,a), K, d}, a = 1, · · · ,dim (h0). When the level k is understood, we write
elements γ ∈ hσ,∗ in the form γ̄ + nδ, n ∈ 1

N Z, where γ̄ is the orthogonal
projection of γ to h∗

0, and δ is dual to d.
Unraveling the homomorphism ι, we see that H0,(0,a) acts on Mσ ⊗πk+ȟ,σ

χ as
the operator ∑

(j,α)

α∈∆+
j

∑
n∈− j

N +Z

α(H0,a) : a∗
n,(j,α)a−n,(j,α) : +b0,(0,a)

Mσ ⊗ πk+ȟ,σ
χ has a basis of monomials of the form∏

(j,α),α∈∆+
j

n∈− j
N

+Z,n≤0

(a∗
n,(j,α))

λn,(j,α)
∏

(j,α),α∈∆+
j

n∈ j
N

+Z,n<0

(an,(j,α))µn,(j,α)
∏
(i,a)

n∈ i
N

+Z,n<0

(bn,(i,a))τn,(i,a)
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where λn,(j,α) and τn,(i,a) are non-negative integers. Now

[H0,(0,a), a
∗
n,(j,α)] = −α(H0,(0,a))

[H0,(0,a), an,(j,α)] = α(H0,(0,a))

[H0,(0,a), bn,(i,c)] = 0

An easy computation shows that the above monomial lies in the

χ +
∑

(j,α),α∈∆+
j

n∈− j
N

+Z,n≤0

λn,(j,α)(−α + nδ) +
∑

(j,α),α∈∆+
j

n∈ j
N

+Z,n<0

µn,(j,α)(α + nδ) +
∑
(i,a)

n∈ i
N

+Z,n<0

nτn,(i,a)δ

weight space. The formal character of Mσ ⊗ πk+ȟ,σ
χ is therefore given by:

Ch(Mσ ⊗ πk+ȟ,σ
χ ) =

eχ
∏

(j,α),α∈∆+
j

n∈− j
N

+Z,n≥0

1
1 − e−(α+nδ)

∏
(j,α),α∈∆+

j

n∈ j
N

+Z,n>0

1
1 − e−(−α+nδ)

∏
(i,a)

n∈ i
N

+Z,n>0

1
1 − e−nδ

(5)

= eχ
∏

β∈∆+(ĝσ)

1
(1 − e−β)mult(β)

which is the character of Mk,χ - the Verma module.

6. Critical Level

6.1. Restricted Wakimoto Modules. The Hσ module π0,σ
χ has a proper

submodule π̄0,σ
χ spanned by all non-constant monomials in bn,(i,a), n < 0, and

in the notation of section 4.2 π0,σ
χ /π̄0,σ

χ
∼= C0,χ, where we have extended C0,χ

by 0 from Hσ
+ ⊕ C · 1

Thus when k = −ȟ, the fields Y σ
M⊗π can be made to act on the smaller

Fock-space

W
σ

χ = Mσ ⊗ C0,χ

We obtain

Theorem 5. W
σ

χ has the structure of a ĝσ representation of highest weight χ

and level −ȟ.

We will henceforth refer to the module W
σ

χ as the restricted Wakimoto module
of critical level, following [4].

6.2. Restricted Contragredient Wakimoto Modules. We will also make
use of the contragredient Wakimoto module W

σ,∗
χ . In this section we give an

explicit realization of W
σ,∗
χ in terms of a Fock space, analogous to that of W

σ

χ.
Let ω denote the Chevalley anti-involution of ĝσ. ω fixes h0 ⊕C · d⊕C ·K , and
maps En,(i,α) to a multiple of E−n,(−i,−α).
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Given an h - diagonalizable category O module V with finite-dimensional
weight spaces, we define its contragredient module V ∗ to be the restricted dual
of V on which ĝσ acts by

x · φ(v) = φ(ω(x) · v)

where x ∈ ĝσ, v ∈ V, φ ∈ V ∗.
Let Aσ

+ ⊂ Aσ denote the abelian subalgebra generated by an,(j,α), a
∗
m,(k,β),

n ≤ 0, m < 0. Let M̃σ = Ind Aσ

Aσ+
C, where C denotes the trivial representation

of Aσ
+. M̃σ has a basis of monomials of the form

Z(λ, µ) =
∏

nr,(jr,αr)
nr≤0

(anr,(jr,αr))λnr,(jr,αr)
∏

ns,(js,αs)
ns<0

(a∗
ns,(js,αs))

µns,(js,αs)✄

We define Z(λ, µ) ∈ Mσ by

Z(λ, µ) =
∏

nr,(jr,αr)
nr≤0

(a∗
nr,(jr,αr))

λnr,(jr,αr)
∏

ns,(js,αs)
ns<0

(ans,(js,αs))µns,(js,αs)✄

We now define a non-degenerate bilinear pairing 〈, 〉 : M̃σ ⊗ Mσ → C by

〈Z(λ, µ), Z(λ, µ)〉 =
∏

nr,(jr,αr)
nr≤0

λnr,(jr,αr)!
∏

ns,(js,αs)
ns<0

µns,(js,αs)!

