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EVALUATION OF THE QUANTUM AFFINE PRV
DETERMINANTS

Anthony Joseph and Gail Letzter

1. Introduction

1.1. Let Uq(g) be the quantized enveloping algebra of the affine Lie algebra
g. There is a well developed primitive ideal theory for the quantized enveloping
algebra when the underlying Lie algebra is semisimple (see for example [J2].)
The fundamental Verma module annihilator theorem is proved by comparing the
factorization of the PRV determinant and the Shapavalov determinant. Recently,
the first author and Todoric [JT] have shown how to define the more general
KPRV determinant in the quantum affine case. The main result of this paper
is a factorization of this determinant for the Borel case (see the terminology of
[JT]); henceforth, we refer to this object as the quantum affine PRV determinant.

Our paper is part of a program begun in [J3] by the first author and devel-
oped further in [JT], to extend the structure theory of Uq(g) for g semisimple
to the quantum affine case. This approach uses the regular completion R(Û) of
the quantized enveloping algebra Uq(g) introduced in [J3]. By construction, the
subquotients of R(Û) are the integrable modules which have a zero weight space
with respect to the adjoint action. Thus R(Û) is a natural extension of the in-
tegral part of Uq(g). Furthermore, it has an appropriately large centre Z(R(Û))
which allows one to separate highest weight modules with highest weights lying
in different Weyl group orbits. It has been shown [JT, 3.3] that the isotypical
component R(Û)V , defined as the direct sum of simple submodules of an isomor-
phism class of a simple integrable admissible module V , is free over Z(R(Û)).
Moreover the multiplicity of V in the corresponding harmonic subspace HV is
exactly the dimension of the zero weight space V0 of V . Fixing a particular
basis of V0, it is natural to form the matrix where the columns are images of
this basis under linearly independent embeddings of V into HV . Applying the
Harish-Chandra projection and taking the determinant yields the PRV determi-
nant PV introduced in [JT, Definition 3.6]. Though we will not study it here,
the construction in [JT] is defined in the more general parabolic case associat-
ing a determinant Pπ′,V to the pair (π′, V ) where π′ is a subset of the simple
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roots π. We also remark that it is necessary to extend the base field k(q) to the
Laurent field K := k(q)((τ(δ)2)) where τ(δ) is the torus element associated with
the positive indivisible imaginary root δ. Thus HV is a K vector space and PV

is defined up to an element of K.

1.2. We compute PV in Theorem 4.7 by expressing it as the product of simple
factors which, roughly speaking, correspond to linear terms upon specialization
at q = 1. Although our formula for PV very closely resembles the result ob-
tained in the semisimple case [JL, 3.6; J2, 8.2.10], there are several important
distinctions which we note.
(i) Infinite Products. In contrast to the semisimple case, the PV are infinite
products. This means that they cannot be computed as in the semisimple case
by examining their zeros.
(ii) The Underlying Simple Module V. In the semisimple case, the underlying
simple module V is finite-dimensional and hence is a highest weight module.
However, in the affine case V is neither a highest nor a lowest weight module
(with the one exception when V is the trivial module). Indeed τ(δ) acts by 1
on V , so V is of level 0. Such modules are related to the more familiar finite
dimensional modules obtained as quotients by forgetting the action of another
central torus element, τ(ρ), associated to ρ, the sum of a choice of fundamental
weights (notation 2.2). The exact relationship between these two categories of
modules is unknown. However a correspondence can be anticipated from the
somewhat analogous theory for U(g) modules (in the affine case) in which both
classes of modules have been parametrized [CP, J4, G]. In any case, we need to
know little of V except that it is integrable and admissible, from which it follows
that V has a formal character invariant under the Weyl group. We remark that
the action of τ(ρ) can not be forgotten and so V will not be finite dimensional.
(iii) Disappearance of Imaginary Roots. We determine PV up to a non-zero
scalar in K. It is not a surprise therefore that only real roots occur in its factors.
However, there is a “canonical” choice for the entries of the PRV determinants
(see [JT, 3.6]) and in this choice the imaginary factors appear. These factors
appear to be rather complicated and have not been worked out even in the
simplest cases. The only result in this direction is a computation of their limit
at q = 1 in two special cases [J5, GJ]. In both examples, the q = 1 imaginary
factor takes a rather simple form.
(iv) The Quantum Ingredient. For g semisimple, the PRV determinants were
defined and computed first for the ordinary enveloping algebra U(g). Much of
the argument was then modified to apply to the quantum semisimple case. Such
inspiration from the classical set up is simply not available here. Indeed, we do
not yet know how to define the PRV determinants for the classical enveloping
algebra U(g) when g is affine.

