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AN INSTABILITY PROPERTY OF THE NONLINEAR
SCHRÖDINGER EQUATION ON Sd

N. Burq, P. Gérard, and N. Tzvetkov

Abstract. We consider the NLS on spheres. We describe the nonlinear evolutions
of the highest weight spherical harmonics. As a consequence, in contrast with the
flat torus, we obtain that the flow map fails to be uniformly continuous for Sobolev
regularity above the threshold suggested by a simple scaling argument.

1. Introduction

In [4], we obtained a set of Strichartz inequalities as well as local and global
well-posedness results for the nonlinear Schrödinger equation (NLS) posed on a
compact riemannian manifold (M, g)

i∂tu + ∆gu = f(|u|2)u, u(0, x) = u0(x),(1.1)

where f is a suitably chosen real valued function. A natural question is whether
the particular structure of (M, g) influences the critical threshold for the local
well-posedness Sobolev regularity of the initial data. Our goal here is to give
an affirmative answer to that question. Let us precise what we call local well-
posedness in this paper.

Definition 1.1. (see e.g. [9]) We say that the Cauchy problem (1.1) is locally
well-posed for data in the Sobolev space Hs(M) if for any R > 0 there exist
T > 0 and a functional space XT continuously embedded in C([−T, T ], Hs(M))
and invariant under the natural action of the isometries of M , such that for
every

u0 ∈ BR := {u0 ∈ Hs(M) : ‖u0‖Hs(M) < R}
the Cauchy problem (1.1) has a unique solution u ∈ XT . Moreover

1. The map u0 �→ u is uniformly continuous from BR to C([−T, T ], Hs(M)).
2. If u0 ∈ H1(M), u ∈ C([−T, T ], H1(M)) and satisfies the usual conserva-

tion laws
‖u(t)‖L2(M) = ‖u0‖L2(M),

‖∇gu(t)‖L2(M) +
∫

M

F (|u(t, x)|2)dx = const,

where F is a primitive of f .
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324 N. BURQ, P. GÉRARD, AND N. TZVETKOV

The assumption of uniform continuity of the flow map in the above definition
seems to be natural for semilinear equations. Moreover it turns out to be the
case in the local well-posedness results of [4]. However, as it was pointed to us by
H. Koch, such an assumption is unrealistic in the context of quasilinear problems.

The main issue in our analysis is to study the nonlinear evolution by the
NLS flow of some eigenfunctions of the Laplace-Beltrami operator on the d
dimensional sphere Sd with the canonical metric. The situation turns out to be
particularly simple in 1D. Consider the Cauchy problem

i∂tu + ∂2
xu = |u|2u, u(0, x) = u0(x),(1.2)

where x ∈ S1, t ∈ R. For s < 0, we set

uκ,n(t, x) = κn−s exp(−it(n2 + κ2n−2s)) exp(inx).

It is easy to check that uκ,n solves (1.2) with initial data κn−s exp(inx). More-
over

‖uκ,n(t, ·)‖Hs(S1) ≤ |κ|.
Fix κ ∈]0, 1[. Let {κn} be a sequence of real numbers tending to κ which will be
specified later. We observe that uκ,n(0, ·)−uκn,n(0, ·) tends to zero in Hs(S1) as
n tends to infinity. Take now a positive t. Then there exist C > 0, independent
of n and δ > 0 such that

‖uκ,n(t, ·) − uκn,n(t, ·)‖Hs(S1) ≥ C| exp(−itn−2s(κ2 − κ2
n)) − 1| − Cn−δ.

(1.3)

If we suppose that (1.2) is locally well-posed in Hs(S1), s < 0 then (1.3) would
imply

lim
n→+∞ | exp(−itn−2s(κ2 − κ2

n)) − 1| = 0(1.4)

But (1.4) easily fails by choosing {κn} so that

(κ2 − κ2
n)n−2s = αnβ

for suitable α > 0, β > 0 satisfying 2s + β < 0. This leads to the following
result.

Theorem 1. Let s < 0. Then the Cauchy problem (1.2) is not locally well-posed
for data in Hs(S1).