For v ∈ M̃σ, w ∈ Mσ, we have

〈v, an,(j,α) · w〉 = 〈a−n,(−j,α)v, w〉
〈v, a∗

n,(j,α) · w〉 = 〈−a∗
−n,(−j,α) · v, w〉

Let T : End (Mσ) → End (M̃σ) denote the “transpose” map defined by

T (an,(j,α)) = a−n,(−j,α)

T (a∗
n,(j,α)) = −a∗

−n,(−j,α)

and the property T (A · B) = T (B) · T (A), A, B ∈ End (Mσ). We have

〈v, A · w〉 = 〈T (A) · v, w〉(6)

It follows from (6) that if x ∈ ĝσ then

〈v, ω(x) · w〉 = 〈T (ω(x)) · v, w〉
Thus, if we identify M̃σ with the restricted dual Mσ,∗ via the pairing 〈, 〉, then
the action

x(v) = T (ω(x)) · v
identifies M̃σ with the ĝσ module contragredient to M = W

σ

0 . A simple compu-
tation shows that at the level of fields, the formula for Ej,α(z) acting on M̃σ is
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the old formula for ω(Ej,α)(z) acting on Mσ, possibly with some sign changes
among the monomials. Let

W
σ,∗
χ = M̃σ ⊗ C0,χ

In the same manner as in section 6.1, we extend the ĝσ action on M̃σ to W
σ,∗
χ .

7. Proof of the Kac-Kazhdan Conjecture in the Twisted Case

In this section, let (, ) denote the inner product on hσ,∗ defined as in ([11]).
At the critical level k = −ȟ, a ĝσ highest weight χ ∈ hσ,∗ automatically satisfies
the Kac-Kazhdan equation (see [13])

2(χ + ρ, β) = n(β, β)(7)

corresponding to imaginary roots β ∈ ∆+
im(ĝσ). This implies that the Verma

module Mχ is reducible. Let Lχ denote the irreducible quotient of Mχ. In [13],
it is conjectured that for χ generic, i.e. such χ that do not satisfy the equation
(7) for any real roots β, the formal character of Lχ is

Ch(Lχ) = eχ
∏

α∈∆re
+ (ĝσ)

1
(1 − e−α)

In the case of untwisted affine algebras, the Kac-Kazhdan conjecture was proved
in [7]. In this section, we treat the twisted case using the same approach. The
conjecture follows immediately from the following theorem:

Theorem 6. The ĝσ representation W
σ

χ is irreducible for generic critical χ.

7.1. Proof of Theorem 6. The proof of the theorem will require several steps.

There exist operators Ēn,(j,α), n ∈ j
N + Z, α ∈ ∆+

j , acting on W
σ

χ, which
generate a Lie algebra isomorphic to Lnσ

+ and commute with En,(j,α), n ∈ j
N +

Z, α ∈ ∆+
j . They arise from the right action of Lgσ on the big cell of the twisted

semi-infinite Flag Manifold LGσ/LBσ
−. Let

Ēj,α(z) =
∑

n∈ j
N +Z

Ēn,(j,α)z
−n−1

The nilpotence of Lnσ
+ implies that the Ēn,(j,α)’s are given by formulas of the

form

Ēj,α(z) = aj,α(z) +
∑
(k,β)

0≤k<N,β∈∆+
k

ak,β(z)P (k,β)
(j,α) (a∗

(l,γ)(z))(8)

where β � α and β � γ in the root lattice of g0, and P
(k,β)
(j,α) are polynomials.

The operators Ēn,(j,α), n < 0 generate a Lie algebra isomorphic to

L−nσ
+ = Lnσ

+ ∩ g ⊗ t−
1
N C[[t−

1
N ]]
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Let F be the subspace of W
σ

χ generated by Ēn,(j,α), n < 0 from the vacuum. We
have a map

 : F ⊗ C[a∗
n,(j,α)]n≤0 → W

σ

χ

sending a vector of the form

Ēn1,(j1,α1) · · · Ēnk,(jk,αr) ✄ ⊗a∗
m1,(k1,β1)

· · · a∗
ms,(ks,βs)✄

to the element of W
σ

χ given by

Ēn1,(j1,α1) · · · Ēnk,(jk,αr)a
∗
m1,(k1,β1)

