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AFFINE SPHERES AND KÄHLER-EINSTEIN METRICS

John C. Loftin

1. Introduction

In this note, we introduce a straightforward correspondence between some
natural affine Kähler metrics on convex cones and natural metrics on certain
hypersurfaces asymptotic to the boundary of these cones. Recall an affine Kähler
metric is a Riemannian metric locally given by the Hessian of a potential function
φ, i.e. gij = ∂2φ

∂xi∂xj . Note that this metric is well defined only up to affine
coordinate changes. Affine Kähler metrics are sometimes called Hessian metrics.
See e.g. [4, 12].

The centroaffine second fundamental form provides a Riemannian metric on
a hypersurface H ⊂ R

n+1, if H is the radial graph of a function − 1
u , with u

negative and convex. The formula for this metric is − 1
u

∂2u
∂ti∂tj , and if u transforms

as section of a certain line bundle, this metric makes sense under projective
coordinate changes. See e.g. [10].

Form a cone

C =
⋃
s>0

sH(1)

of homothetic copies of H. Then consider the affine Kähler metric given by
the potential function log σ, where σ is homogeneous of degree −p and constant
on H. In Section 3 below we show that (up to a constant) this affine Kähler
metric naturally splits along the foliation (1) into an orthogonal sum of a radial
metric ds2

s2 and the centroaffine metric on H. The Cheng-Yau metric and the
Koszul-Vinberg metric are both affine Kähler metrics of this form with p = n+1.

All these notions are invariant under linear isomorphisms of the cone C, and
thus make sense on affine flat manifolds. If the centroaffine metric is complete,
then we see that the corresponding affine Kähler metric is complete, and then
a result of Shima-Yagi [13] shows that the universal cover of an RP

n manifold
with complete metric − 1

uuij must be a bounded convex domain. This extends
the main result of [10] to RP

n manifolds with complete centroaffine metrics.
Moreover, we may avoid the hard analysis of [10]. This gives some hope to
approach structure theorems on RP

n manifolds which admit centroaffine second
fundamental forms which are not strictly positive definite.
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In section 5, we show that this natural correspondence gives a link between
two natural geometric Monge-Ampère equations, the affine sphere equation

det
(

∂2u

∂ti∂tj

)
=

(
−L

u

)n+2

,(2)

and Cheng-Yau’s equation

φ = c log det
(

∂2φ

∂xi∂xj

)
,(3)

where c and L are positive constants and u and φ are strictly convex. In par-
ticular, for the affine sphere given by the radial graph of − 1

u for a solution u
of (2), the corresponding affine Kähler metric is a Cheng-Yau metric, given by
gij = ∂2 log φ

∂xi∂xj for φ solving (3) for an appropriate c. For appropriate boundary
conditions, these two equations were solved by Cheng and Yau in [4, 3] respec-
tively. The fundamental results on the geometry of solutions of (2) are found in
Calabi [1] and Cheng-Yau [5].

2. Some invariant affine Kähler metrics

Consider a convex bounded domain Ω in R
n. Then, by taking the coordinates

in R
n to be inhomogeneous projective coordinates, we have the cone over Ω

C = s(t1, . . . , tn, 1), for s > 0, t = (t1, . . . , tn) ∈ Ω.

Example. Consider the complete affine-invariant metric of the cone C found by
Cheng-Yau [4]. It is given by

gijdxidxj = c
∂2 log V

∂xi∂xj
dxi dxj ,(4)

where c is a positive constant and ω = V dx1 ∧ · · · ∧ dxn+1 is the volume form
of the metric, i.e. V 2 = det gij . Note that putting φ = log V in (3) gives rise
to such metrics. This Cheng-Yau metric is the restriction to C of the complete
Kähler-Einstein metric with negative Ricci curvature on the tube domain T =
C +

√−1 R
n+1. (There is always such a relationship between an affine Kähler

metric and a Kähler metric on a tube domain: simply extend the affine Kähler
potential to be constant along the imaginary fibers to get the Kähler potential.)
The affine invariance of the metric follows from the biholomorphic invariance of
the Kähler-Einstein metric on the tube domain.