These distinctions, especially (i), made us very pessimistic that the methods
used when g is semisimple could be extended to the quantum affine case. In
this paper, we use an approach which differs from the one developed in [J1] and
later used to compute the quantum semisimple PRV determinant [J2, 8.2]. Our
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argument adapts the original proof of the factorization of the classical semisimple
PRV determinant ([PRV, Theorem 4.2]). For each simple root α, using the
adjoint action of the corresponding copy of Uq(sl2), we write the determinant as
a product of a Laurent polynomial in the torus element τ(α) and a term invariant
under the translated action of the reflection associated to α. This information,
combined with the translated action of the entire Weyl group and a description
of the highest degree term, allow us to obtain the formula (Theorem 4.7) for PV .

1.3. In the classical case, the completion of U(g) used to recover the Casimir
invariant (implicit in [K, 2.5]) acts naturally on the O category. However, the
quantum completion, in contrast to the classical one, also admits infinite sums
of torus elements. Hence, it is not clear that R(Û) has a well-defined action
on the O category. We would like to know that on replacing torus elements by
appropriate powers of q, the corresponding infinite sums converge in the Krull
topology. This is obviously a delicate question; indeed, the convergence already
depends on the choice of the highest weight. In [J3, Sect. 6] we suggested how
to show that R(Û) acts naturally on the subcategory OP of modules in O with
simple factors whose highest weights lie in Weyl group translates of dominant
weights. This approach works [J3, 6.2] for the “natural” generators of Z(R(Û))
over K.

In Section 5, we use our calculation of PV to show that when dimV0 = 1, the
corresponding harmonic part HV can be taken so as to have a well-defined action
onOP. Assuming the dimension of V0 is 1 is rather restrictive, but there are some
non-trivial examples with this condition. Moreover, an immediate consequence
of this result is that the subalgebra over k(q) generated by HV (which is much
larger than the finite-dimensional vector space HV ) has a well-defined action on
OP. This is rather encouraging, especially as a more direct approach appeared
to fail (see [J5, 3.2]). The reason for this failure can be traced to a possible bad
action of K. The elements of K are central and so must act by a scalar on a
highest weight module; however, it is clear that certain elements of K will not
have a well-defined action on OP. Thus one is forced into making astute choices
of bases.

2. Notation and Preliminary Lemmas

2.1. We shall follow the notation of [JT, Section 2] and briefly review the neces-
sary definitions. The reader is also referred to [J2] and [J3] for undefined notions.
The base field k is assumed of characteristic zero and q is an indeterminate.

2.2. Let g be an affine Lie algebra. To avoid trivial technicalities we shall
assume the root system indecomposable though the arguments go through for
any affine or semisimple g without significant changes. Let h be a Cartan sub-
algebra, ∆ (resp. ∆re) the corresponding set of non-zero (resp. real) roots. Let
π be a choice of simple roots which is paired with the set {α∨}α∈π of coroots
contained in h. Set ∆+ = ∆∩Nπ, ∆+

re = ∆+∩∆re. Recall that there is a unique
positive imaginary root δ ∈ Nπ indivisible in the sense that if rδ ∈ Nπ : r ∈ Q
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then r ∈ Z. Let P (π) denote the set of Z linear combinations of a choice of
fundamental weights and of δ and let P+(π) denote the set of dominant integral
weights. Write ( , ) for the non-degenerate symmetric bilinear form defined in
[K, Chapter 2], normalized so that (λ, µ) is an integer for all λ, µ in P (π). Let
ρ be the sum of the fundamental weights. The integral torus T is the corre-
sponding multiplicative group and we let τ : P (π) → T be the corresponding
isomorphism (satisfying τ(λ+µ) = τ(λ)τ(µ), for all λ, µ ∈ P (π)). Set tα = τ(α),
for all α ∈ Zπ.