Remark 1.2.

1. In [2] it is shown that (1.2) is locally well-posed for data in Hs(S1), s ≥ 0.
Therefore the result of Theorem 1 is sharp.

2. The proof of Theorem 1 can be extended to equations of type

i∂tu + ∂2
xu = f(|u|2)u(1.5)
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under weak assumptions on the nonlinearity, for example f(λ) = ±λγ , for
some γ > 0. In the case of (1.5) one has to deal with the following explicit
solution

uκ,n(t, x) = κn−s exp(−it(n2 + f(κ2n−2s))) exp(inx).

3. It is interesting to mention that if the gauge invariance (if u is a solution
of (1.5) then so is eiθu, θ ∈ R) of (1.5) is violated then one can obtain
the local well-posedness of the corresponding Cauchy problem for data more
singular than L2(S1). For instance, the Cauchy problem associated to the
equation

i∂tu + ∂2
xu = u2

is locally well-posed for data in Hs(S1), s > − 1
2 (see [8]).

4. A result related to Theorem 1, due to Kenig-Ponce-Vega, when the spatial
domain is R is obtained in [9]. It is shown that the cubic focusing NLS in
1D, posed on R, is locally ill-posed for data in Hs(R), s < 0. The con-
struction performed in [9] involves some dilatation arguments. Therefore
it seems that the technique of [9] is restricted to the case of data defined
on R.

We now turn to the higher dimensional case. Let (M, g) be a two dimensional
riemannian manifold and ∆g be the corresponding Laplace-Beltrami operator.
We shall restrict our considerations to cubic defocusing nonlinearity but the
arguments can be extended to some other nonlinearities. Thus consider the
Cauchy problem

i∂tu + ∆gu = |u|2u, u(0, x) = u0(x),(1.6)

where x ∈ M , t ∈ R.
Let M = R

2 with the flat metric. Then (1.6) is invariant by a scaling transfor-
mation. Namely, if u(t, x) is a solution of (1.6) then so is

uλ(t, x) = λu(λ2t, λx)

with initial data λu0(λx). Clearly λu0(λx) has the same L2(R2) norm as u0(x).
Heuristically this scaling argument suggests that (1.6) is locally well-posed for
data in Hs(M), s > 0. Moreover this is the case when M = R

2 or M = T
2 with

the flat metrics, due to [5] in the case R
2 and [2] in the periodic case. In this

paper we show that the above heuristics fail when M = S2.

Theorem 2. Let T > 0, s ∈] 3
20 , 1

4 [, κ ∈]0, 1[. Take M = S2 with the canonical
metric in (1.6). For n ∈ N, we denote by ψn : S2 → C the restriction to S2 of
the harmonic polynomial (x1 + ix2)n. Then for t ∈ [0, T ] the solution un(t) of
(1.6) with initial data κφn, where φn = n

1
4−sψn can be represented as

un(t) = κ exp(−it(n(n + 1) + κ2ωn))(φn + rn(t)),(1.7)

where ωn ≈ n
1
2−2s and rn(t) satisfies

‖rn(t)‖Hs(S2) ≤ CT n−δ(1.8)
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where δ > 0 and CT depends on T but not on n. Moreover there exists C > 0,
independent of T and n such that

‖un‖L∞(R;Hs(S2)) ≤ Cκ.(1.9)

As a consequence the Cauchy problem (1.6) is not locally well-posed for data in
Hs(S2).

Remark 1.3.

1. The existence of u ∈ C∞(R × S2) is guaranteed by Theorem 2 of [4].
2. The condition s > 3

20 ensures that (1.7) is valid on an arbitrary time
interval. If one is interested only in the local well-posedness, a slight
modification of the proof of Theorem 2 gives the ill-posedness of the
Cauchy problem (1.6) in Hs(S2), s ∈ [0, 1

4 [ (see section 3.3 below).
3. In [4], we have proved the local well-posedness of (1.6) in Hs(M), s > 1

2 .
Therefore, in the case M = S2 the critical Sobolev regularity for the local
well-posedness of (1.6) is in the interval [ 14 , 1

2 ].
4. The choice of ψn is related to earlier works on spherical harmonics by

Stanton-Weinstein [15] and Sogge [14]. In these references, it is proven that
ψn maximizes the quotient ‖ψ‖L4/‖ψ‖L2 among the spherical harmonics
of degree n. Moreover, observe that ψn concentrates on the closed geodesic
x2

1 + x2
2 = 1.