Remark. There are three metrics due to Cheng and Yau in this paper: the
affine sphere metric on a hyperbolic affine sphere H, the Cheng-Yau affine Kähler
metric on the cone C, and the Kähler-Einstein metric on the tube domain over
C. We only refer to the second as the “Cheng-Yau metric.” Of course, as we’ll
see below in section 5, these three metrics are all essentially equivalent.
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Our affine Kähler metric (4) is in particular invariant under positive dilations
of the cone C, which are generated by the vector field X = xi ∂

∂xi . The equation
LXω = 0 then implies

xi ∂ log V

∂xi
= −(n + 1).(5)

Therefore, putting σ = V , the Cheng-Yau metric is of the form

∂2 log σ

∂xi∂xj
, σ homogeneous of degree − (n + 1).(6)

Example. Koszul [8] and Vinberg [14] have constructed another affine Kähler
metric on C which is invariant under linear automorphisms of C. Consider the
dual cone C∗, which consists of all linear functionals in the dual space to R

n+1

which are positive on C. Then define

f(x) =
∫
C∗

e−ψ(x)dψ

Then it is straightforward to check that f is homogeneous of degree −(n + 1)
and that ∂2 log f

∂xi∂xj is an invariant affine Kähler metric on C.

Remark. Darvishzadeh and Goldman in [6] used this Koszul-Vinberg metric to
construct a Weil-Petersson metric on the deformation space RP

2(S) of convex
RP

2 structures on a closed oriented surface S of genus g ≥ 2. This metric fits
well with the natural symplectic form to form an almost-complex structure on
RP

2(S), but it is unknown if this structure is integrable. Their construction can
be carried out with any invariant affine Kähler metric of the form (6), and it
is possible that for a good choice of such a metric, we may find an integrable
complex structure, and therefore a Kähler metric, on RP

2(S).

3. The splitting theorem

Consider a metric on C given by

gij = c
∂2 log σ

∂xi∂xj

for σ homogenous of degree −p for c, p positive constants. Then we have
X log σ = −p. Or in other words,

xi ∂ log σ

∂xi
= −p.(7)

Apply ∂
∂xj to this equation to get

xi ∂2 log σ

∂xi∂xj
= −∂ log σ

∂xj
for j = 1, . . . , n.(8)

Consider the family of hypersurfaces Hk = {σ = k} for constants k.
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Theorem 1. Under the affine Kähler metric g, the vector field X has constant
length and is orthogonal to the hypersurface Hk. Furthermore, the restriction
g|Hk

is a equal to a constant Ck times the centroaffine metric h along Hk. Under
the foliation C =

⋃
s>0 sHk, the affine Kähler metric g splits

(C, g) = (R+, cpds2

s2 ) ⊕ (Hk, cp h)

Proof. Consider Y = yi ∂
∂xi a vector tangent to Hk = {σ = k}. Then by (8)

g(X, Y ) = c
∂2 log σ

∂xi∂xj
xi yj = −c

∂ log σ

∂xj
yj = −cY (log σ) = 0.(9)

Similarly,

g(X, X) = c
∂2 log σ

∂xi∂xj
xi xj = −c

∂ log σ

∂xj
xj(10)

= −cX(log σ) = cp.

Now we’ll show that the g restricts to a constant multiple of the centroaffine
metric on this hypersurface.

Let D be the canonical flat connection on C ⊂ R
n+1. Then our affine Kähler

metric g is given by

g(A, B) = (DAd log σ, B)c(11)

where A, B are vectors and (· , ·) is the pairing between one forms and vectors.
Now X is a transverse vector field to Hk. So at x ∈ Hk, R

n+1 = Tx(C) splits
into Tx(Hk) ⊕ 〈X〉. Then we have

DY Z = ∇Y Z + h(Y, Z)X(12)
DY X = −S(Y )(13)

where Y, Z are tangent vectors to Hk, ∇ is a connection on T (Hk), the shape
operator S is an endomorphism of T (Hk), and the centroaffine second funda-
mental form h is a symmetric (0, 2) tensor on Hk. Note that in general, there is
another term τ(Y )X in (13), where τ is a one-form on Hk. Since the position
vector X gives an equiaffine splitting, the τ term vanishes. See [11] for details.

Now consider

0 = Y (d log σ, Z)
= (d log σ, DY Z) + (DY d log σ, Z)
= −p h(Y, Z) + 1

cg(Y, Z)

by (7), (11) and (12). Therefore, g(Y, Z) = cp h(Y, Z) for Y, Z tangent to Hk.