2.3. By definition the (simply-connected) Drinfeld-Jimbo quantized enveloping
algebra Uq(g) (or simply, U) is the Hopf algebra generated over the subgroup T
by weight vectors eα, f−α : α ∈ π satisfying the relations described specifically in
[J2, 5.1.1]. Given a and b in U , we write (ad a)b to denote the quantum adjoint
action of a on b (see for example [JT 2.4] or [J4, 1.3.1 and 5.3.1].) In particular,
we have that

(ad eα)a = eαatα − aeαtα and (ad f−α)a = f−αa− tαat−1
α f−α

for all a ∈ U .

2.4. Recall [J2, 7.1.17] the translated action of the Weyl group W on T
given by

w.τ(β) = τ(wβ)q(ρ,wβ−β)

for all w ∈ W and β ∈ Zπ. It is convenient to define rβ := τ(β)q(ρ,β), for all
β ∈ Zπ. In terms of these new coordinates, one has sβ .rγ = rsβγ , for all β ∈ ∆re

and γ ∈ Zπ. Set Aπ = k(q)[[r2
α : α ∈ π]].

Lemma. AW.
π reduces to scalars (in K).

Proof. The assertion is equivalent to every W orbit in Nπ being a singleton.
Although this assertion is presumably known, we give a proof for the sake of
completeness.

Recall that an affine Lie algebra g can be built from a simple Lie algebra g0

with Cartan subalgebra h0 and Weyl group W0. Let π0 be a choice of simple
roots for (g0, h0) and let ϕ denote the corresponding highest root. Then π =
{π0, α0} where α0 = −ϕ + δ. For each β ∈ ∆re set β∨ = 2β/(β, β) and let
sβ denote the corresponding reflection. In particular setting s0 = sα0 one has
s0λ = λ− (α∨

0 , λ)(−ϕ+ δ) for all λ ∈ P (π). Consequently for all λ ∈ Zπ one has
s0λ = λ + (ϕ∨, λ)(−ϕ + δ) = sϕλ + (ϕ∨, λ)δ and so sϕs0λ = λ + (ϕ∨, λ)δ.

Consider a W orbit in Zπ. By the above, a typical element takes the form
β+rδ, for some β ∈ Zπ0 and r ∈ Z. If β = 0, this orbit is a singleton. Otherwise
we can assume β to be non-zero and W0 dominant. Then (ϕ, β) 	= 0. By our
previous formula (sϕs0)nβ = β + n(ϕ∨, β)δ, for all n ∈ Z and so the above orbit
cannot lie in Nπ.
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2.5. Given a subset π′ of π, let G+
π′ (resp. U−

π′) denote the subalgebra of
U generated by tαeα (resp. f−α) for α ∈ π′, and let Uπ′ be the subalgebra
generated by the torus T , G+

π′ , and U−
π′ . Recall [JT, 5.1] that there is a triangular

decomposition (due to M. Kébé [Ke])

S−
π′ ⊗ Uπ′ ⊗ S+

π′
∼−→ Uq(g)

where S−
π′ (resp. S+

π′) is the subalgebra of U generated by (ad G+
π′)G+

π\π′ (resp.
(ad U−

π′)U−
π\π′). It defines (as usual using the augmentations of S±

π′) a projection
Pπ′ of Uq(g) onto Uπ′ . When π′ is the empty set, Uπ′ = k(q)T and Pπ′ is just
the usual Harish-Chandra projection. We denote it by P. When π′ = {α}, Uπ′

is the Hopf subalgebra Uq(rα) of Uq(g) generated by eα, f−α over T . In this case
we denote Pπ′ by Pα and Uπ′ by Uα. Clearly PPα = P. One checks using the
adjoint action (see Section 2.3) as in [JT, 5.1] that both S+

π′ and S−
π′ are (ad Uπ′)

stable. It follows that Pπ′ commutes with the adjoint action of Uπ′ .

2.6. Let I(U) denote the integral part of U (see [J2, 7.1]). In particular, I(U)
is the set of all elements a in U which generate a finite-dimensional (ad Uα)
module for each α ∈ π. By say [J2, 1.3.1], it is a subalgebra of U . When
g is semisimple, I(U) is just the locally finite part F (U) of U and admits an
isomorphism

Z(U)⊗H
∼−→F (U)

of vector spaces via the multiplication map where Z(U) is the center of U and
H is an ad U module referred to as the harmonics (see [J2, 7.3]).