· · · a∗
ms,(ks,βs)✄

Lemma 1. The map  is an isomorphism

Proof. It is clear that  is injective. The expression (8) for Ēj,α(z) implies that
we can solve for aj,α(z) in terms of a∗

k,β(z) and Ēi,γ(z). In other words,

aj,α(z) = Ēj,α(z) +
∑

Ēk,β(z)R(k,β)
(j,α) (a

∗
i,γ(z))

where in the summation, β � α in the root lattice of g0, and R
(k,β)
(j,α) are polyno-

mials. Now, W
σ

χ has a basis of monomials of the form

an1,(j1,α1) · · · anr,(jr,αs)a
∗
m1,(k1,β1)

· · · a∗
ms,(ks,βs)✄

where np < 0, mq ≤ 0. Thus we see that  is surjective.

We use the map  to identify F ⊗ C[a∗
n,(j,α)]n≤0 and W

σ

χ. The operators
Ēn,(j,α) commute with the action of Lnσ

+ ∈ ĝσ, and so under this identification,
if P ∈ F, Q ∈ C[a∗

n,(j,α)]n≤0

Em,(k,β) · (P ⊗ Q) = P ⊗ (Em,(k,β) · Q)

Let

L+nσ
+ = Lnσ

+ ∩ g ⊗ t
1
N C[[t

1
N ]] ⊂ ĝσ

Then L+nσ
+ acts co-freely on C[a∗

n,(j,α)]n≤0, i.e. given X ∈ U(L+nσ
+) (here U()

stands for enveloping algebra), there is a unique Q ∈ C[a∗
n,(j,α)]n≤0 such that

X · Q = ✄. Now suppose that v ∈ W
σ

χ is a singular vector. Then in particular,
it must be killed by L+nσ

+, and so must be of the form P ⊗ ✄, P ∈ F . Thus
all potential singular vectors must lie in the subspace F ⊗✄ ⊂ F ⊗C[a∗

n,(j,α)]n≤0.

The module W
σ

χ is graded by Λ(ĝσ) (if v ∈ W
σ

χ belongs to the µ weight space,
deg (v) = χ − µ). Using the notation of Theorem 4, we write deg (v) = β =
β̄ + mδ, where β ∈ Λ(g), m ∈ 1

N Z.

Lemma 2. If v ∈ F ⊗ ✄, deg (v) = β, then β̄ �= 0

Proof. The degree of the operator Ēn,(j,α), n < 0, α ∈ ∆+(j) is α+nδ. It follows
that repeated application of such operators to the vacuum can never result in a
vector with degree mδ.
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We can apply the same line of argument to the contragredient module W
σ,∗
χ .

The operators En,(j,−α) n > 0, α ∈ ∆+
j generate the Lie algebra

L+nσ
− = n− ⊗ t

1
N C[[t

1
N ]] ⊂ ĝσ

The operators Ēn,(j,α) act on W
σ,∗
χ as before, and commute with the action

of L+nσ
−. Let F̄ denote the subspace generated by Ēn,(j,α), n ≤ 0 from the

vacuum in W
σ,∗
χ . We can show as before that W

σ,∗
χ = F̄ ⊗C[a∗

n,(j,α)]n<0, that if
En,(j,α) ∈ L+nσ

−, P ∈ F̄ , Q ∈ C[a∗
n,(j,α)]n<0, then

En,(j,α) · (P ⊗ Q) = P ⊗ (En,(j,α) · Q)

and that the action of L+nσ
− on C[a∗

n,(j,α)]n<0 is co-free. Thus, any singular

vector v ∈ W
σ,∗
χ lies in F̄ ⊗ ✄, and can be shown to have degree deg (v) =

β, β̄ �= 0.
We are now ready to prove Theorem 6.

Proof. The formal character Ch(V ) of a category O ĝσ module V can be uniquely
expressed as a linear combination of characters of irreducible highest-weight
modules Ch(Lψ), ψ ∈ hσ,∗. Let Cψ

V ∈ Z denote the coefficient with which Ch(Lψ)
occurs in Ch(V ).

Suppose that W
σ

χ has a proper submodule. Then either W
σ

χ or W
σ,∗
χ has a

singular vector v �= ✄. Suppose first that v ∈ W
σ

χ, and that v has weight µ. It
follows that Cµ

W
σ
χ

> 0. Now, W
σ

χ is a quotient of W σ
−ȟ,χ

= Mσ ⊗ π0,σ
χ , which

by Theorem 4 has the same character as the Verma module M−ȟ,χ. It follows
that Cµ

M−ȟ,χ
> 0. By Lemma 2, χ − µ = β, β̄ �= 0. Proposition (4.1) from [13]

then implies that M−ȟ,χ contains a singular vector of weight µ, and hence degree
β̄ + mδ, contradicting the following Lemma.