4. A remark about manifolds

All of this theory is invariant under linear automorphisms of the cone, and
therefore patches together on manifolds whose transition functions are such lin-
ear maps, in other words affine flat manifolds which admit a radiant vector field
X. (A vector field X on an affine flat manifold is radiant if DY X = Y for all
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vector fields Y , and D is the flat connection given by the affine flat structure.) It
is clear that our position vector X is radiant then. See e.g. [7] for details about
such manifolds. See also Cheng-Yau [4] for canonical metrics on these manifolds.

Good examples of these manifolds can be constructed from certain RP
n man-

ifolds, i.e. manifolds M whose coordinate charts are open sets in RP
n patched

together by transition maps in PGL(n + 1). If such a manifold admits an ori-
ented tautological bundle (see [9, 10]), then the sections of this bundle are just
radial graphs over the projective coordinate charts. For a choice of inhomoge-
neous projective coordinates [t1, · · · , tn, 1], the radial graph of a function χ(t),
is given by χ(t)(t1, · · · , tn, 1) ∈ R

n+1. It is convenient to work in terms of u a
negative section of the dual of the tautological bundle. Then, for the hypersur-
face given by the radial graph of − 1

u , an easy calculation in [10] shows that the
centroaffine second fundamental form h defined in (12) is given by

h

(
∂

∂ti
,

∂

∂tj

)
= − 1

u

∂2u

∂ti∂tj
.

The positive part of the tautological bundle over such an RP
n manifold M is

then naturally a radiant affine manifold, and is an R
+ bundle over M . The total

space of this bundle, call it C(M), is then made from patching together cones
over the projective coordinate charts of M .

In [10], I showed that if M is compact and admits a convex negative section
u of the dual of the tautological bundle, then M must be the projective quotient
of a bounded convex domain in R

n. We can now use the splitting theorem
above and a result of Shima and Yagi [13] on complete affine Kähler manifolds
to extend this to complete metrics on M .

Theorem 2. Let Mn be a locally projectively flat manifold without boundary.
The following statements are equivalent:

1. M admits an oriented tautological bundle τ and there is a negative section
u of the the dual bundle τ∗ such that − 1

uuij is a complete Riemannian
metric on M .

2. Mn is projectively equivalent to Ω/Γ, where Ω ⊂⊂ R
n ⊂ RP

n, Ω is convex,
and Γ ⊂ PGL(n + 1) acts discretely and properly discontinously on Ω.

Proof. Assume 1. Theorem 1 above provides a complete affine Kähler metric on
C(M). Then by [13], the universal cover of C(M) must be a convex domain in
R

n+1, which obviously must be a cone. Project along the radiant vector field
to the universal cover M̃ of M , which can be put in a single inhomogenous
projective coordinate chart R

n ⊂ RP
n. Then the section u is a negative convex

function on M̃ , and therefore M̃ cannot contain any line.
1. follows from 2. by the existence, due to Cheng-Yau [3, 5], of the affine

sphere metric, which is complete and invariant under projective automorphisms
of Ω.

Remark. In the case M is compact, we can recover this theorem from earlier
results on affine Kähler manifolds due to Cheng-Yau [4] and Shima [12]. We can
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then consider a compact quotient Q of C(M) by a discrete group of homotheties,
which in turn admits an affine Kähler metric given by ∂2 log V

∂xi∂xj . If p = n + 1,
then V is a volume form on Q. Under this condition, Cheng and Yau’s result
implies the universal cover C(M̃) is a convex cone. Shima’s result in [12] is that
the universal cover of any compact affine Kähler metric is a convex domain.

The theorem also follows for M compact by results of Chau on Kähler-Ricci
flow [2] and Cheng-Yau on affine spheres [5]. Form an n + 1 dimensional com-
plex manifold T (M) by patching together the tube domains over each affine
coordinate chart in C(M). Then the complete affine Kähler metric gij on C(M)
is naturally the restriction of a complete Kähler metric on gi̄ on T (M). For
M compact, it is straightforward to check that the geometry of (T (M), gi̄) is
well-behaved in the sense of [2]. Chau’s result says the Ricci flow carries gi̄ to
a complete Kähler-Einstein metric of negative Ricci curvature. By Theorem 3
below, this metric corresponds to an affine sphere with complete affine metric
over the universal cover M̃ . The existence of such a metric implies by [5] that
M̃ is projectively equivalent to a convex bounded domain Ω ⊂ R

n. See e.g. [9].