Recently, the first author and Todoric ([JT]) obtained a restricted analog of
this isomorphism in the affine case by passing to the regular completion R(Û) of
U . We use the modified version of R(Û) defined in [JT, 3.4]. In particular, recall
that K is the Laurent field k(q)((τ(δ)2)). Then R(Û) is the K algebra generated
by the version of the regular completion, also denoted by R(Û), introduced in
[J3, Section 4]. Let V be a simple integrable admissible module and set R(Û)V

equal to the isotypical component of the socle of R(Û) of type V . Then [JT,
Theorem 3.4] there exists an (ad U) submodule HV of R(Û)V such that the
multiplication map gives a linear isomorphism

Z(R(Û))⊗HV
∼−→R(Û)V

where Z(R(Û)) is the center of R(Û). Although the choice of HV is not unique,
any choice is a direct sum of dimV0 copies of V ([JT, 3.1]).

The regular completion R(Û) of U consists of certain infinite sums of elements
of I(U) over K. Hence the Harish-Chandra projection P extends to R(Û) and
its image lies in Û0 := k(q)T [[r2

α : α ∈ π]]. Let {vi} be a basis for the zero weight
space V0 of V , and {ϕj} be a basis for Hom(V, HV ). Set vi,j = ϕj(vi). Then the
PRV determinant associated to V is

PV = det P(vi,j).

It is determined up to a nonzero element of K.
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2.7. The map Pα can also be extended to R(Û) and its image lies in the
regular completion R(Ûα) of Uα. Recall that Uα is the quantized enveloping
algebra of the Lie algebra rα (see Section 2.5). Note that dim rα < ∞, but
rα is not semisimple. Hence the appropriate definition of R(Ûα) is I(Uα)Uα,
where Uα := {u ∈ Û0 | sα.u = u}. By [J2, 7.3.8(ii)], I(Uα) is a free module
over its centre Zα. More precisely we have a Zα module isomorphism via the
multiplication map

I(Uα) ∼←− Hα ⊗ Zα

with “harmonic part” Hα being an ad Uα submodule. This does not determine
Hα uniquely. However, one choice for Hα is the sum of the (ad Uα) modules
generated by the en

α, n ≥ 0. Since en
α generates a 2n + 1-dimensional simple

module, we may write
Hα =

⊕
n∈N

V (n)

with V (n) a (unique up to isomorphism) simple Uα module of dimension 2n +1.
Let v(n) be a non-zero element of the one dimensional zero weight space V

(n)
0 of

V (n). Note that P(v(n)) corresponds to the PRV determinant of V (n) associated
to the copy of the quantized enveloping algebra Uq(sl2) generated by eα, f−α,
and t±1

α . Thus by [J2, 8.2.10] we have

(∗) P(v(n)) =
n∏

m=1

(rα − qm(α,α)r−1
α ),

up to a non-zero scalar. We write the product in the right hand side of (∗)
simply as S(n).

Let Tα denote the subgroup of T generated by the elements τ(β) : β ∈ Zπ
satisfying (β, α) = 0. By [J2, 4.3.4] it follows that Zα is the polynomial ring
over k(q)Tα generated by an element zα. Moreover

(∗∗) P(zα) = (rα + r−1
α ).

Clearly Tα ⊂ (Û0)sα. which also contains P(zα). From the above we deduce the
following

Lemma. Let V ′ be a simple ad Uα submodule of R(Ûα) of dimension 2n + 1.
Then P(V ′) ⊂ S(n)Uα.

3. Distributivity of the Baumann Filtration

3.1. Fix a simple integrable admissible module V with a non-zero (and hence
finite dimensional) zero weight space V0. One of the important steps in calculat-
ing the quantum semisimple PRV determinant is the computation of its highest
degree term with respect to the filtration on U defined in [J3, 5.3.1] (see also
[JT, 3.2]). In order to compute this term in the affine case, we transfer the
distributivity property of this filtration on U to the Baumann filtration F on
subspaces of V0.
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3.2. Let P+
0 (π) be the additive semigroup generated by the (choice of) fun-

damental weights. Define an ordering � on P+
0 (π) through µ�ν given by

ν − µ ∈ P+
0 (π). Let M be a subspace of V0. For each µ ∈ P+

0 (π), set

Fµ(M) = {v ∈M eα∨(µ)+1
α v = 0, ∀ α ∈ π},

and
Fµ(M) = Fµ(M)

/ ∑
ν≺µ

Fν(M).