The method of proof of Theorem 2 can be further exploited in order to prove
ill-posedness results in the energy space for H1 subcritical NLS posed on S6.
These results can be regarded as a consequence of the infinite propagation speed
of the Schrödinger operator since similar phenomenon does not occur in the con-
text of H1 subcritical semilinear wave equation, with power nonlinearity, posed
on S6. On the other hand, in the H1 supercritical case some semilinear wave
equations on R

3 are ill-posed in the energy space (see recent works of Brenner-
Kumlin [3] and Lebeau [10]). Counterexamples for subcritical semilinear wave
equations containing derivative nonlinearities are constructed in [11].

Theorem 3. Let α ∈]0, 1]. Then the Cauchy problem

i∂tu + ∆S6u = 〈u〉αu, u(0, x) = u0(x),(1.10)

where x ∈ S6, t ∈ R, 〈u〉 :=
√

1 + |u|2 is not locally well-posed for data in
H1(S6).

Remark 1.4. The question of extending our results to more general geometries
than the sphere is still open. However, if (M, g) is a compact orientable d-
dimensional riemannian manifold with a closed stable (elliptic) geodesic, then
by considering quasimodes for initial data as constructed in [13] (see also [1],
[7], [6]), one easily shows that for s < d−1

4 , d ≥ 2 the Picard iteration scheme
applied to the integral formulation of the nonlinear Schrödinger equation

i∂tu + ∆gu = ±|u|2u
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sends at the second iteration any ball of Hs(M) into an unbounded set (see [12]
and the references therein for related results in other contexts).

The rest of this note is organized as follows. In Section 2, we collect some
algebraic facts which are useful in the sequel. In Section 3, we first give the
proof of Theorem 2. Then we extend the argument providing the ill-posedness
for s ∈ [0, 1

4 [. Since the proof of Theorem 3 is very similar to that of Theorem
2, in section 4 we only give the main lines of the proof of Theorem 3. Finally,
at the end of Section 4, we discuss instability features of some weak solutions of
(1.10).

2. Some algebraic lemmas

In this section, n is a fixed positive integer, and d ≥ 2. For every α ∈ R, we
denote by Rα the rotation of R

d+1 defined by

Rα(x1, x2, x3, .., xd+1) = (cos α x1 − sinα x2, sin α x1 + cos α x2, x3, .., xd+1)

and by R�
α the associated unitary operator of L2(Sd),

R�
αu(x) = u(Rα(x)).

For x ∈ Sd, we set ψ(x) = (x1 + ix2)n. Observe that R�
αψ = exp(inα)ψ for every

α ∈ R.

Lemma 2.1. Let u ∈ L2(Sd) satisfying, for every α ∈ R

R�
αu = exp(inα)u.(2.1)

Then the decomposition of u into spherical harmonics reads

u = ωψ +
∑

j

gj

where ω ∈ C and each gj is a spherical harmonic of degree > n.

2.1. Proof of Lemma 2.1. Since the family (R�
α)α∈R is a one-parameter group

of unitary operators leaving invariant the space of spherical harmonics of degree
l, one can find an orthonormal basis (hk) of L2(Sd) such that, for every k, hk is
a spherical harmonic satisfying, for some nk ∈ Z, for every α ∈ R,

R�
αhk = exp(inkα)hk.(2.2)

Comparing (2.1) and (2.2), the decomposition of u in the basis (hk) reads

u =
∑

k : nk=n

ckhk.(2.3)

Let h be a spherical harmonic of degree l satisfying property (2.1) for every
α ∈ R. Denote by P the l-homogeneous polynomial on R

d+1 such that h = P|Sd .
Then (2.1) is equivalent to

∀x ∈ R
d+1, P (Rα(x)) = exp(inα)P (x).(2.4)
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Let us decompose P according to the powers of z = x1 + ix2 and z̄