The case where v ∈ W
σ,∗
χ is treated in the same way.

Lemma 3. Let χ ∈ hσ,∗ be a generic critical highest weight, and v ∈ M−ȟ,χ a
singular vector. Then deg (v) = mδ, m ∈ 1

N Z

Proof. Suppose that v has weight µ. By Theorem 2 in [13], there exists a se-
quence of positive roots γ1, · · · , γk ∈ ∆+(ĝσ), and a sequence of positive integers
ni, · · · , nk such that

2(χ + ρ − n1γ1 − · · · − ni−1γi−1, γi) = ni(γi, γi)

for i = 1, · · · , k and χ − µ =
∑k

i=1 niγi. Now χ − µ = β̄ + mδ, β̄ �= 0, so
γr ∈ ∆+

re(ĝ
σ) for some r. Let us choose the smallest such r. We have that

2(χ + ρ − n1γ1 − · · · − nr−1γr−1, γr) = nr(γr, γr)

and since real and imaginary roots are orthogonal, 2(χ + ρ, γr) = nr(γr, γr),
contradicting the assumption that χ is generic.
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8. Wakimoto Realization of A
(2)
2

In this section we give explicit realizations of the twisted affine algebra A
(2)
2 .

Let Ri,j denote the 3 × 3 matrix with a 1 in position (i, j).
Here g = sl3, where we take the standard realization as traceless 3×3 matrices.

Under σ, g = g0 ⊕ g1, where g0 = sl2. As a g0 - representation, g1 is isomorphic
to the irreducible 5 - dimensional representation. Let α denote the highest root
of sl2. We choose a basis as follows

E0,α = R(1,1) + R(2,3)

E1,α = R(1,1) − R(2,3)

E1,2α = −2R(1,3)

H0,1 = R(1,1) − R(3,3)

H1,1 = R(1,1) − 2R(2,2) + R(3,3)

E0,−α = R(2,1) + R(3,2)

E1,−α = R(2,1) − R(3,2)

E1,−2α = −2R(3,1)

The Wakimoto realization in this case looks as follows (we omit the fields
E1,2α(z), E1,−2α(z) as these can be calculated via the OPE from the other gen-
erators ):

E(0,α)(z) = −a(0,α)(z) − 1/2 : a∗
(1,α)(z)a(1,2α)(z) :

E(1,α)(z) = −a(1,α)(z) + 1/2 : a∗
(0,α)(z)a(1,2α)(z) :

H(0,1)(z) = − : a∗
(0,α)(z)a(0,α)(z) : − : a∗

(1,α)(z)a(1,α)(z) :

− 2 : a∗
(1,2α)(z)a(1,2α)(z) : +b(0,1)(z)

H(1,1)(z) = −3 : a∗
(0,α)(z)a(0,α)(z) : −3 : a∗

(1,α)(z)a(0,α)(z) : +b(1,1)(z)

E(0,−α)(z) = 1/2 : (a∗
(0,α)(z))2a(0,α)(z) : +3/2 : (a∗

(1,α)(z))2a(0,α)(z) :

+ 2 : a∗
(0,α)(z)a∗

(1,α)(z)a(1,α)(z) : −2 : a∗
(1,2α)(z)a(1,α)(z) : +

1/4 : a∗
(1,α)(z)(a∗

(0,α)(z))2a(1,2α)(z) : −1/4 : (a∗
(1,α)(z))3a(1,2α)(z) : +

: a∗
(0,α)(z)a∗

(1,2α)(z)a(1,2α)(z) : +(−1 − 2k)∂za
∗
0,α(z) − a∗

0,α(z)b(0,1)(z)

E(1,−α)(z) = 2 : a∗
(1,2α)(z)a(0,α)(z) : +2 : a∗

(0,α)(z)a∗
(1,α)(z)a(0,α)(z) :

+ 3/2 : (a∗
(0,α)(z))2a(1,α)(z) : +1/2 : (a∗

(1,α)(z))2a(1,α)(z) :

+ 1/4 : (a∗
(0,α)(z))3a(1,2α)(z) : −1/4 : a∗

(0,α)(z)(a∗
(1,α)(z))2a(1,2α)(z) :

+ : a∗
(1,α)(z)a∗

(1,2α)(z)a(1,2α)(z) : +(−1 − 2k)∂za
∗
1,α(z)

− a∗
1,α(z)b(1,1)(z)
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Remark. After this work was completed, we were informed by Prof. T. Takebe
that some of our results had been obtained independently by Prof. G. Kuroki.
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