Given two elements ν, µ of P+
0 (π), let ν∩µ be the unique maximal element in

P+
0 (π) which satisfies (ν ∩ µ)�min(ν, µ) ([J2, 7.3]). The definition of F implies

that Fµ(M) ∩ Fν(M) = Fµ∩ν(M) for all µ, ν ∈ P+
0 (π). The filtration F on M

is said to be distributive if

Fµ(M) ∩ (
n∑

j=1

Fνj (M)) =
n∑

j=1

(Fµ∩νj (M))

for all µ, ν1, . . . , νn in P+
0 (π).

Lemma. Let M be a subspace of V0 and µ ∈ P+
0 (π). If Fµ(M)is nonzero, then

there exists µ′ ∈ P+
0 (π) such that µ′�µ and Fµ′(M) is nonzero.

Proof. Let µ′ be a minimal element of P+
0 (π) with respect to the properties that

µ′�µ and Fµ′
(M) is nonzero. Suppose ν ≺ µ. By choice of µ′, Fν(M) is zero.

Hence
∑

ν≺µ′ Fν(M) = 0 and Fµ′(M) is isomorphic to Fµ′
(M) as vector spaces.

In particular, Fµ′(M) 	= 0.

3.3. Given a subspace M of V0, define grFM to be the vector space

grFM =
⊕

µ

Fµ(M).

Since M is finite dimensional, Fµ(V ) is the zero vector space when 0 ≺≺ µ.
Thus we can choose a finite subset {µ1, . . . , µn} of P+

0 (π) such that

(∗) grFM =
n⊕

j=1

Fµj (M).

Lemma. If F is distributive on M , then dim grFM = dimM .

Proof. Reorder the set {µ1, . . . , µn} so that µi ≺ µj implies i < j. For each
i, choose a subset B(µi) of Fµi(M) such that {gr v|v ∈ B(µi)} is a basis for
Fµi(M). We argue that that the union B of the B(µi) is a basis for M . First,
using distributivity and induction on n, we show that B is a linearly independent
subset of M .

By the ordering of the set {µ1, . . . , µn} and Lemma 3.2, Fν(M) = 0 for all
ν ≺ µ1. Thus Fµ1(M) ∼= Fµ1(M) as vector spaces. It follows that B(µ1) is a
linearly independent subset of M .
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Now assume that Bk = B(µ1) ∪ · · ·B(µk) is a linearly independent subset of
M . Let b ∈ Span B(µk+1). Suppose that b ∈ Span Bk. Then by the distributive
property,

b ∈ Fµk+1(M) ∩ (
k∑

i=1

Fµi(M)) ⊆
k∑

i=1

Fµk+1∩µi(M).

Note that µk+1 ∩ µi ≺ µk+1 for all 1 ≤ i ≤ k. Thus b ∈ ∑
ν≺µk+1

Fν(M) and
the image of b ∈ Fµk+1(M) is zero. This contradicts the fact that b ∈ B(µk+1)
and the image of B(µk+1) in Fµk+1(M) is a basis. Thus by induction, B is a
linearly independent subset of M .

Suppose that B does not span M . Given b ∈ M , set Sb = {µ ∈ P+
0 (π)|b ∈

Fµ(M)}. Choose η ∈ P+
0 (π) minimal with respect to the property that η ∈ Sb

for some b ∈ M − Span(B). Let m be an element in M such that η ∈ Sm

and m /∈ Span(B). So m ∈ Fη(M). Now suppose that m ∈ ∑
ν≺η Fν(M).

Hence m =
∑

mν where each mν ∈ Fν(M). But then by the choice of η,
mν ∈ Span(B) for each ν. Thus m ∈ Span(B), a contradiction. Hence we may
assume that m /∈∑

ν≺η Fν(M). It follows that Fη(M) is nonzero and so η = µi

for some i. Then there exists an element w ∈ Span(B(µi)) such that m − w ∈∑
ν≺µi

Fµi(M). By the minimality of η = µi, it follows that m− w ∈ Span(B)
which forces m ∈ Span(B), a contradiction. Thus Span(B) = M .