P (x1, x2, x3, .., xd+1) =
∑

p+q≤l

zpz̄qApq(x3, .., xd+1)(2.5)

where Apq is a homogeneous polynomial of degree l − p − q. In view of (2.4),
(2.5) and

P (Rα(x)) =
∑

p+q≤l

ei(p−q)αzpz̄qApq(x3, .., xd+1),(2.6)

we conclude that Apq = 0 unless p − q = n. As a consequence,

l ≥ p + q ≥ p − q = n

and, if l = n, then p = n and q = 0, so that P = czn, i.e. h = cψ. Coming back
to decomposition (2.3), this completes the proof.

The main advantage of property (2.1) is that it is invariant under the nonlinear
transformations

u �−→ f(|u|2)u.

Combining this remark with Lemma 2.1, we obtain the following two statements.

Lemma 2.2. Let f ∈ L∞
loc(R+). Then there exists ω ∈ C such that

f(|ψ|2)ψ = ωψ + r,

where r is a sum of spherical harmonics of degree > n.

Lemma 2.3. Let c ∈ C and f ∈ C∞(R+), such that (1.1) is locally well-posed
(see Definition 1.1) in Hs(M). Let u ∈ C([−T, T ], Hs(M))∩XT be the solution
of (1.1) satisfying u(0) = cψ. Then for every t ∈ [−T, T ],

u(t) = ω(t)ψ +
∑

j

gj(t),

where ω(t) ∈ C and each gj(t) is a spherical harmonic of degree > n.

Lemma 2.2 is an immediate consequence of Lemma 2.1 and the above remark.
Lemma 2.3 follows from Lemma 2.1 and the observation that R�

αu and exp(inα)u
belong to C([−T, T ], Hs(M)) ∩ XT and solve (1.1) with the same Cauchy data
c exp(inα)ψ.

3. Proof of Theorem 2

We drop the subscript n for conciseness. We first prove (1.9). Recall the
following conservation laws for (1.6).

‖u(t)‖2
L2 = κ2‖φ‖2

L2 ,(3.1)

‖∇u(t)‖2
L2 +

1
2
‖u(t)‖4

L4 = κ2‖∇φ‖2
L2 +

κ4

2
‖φ‖4

L4 .(3.2)

The identity (3.1) results from the gauge invariance of (1.6) while (3.2) is due to
the time translation invariance of (1.6). Since one has explicit asymptotics with
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respect to n of all Sobolev and Lebesgue norms of φ one can obtain bounds for
u. First a use of (3.1) yields

‖u‖L∞(R;L2) ≤ Cκn−s.

Next using (3.2), we infer that

‖∇u‖L∞(R;L2) ≤ Cκ(‖∇φ‖L2 + ‖φ‖2
L4)

≤ Cκn1−s.

An interpolation argument gives

‖u‖L∞(R;Hs) ≤ ‖u‖1−s
L∞(R;L2)‖u‖s

L∞(R;H1)

≤ Cκ

which proves (1.9).
Further we set c(t) := exp(−it(n(n + 1) + κ2ω)), where

ω :=
‖φ‖4

L4

‖φ‖2
L2

≈ n
1
2−2s.

Then c(t) satisfies the equation

ict − n(n + 1)c = κ2ω|c|2c.(3.3)

Write u(t) = κc(t)(φ + w(t)). Using Lemma 2.2 and (3.3), we obtain that the
equation for w(t) is

iwt + (∆S2 + n(n + 1) + κ2ω)w = κ2(|φ + w|2(φ + w) − |φ|2φ + r).(3.4)

with w(0) = 0 and
r ∈ ⊕l≥n+1Ker(∆S2 + l(l + 1)).

Further we decompose w(t) = z(t)φ + q(t) for some z : R → C and q : R →
C∞(S2). Then due to Lemma 2.3, we can suppose

q(t) ∈ ⊕l≥n+1Ker(∆S2 + l(l + 1))(3.5)

The proof of Theorem 2 will be completed1 once we prove the following two
lemmas.