5. Affine Spheres

An affine sphere (with center 0) is a hypersurface H in R
n+1 whose affine

normal is a constant multiple λ of the position vector. In the case λ > 0 and H
is locally strictly convex, we say the affine sphere is hyperbolic. It is then given
by the radial graph of a function − 1

u , where u satisfies (2) for some L = L(λ).
The affine normal is a transverse vector field to H which is invariant under the
affine special linear group. It may be computed from a given transverse vector
field by the procedure outlined below.

Consider the special case that g is the Cheng-Yau metric as in (4), with
volume form V .

Theorem 3. Each hypersurface Hk = {V = k} is a hyperbolic affine sphere
with center the origin. Under the affine Kähler metric g, the vector field X has
constant length and is orthogonal to the hypersurface Hk. The restriction g|Hk

is
equal to a constant Ck times the affine metric along Hk. Moreover, the natural
foliation C =

⋃
s>0 sH1 gives a metric splitting

(C, g) = (R+, c(n+1) ds2

s2 ) ⊕ (H1, [c(n + 1)]
1

n+2 q),

where q is the affine metric along H1.

Proof. Most of this theorem follows immediately from Theorem 1 above. All
we have to do is to verify that Hk is an affine sphere and therefore that the
centroaffine metric is a constant multiple of the affine metric.

We apply the technique in Nomizu-Sasaki [11, p. 45] to show that X is a
multiple of the affine normal and therefore Hk is an affine sphere. The technique
gives a formula for constructing the affine normal ξ to a hypersurface Hk given
a transverse vector field X. We will find a function φ and a tangent vector field
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Z so that ξ = φX + Z. The technique is this: First compute φ as in (15) below.
Then—for X equiaffine, as in our case—we have Z = zi ∂

∂ti given by the formula

zi = −hij ∂φ

∂tj
.(14)

Here hij is the inverse matrix of the second fundamental form hij = h
(

∂
∂ti ,

∂
∂tj

)
as in (12).

Choose Yi tangent to Hk so that det(Y1, . . . , Yn, X) = 1 and consider

φ =
∣∣∣∣ det
1≤i,j≤n

(h(Yi, Yj))
∣∣∣∣

1
n+2

(15)

=
(

1
c(n + 1)

) n
n+2

∣∣∣∣ det
1≤i,j≤n

(g(Yi, Yj))
∣∣∣∣

1
n+2

by Theorem 1. Now by (9) and (10),

det
1≤i,j≤n

(g(Yi, Yj)) = [c(n + 1)]−1 det
1≤i,j≤n+1

(g(Yi, Yj)),

where in the last determinant, we set Yn+1 = X. This last determinant is equal
to V 2 (our choice of Yi justifies changing the frame to the standard one on
T (Rn+1)), and V = k on Hk. Therefore, φ is constant on Hk, and then, by (14),
the affine normal is given by

ξ = φX = [c(n + 1)]−
n+1
n+2 k

2
n+2 X.

Moreover, the affine metric along Hk is φ−1h = [c(n + 1)]−
1

n+2 k− 2
n+2 g.

Since the metric g on C is invariant under homotheties, the global splitting of
g follows from the local splitting.

Remark. This correspondence gives a conceptually easy derivation of Calabi’s
formula [1] of the affine sphere asymptotic to the boundary of a cone C1 × C2 ⊂
R

n+1 ×R
m+1 in terms of the affine spheres asymptotic to the boundaries of the

convex cones C1 and C2 respectively. For each Ci, construct a positive potential
function σi constant on the affine sphere and homogenous of degree −(n + 1).
Then the Cheng-Yau metric is given by (6). Up to scaling factors, the product
of two Cheng-Yau metrics is again a Cheng-Yau metric (the same is true for
Kähler-Einstein metrics with the same Kähler-Einstein constant). The level sets
of the volume form of this metric, i.e. hypersurfaces σ1σ2 = c > 0, give affine
spheres asymptotic to the boundary of C1 × C2.
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