3.4. Given µ ∈ P+(π), let V (µ) (resp. V (−µ)) denote the simple highest
weight module of highest weight µ with highest (resp. lowest) generating vector
vµ (resp. v−µ). It is straightforward to check that the vector vµ⊗ v−µ generates
V (µ)⊗ V (−µ) as a U module.

Given a left U weight module N , let N# be its graded dual as defined in
[J3, 2.6] using the antipode. Note that the U modules V (µ)# and V (−µ) are
isomorphic and thus can be identified with each other.

Suppose that ν is another element of P+(π) and assume that ν ≺ µ. By [J3,
Remark 5.2], the annihilator of vµ ⊗ v−µ in U is a subset of the annihilator of
vν ⊗v−ν in U . This inclusion of annihilators induces a surjective U module map
ψµ,ν from V (µ)⊗V (−µ) onto V (ν)⊗V (−ν) such that ψµ,ν(vµ⊗v−µ) = vν⊗v−ν .
The transpose yields an injective U module map:

ψ∗
µ,ν : (V (ν)⊗ V (−ν))# → (V (µ)⊗ V (−µ))#.

Let Ψ∗
µ,ν be the map

Ψ∗
µ,ν : Hom(V #, (V (ν)⊗ V (−ν))#)→ Hom(V #, (V (µ)⊗ V (−µ))#)

induced by ψ∗
µ,ν .

3.5. For each v ∈ Fµ(V0), one may define [J3, 5.2] a U module map ϕµ
v ∈

Hom (V (µ) ⊗ V (−µ), V ) by ϕµ
v (a(vµ ⊗ v−µ)) = av for all a ∈ U . The trans-

pose ϕµ,∗
v restricts to a U module map from V # to (V (µ)⊗ V (−µ))# given by
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ϕµ,∗
v (ξ)(a(vµ ⊗ v−µ)) = ξ(av) for all a ∈ U and ξ ∈ V (µ) ⊗ V (−µ). Let Φµ be

the linear map

Φµ : Fµ(V0)→ Hom(V #, (V (µ)⊗ V (−µ))#)

defined by Φµ(v) = ϕµ,∗
v . Let T (EndV (µ)) denote the submodule of EndV (µ)

spanned by weight vectors (with respect to the diagonal action). As noted
in [JT, 3.1] Frobenius reciprocity gives an isomorphism (V (µ) ⊗ V (−µ))∗ ∼−→
Hom(V (µ), V (µ)#,∗) and, hence, an embedding (V (µ) ⊗ V (−µ))# ↪→
Hom(V (µ), V (µ)#,#). Since the weight subspaces of V (µ) are finite dimen-
sional (it is here that we need τ(ρ) to act) one obtains an isomorphism (V (µ)⊗
V (−µ))# ∼−→ T (EndV (µ)). Therefore, as in [JT, 3.1], the assertion in [J3, 5.12]
ensures that Φµ is a vector space isomorphism.

Let iµ,ν denote the inclusion map from Fν(V0) into Fµ(V0).

Lemma. For all µ and ν in P+
0 (π) with ν ≺ µ, Ψ∗

µ,νΦν = Φµiµ,ν .

Proof. Since vµ ⊗ v−µ generates V (µ) ⊗ V (−µ) as a U module, it is sufficient
to check that (Ψ∗

µ,ν(Φν(v))(ζ))(a(vµ⊗v−µ)) = ((Φµiµ,ν(v))(ζ))(a(vµ⊗v−µ)) for
all v ∈ Fν(V0), a ∈ U , and ζ ∈ V #. We have

(Ψ∗
µ,ν(Φν(v))(ζ))(a(vµ ⊗ v−µ)) = ((Ψ∗

µ,νϕν,∗
v )(ζ))(a(vµ ⊗ v−µ))

= (ϕν,∗
v (ζ))(ψµ,ν(a(vµ ⊗ v−µ))) = (ϕν,∗

v (ζ))(a(ψµ,ν(vµ ⊗ v−µ)))

= (ϕν,∗
v (ζ))(a(vν ⊗ v−ν)) = ζ(av).