Lemma 3.1. There exists a constant C > 0, independent of T and n such that

‖q(t)‖Hs ≤ Cn− 1
4−s.

Lemma 3.2. There exists a constant CT > 0, which depends on T but not on
n such that

sup
t∈[0,T ]

|z(t)| ≤ CT n
1
4−3s.

1The ill-posedness in Hs(S2) follows from an argument similar to the one in 1D already
performed in the introduction.
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3.1. Proof of Lemma 3.1. We first rewrite the conservation laws (3.1), (3.2)
in terms of z(t) and q(t). Since φ is orthogonal to q(t) in L2(S2) as well as ∇φ
to ∇q(t), we can rewrite (3.1) and (3.2) as

|1 + z(t)|2‖φ‖2
L2 + ‖q(t)‖2

L2 = ‖φ‖2
L2 ,(3.6)

|1 + z(t)|2‖∇φ‖2
L2 + ‖∇q(t)‖2

L2 +
1

2κ2
‖u(t)‖4

L4 = ‖∇φ‖2
L2 +

κ2

2
‖φ‖4

L4 .(3.7)

Observe that

‖∇φ‖2
L2 = (φ | − ∆S2 φ) = n(n + 1)‖φ‖2

L2 ,

where (·|·) denotes the L2(S2) scalar product. Therefore multiplying (3.6) with
−n(n + 1) and adding it to (3.7) gives

‖∇q(t)‖2
L2 − n(n + 1)‖q(t)‖2

L2 ≤ κ2

2
‖φ‖4

L4

≤ Cn
1
2−4s.

Due to (3.5), we can write q(t) =
∑

l≥n+1 ql(t) where ql ∈ Ker(∆S2 + l(l + 1)).
Hence

‖∇q(t)‖2
L2 − n(n + 1)‖q(t)‖2

L2 =
∑

l≥n+1

(l(l + 1) − n(n + 1))‖ql(t)‖2
L2 .(3.8)

If l ≥ n + 1, the following inequalities hold

l(l + 1) − n(n + 1) ≥ Cn

and
l(l + 1) − n(n + 1)

l(l + 1)
≥ Cn−1.

Therefore we arrive at

‖q(t)‖2
L2 ≤ Cn− 1

2−4s

and

‖∇q(t)‖2
L2 ≤ Cn

3
2−4s.

An interpolation argument yields

‖q(t)‖Hs ≤ ‖q(t)‖1−s
L2 ‖q(t)‖s

H1

≤ Cn− 1
4−s.

This completes the proof of Lemma 3.1.
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3.2. Proof of Lemma 3.2. We project the equation (3.4) on φ and obtain the
following equation for z(t)

izt + ωκ2z =
κ2

‖φ‖2
L2

(
(|φ + w|2(φ + w) |φ) − (|φ|2φ |φ)

)

=
κ2

‖φ‖2
L2

{
∫

(2|φ|2w + φ2w̄)φ̄

+
∫

(2Re(φ̄w)wφ̄ + |w|2|φ|2 + |w|2wφ̄)}.

Recall that w(t) = z(t)φ + q(t) and |φ|2φ = ωφ + r. Therefore the equation for
z(t) can be rewritten as

izt + ωκ2z = 2ωκ2z + ωκ2z̄ +
κ2

‖φ‖2
L2

O(|z|2
∫

|φ|4 + |z|3
∫

|φ|4

+
∫

|q|3|φ| +
∫

|q|2|φ|2 + |(q|r)|).

We first estimate the source terms. Write∫ |q|3|φ|
‖φ‖2

L2

≤ Cn2s‖q‖3
L3‖φ‖L∞

≤ Cn2s‖q‖2
L2‖∇q‖L2‖φ‖L∞

≤ Cn2s n− 1
2−4s n

3
4−2s n

1
4−s

= Cn
1
2−5s.

Further we have ∫ |q|2|φ|2
‖φ‖2

L2

≤ Cn2s‖q‖2
L2‖φ‖2

L∞

≤ Cn2s n− 1
2−4s n

1
2−2s

= Cn−4s.

and
|(q|r)|
‖φ‖2

L2

≤ Cn2s‖q‖L2‖r‖L2

≤ Cn2s n− 1
4−2s n

1
2−3s

= Cn
1
4−3s.