On the other hand

((Φµ(iµ,ν(v)))(ζ))(a(vµ ⊗ v−µ)) = (Φµ(v)(ζ))(a(vµ ⊗ v−µ))

= ϕµ,∗
v (ζ)(a(vµ ⊗ v−µ)) = ζ(av).

3.6. Let gr U denote the associated graded algebra of U with respect to the
ad U filtration on U defined in [J2, 5.3.1]. Let K(µ)− be the vector subspace of
U− and let K(−µ)+ be the vector subspace of U+ such that (ad U)grτ(−2µ) =
K(µ)−grτ(−2µ)K(−µ)+ =: G(µ) ([J2, 7.1.1]).

Let {vi} be a basis for V (µ) composed of weight vectors and {ξi} the dual basis
in V (−µ) = V (µ)#. With respect to the natural embedding V (µ) ⊗ V (−µ) ↪→
EndV (µ), we can write each element of EndV (µ) uniquely as an infinite sum∑

wi ⊗ ξi : wi ∈ V (µ). Identifying V (µ) ⊗ V (−µ) with G(µ) via [J2, 7.1.1], it
follows that its completion Ĝ(µ), as defined in [JT, 3.2], identifies with EndV (µ).
Set

G(U) =
⊕

µ∈P+(π)

G(µ) and Ĝ(U) =
⊕

µ∈P+(π)

Ĝ(µ).

As noted in [JT,3.2] the algebra structure on G(U), detailed in [J2, Lemma
7.1.7], extends to Ĝ(U). We may suppose that v−µ(vµ) = 1 and then grτ(−2µ)
identifies with vµ ⊗ v−µ.
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Let yµ be a basis vector for the (ad U) invariant subspace of Ĝ(µ). By [J2,
7.3.3] and rescaling if necessary, we can write

yµ ∈ τ(−2µ) +
∑
β>0

K(µ)−−βgrτ(−2µ)K(−µ)+β

Note that this sum is infinite, but there is only a finite contribution from each
space K(µ)−−βgrτ(−2µ)K(−µ)+β . Under the identification of EndV (µ) with Ĝ(µ),
yµ becomes an element of vµ ⊗ v−µ +

∑
β>0 V (µ)µ−β ⊗ V (−µ)−µ+β .

Let ν ∈ P+(π) such that ν ≺ µ. Since the Ĝ(µ) : µ ∈ P+(π) form a gradation
of Ĝ(U), one has yµ−νĜ(ν) ⊂ Ĝ(µ). Thus multiplication by yµ−ν induces a U
module map

Yν,µ : EndV (ν)→ EndV (µ).

Moreover, [JT, Lemma 3.2] implies that this map is injective.
For each f ∈ EndV (ν), there is a scalar b such that

(∗) f ∈ b(vν ⊗ v−ν) +
∑

β+γ>0

V (ν)ν−γ ⊗ V (−ν)−ν+β .

Note that τ(−2(µ − ν))τ(−2ν) = τ(−2µ). Using the above identifications, it
follows that the product (vν ⊗ v−ν)(vµ−ν ⊗ v−µ+ν) in Ĝ(U) equals vµ ⊗ vµ.
Therefore,

(∗∗) Yν,µ(f) ∈ b(vµ ⊗ v−µ) +
∑

β+γ>0

V (µ)µ−γ ⊗ V (−µ)−µ+β .

Lemma. The restriction of Yν,µ to (V (ν)⊗ V (−ν))# equals ψ∗
µ,ν .

Proof. Consider f ∈ (V (ν)⊗V (−ν))# and write f as in (∗). Then ψ∗
ν,µ(f)(vµ⊗

v−µ) = f(vν⊗v−ν) = b. On the other hand, (∗∗) implies that Yν,µ(f)(vµ⊗v−µ) =
(b(vµ ⊗ v−µ))(vµ ⊗ v−µ) = b. Finally apply the fact that vµ ⊗ v−µ generates
V (µ)⊗ V (−µ) as a U module.