Therefore if s > 1
8 the equation for z(t) can be written as

izt = 2ωκ2Re(z) + O(ω|z|2 + ω|z|3 + n
1
4−3s)(3.9)

with z(0) = 0. Moreover using once again the L2 conservation law (3.6), we have

1 − |1 + z|2 =
‖q(t)‖2

L2

‖φ‖2
L2

= O(n− 1
2−2s).
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Therefore
|2Re(z) + |z|2| = O(n− 1

2−2s)

and the equation (3.9) takes the form

izt = O(ω|z|2 + ω|z|3 + n
1
4−3s),

with ω = O(n
1
2−2s). Hence if we set

M(T ) = sup
0≤t≤T

|z(t)|,

we obtain

M(T ) ≤ CT (n
1
2−2s([M(T )]2 + [M(T )]3) + n

1
4−3s).(3.10)

In view of (3.10), we set
M̃(T ) = n3s− 1

4 M(T )

and therefore (3.10) yields

M̃(T ) ≤ CT (1 + n
3
4−5s([M̃(T )]2 + n

1
4−3s[M̃(T )]3)).

Since M̃(0) = 0 and s > 3
20 , we obtain that M̃ ≤ CT uniformly with respect to

n. This completes the proof of Lemma 3.2.

3.3. Ill-posedness for s ∈ [0, 3
20 ]. In order to prove that (1.6) is not locally

well-posed for data in Hs(S2), s ∈ [0, 3
20 ] one needs to slightly extend the argu-

ment of section 3.2. Suppose that (1.6) is locally well-posed for data in Hs(S2),
s ∈ [0, 3

20 ]. Using the above method, we need to show only that (1.7) holds on a
small time interval [0, Tn] such that

lim
n �→+∞n

1
2−2s Tn = +∞(3.11)

since the argument providing the ill-posedness performed in the introduction
works equally well provided that (3.11) holds. Therefore, with the notation of
the previous section, one needs a bound for M(T ) only for T ∈ [0, Tn] with Tn

satisfying (3.11). One now defines M̃(T ) as

M̃(T ) = T−1
n n3s− 1

4 M(T )

and therefore for T ∈ [0, Tn] one has

M̃(T ) ≤ C(1 + T 2
nn

3
4−5s([M̃(T )]2 + Tn n

1
4−3s[M̃(T )]3)).

Let ε > 0 be a small number to be fixed later. For s ≥ 0, we choose Tn as follows

Tn := n
5
2 s− 3

8−ε.

Clearly with the above choice of Tn the relation (3.11) holds provided ε � 1.
Moreover, we have a uniform bound for M̃(T ), T ∈ [0, Tn]. This implies that
for t ∈ [0, Tn] one has |z(t)| ≤ cn− 1

2 s− 1
8−ε which proves the validity of (1.7) the

interval [0, Tn].
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4. Sketch of the proof of Theorem 3

Suppose that (1.10) is locally well-posed in H1(S6). Let ψ : S6 → C be the
restriction to S6 of the harmonic polynomial (x1 + ix2)n. Then it is easy to see
that ‖ψ‖Lq ≈ n− 5

2q . Consider (1.10) with Cauchy data u(0) = κφ := κn
1
4 ψ,

where κ ∈ [ 12 , 1]. Then ‖φ‖H1 ≈ 1 and due to Lemma 2.1 there exists ω ∈ C and
r so that

(κ−2 + |φ|2)α/2φ = ωφ + r,

where r is a sum of spherical harmonics of degree > n. Moreover, we can check
that uniformly in κ ∈ [ 12 , 1],

ω = c�nα/4 + O(n−δ),

where δ > 0 and c� is independent of κ. Now we set c(t) := exp(−it(n(n +
5) + καω)). Let u(t) be the solution of (1.10) subject to initial data φ. Writing
u(t) = κc(t)(φ + w(t)) we obtain that the equation for w(t) is

iwt + (∆S6 + n(n + 5) + καω)w

= κα((κ−2 + |φ + w|2)α/2(φ + w) − (κ−2 + |φ|2)α/2φ + r).

Let w(t) = z(t)φ + q(t). We now give the estimates of the quantities involved in
the argument, performed in details in the previous section.

Estimate for ‖r‖L2 . Clearly

‖r‖L2 ≤ C‖φα+1‖L2 ≤ Cn
α−4

4 .

Estimate for ‖q(t)‖L2 . Similarly to the previous section one can check that

n‖q(t)‖2
L2 ≤ C‖φ‖α+2

Lα+2

and therefore
‖q(t)‖L2 ≤ Cn

α−12
8 .

Therefore, using the above bounds for ‖r‖L2 and ‖q(t)‖L2 , we obtain

|(q(t) | r)|
‖φ‖2

L2

≤ Cn
3α−4

8 .

and
‖q(t)‖2

L2

‖φ‖2
L2

≤ Cn
α−4

4 .

Estimate for ‖q(t)‖H1 . Clearly

‖q(t)‖H1 ≤ Cn1+ α−12
8 ≤ Cn−δ,

where δ > 0 provided α < 4.

Analysis on the nonlinear term. Set

Fφ(w, w̄) = (κ−2 + |φ + w|2)α/2(φ + w) − (κ−2 + |φ|2)α/2φ.
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Then Fφ(0, 0) = 0 and

∂Fφ

∂w
(0, 0) = (κ−2 + |φ|2)α/2 +

α

2
|φ|2(κ−2 + |φ|2)α/2−1,

∂Fφ

∂w̄
(0, 0) =

α

2
φ2(κ−2 + |φ|2)α/2−1.

Since α ≤ 1, the second derivatives of Fφ are bounded and therefore, similarly
to the previous section, the equation for z(t) can be written as

izt = O(n
α
4 |z|2 + n

3α−4
8 ) +

1
‖φ‖2

L2

O(
∫

|zφ + q|2|φ|).

Estimate for
∫ |zφ + q|2|φ|. Write∫ |zφ + q|2|φ|
‖φ‖2

L2

≤ C

‖φ‖2
L2

(|z|2
∫

|φ|3 + ‖q‖2
L2‖φ‖L∞)

≤ O(n
1
4 |z|2) + O(n

α−3
4 ).

Since α ∈]0, 1] the equation for z becomes

izt = O(n
1
4 |z|2 + n

3α−4
8 )

with z(0) = 0. Now we set

M(T ) := sup
0≤t≤T

|z(t)|.

We look for a Tn such that

lim
n �→+∞n

α
4 Tn = +∞(4.1)

with a bound for M(T ), T ∈ [0, Tn]. Now we set

M̃(T ) = T−1
n n

4−3α
8 M(T )

and therefore for T ∈ [0, Tn] one has

M̃(T ) ≤ C(1 + T 2
nn

3α−2
8 [M̃(T )]2).

Since α is positive we can take Tn so that n−α
4 � Tn � n

2−3α
16 and therefore

the representation u(t) = κc(t)φ + O(n−γ) in Hs holds for t ∈ [0, Tn] for some
γ > 0. Now it remains to perform the argument of the introduction in order to
prove the ill-posedness.

Remark 4.1. Global weak solutions of (1.10) in the class H1 can be obtained
by a standard compactness argument. The method consists of considering a
regularized version of (1.10), involving a small parameter. The Cauchy problem
associated to the regularized equation possesses unique global solution, due to
control on high Sobolev norms. Then one passes into the limit as the small
parameter tends to zero. This is possible due to the H1 bound on the solutions
of (1.10). Note that if the regularized version of (1.10) is gauge invariant then
one may apply Lemma 2.3 to the regularized equation and therefore there exists
a global weak solution of (1.10) with data φ (see the previous section for the
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definition of φ) such that its spectral decomposition at any fixed time t contains
only spherical harmonics of degree ≥ n. Due to the argument of the previous
section we obtain that this solution has strongly instability features when letting
n tend to infinity.
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