3.7. Let S(ν, V ) denote the V isotypical component of the socle of EndV (ν).
Through the embeddings Yν,µ, we may regard the S(ν, V ), for ν ∈ P+

0 (π), as
forming a lattice of subspaces (of some common limiting space obtained by taking
ν sufficiently large). As noted in [JT, proof of Proposition 3.3], [J2, Corollary
7.3.3] extends for V admissible to show that this lattice is distributive. (Finite
dimensionality of weight spaces is needed to get the downward induction started.)
Thus, given µ, ν1, . . . , νn in P+

0 (π),

(∗) S(µ, V ) ∩ (
n∑

j=1

S(νj , V ) =
n∑

j=1

S(µ ∩ νj , V ).

Lemma. The filtration F is distributive on V0.
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Proof. Suppose that
v ∈ Fν(V0) ∩

∑
γ

Fγ(V0).

Without loss of generality, we can assume there is a weight µ such that ν ≺ µ
and each γ also satisfies γ ≺ µ. Furthermore, we can choose µ large enough so
that Fµ(V0) = V0. Since v ∈ Fν(V0), we obtain

ϕµ,∗
v (V #) = (Φµ(iµ,ν(v)))(V #) = (Ψ∗

µ,ν(Φν(v)))(V #)

= ψ∗
µ,ν(ϕν,∗

v (V #)) ⊂ ψ∗
µ,ν(S(ν, V ),

by Lemma 3.4. Consequently

ϕµ,∗
v (V #) ⊆ ψ∗

µ,ν(S(ν, V )) ∩
∑

γ

ψ∗
µ,γ(S(γ, V )) =

∑
γ

ψ∗
µ,µ∩γ(S(ν ∩ γ, V ))

by (∗). Hence ϕµ,∗
v =

∑
γ ϕµ,∗

wγ
for suitable choices of wγ ∈ Fν∩γ(V0). Since Φµ

is linear, it follows that ϕµ,∗
v = ϕµ,∗

w where w =
∑

γ wγ . But the map Φµ is an
isomorphism so v = w. This gives one required inclusion. The opposite one is
trivial.

4. The Factorization Theorem

4.1. Let V be a simple integrable admissible U module. For each β ∈ Zπ, let
Vβ denote the β weight space of V . Then dimVβ is finite and in particular the
formal character

ch V =
∑

β∈Zπ

(dimVβ)eβ

is defined. Since V is integrable, ch V is W invariant. Furthermore since dimV0

is finite, the integrability of V implies that for each α ∈ π one has dimVnα = 0
for all n ∈ N sufficiently large. Since ∆re = Wπ by definition, it follows that
there exists an integer s > 0 such that dimVtβ = 0, for all t ≥ s and for all
β ∈ ∆+

re.
Set

λV :=
∑

µ∈P+
0 (π)

µ dimFµ(V0).

In [JT, 3.6], it is shown that PV is an element of τ(−2λV )Aπ with highest degree
term a nonzero scalar multiple of τ(−2λV ) with HV chosen as in [JT, 3.6]. We
use this definition in Section 4.3 to obtain a formula for α∨(−2λV ), α ∈ π, which
closely resembles the semisimple case ([J3, 8.2.10 (∗)]).
4.2. Fix α ∈ π and let ωα be the choice of fundamental weight corresponding
to α. Let s be a positive integer and let V s

0 be the subspace of V0 annihilated
by es+1

α . Given ν ∈ P+
0 (π), set νs = ν ∩ sωα. Note that Fν(V s

o ) = Fνs(V0) for
all ν ∈ P+

0 (π). Thus Lemma 3.7 implies that the filtration F is distributive on
V s

0 .

Lemma. λV =
∑

µ

∑
{s|α∨(µ)=s} µdimFµ(V s

0 ).
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Proof. Fix µ and set s = α∨(µ). Consider ν ∈ P+
0 (π) such that ν�µ. Note that

ν = νs and so Fν(V0) = Fν(V s
0 ). It follows that Fµ(V0) = Fµ(V s

0 ).

4.3. Consider the T submodule

(∗) V (α) :=
⊕
n∈Z

Vnα

of V . Clearly V (α) is a Uα submodule of V and integrable, since V itself is
integrable. Hence V (α) is a direct sum

(∗∗) V (α) =
⊕

i

V (α),i

of simple Uα submodules of odd dimension, say dimV (α),i = 2ni + 1. Moreover
V (α),i has one dimensional weight spaces of weights ±tα : 0 ≤ t ≤ ni. In
particular the V

(α),i
0 are one dimensional and their direct sum is V0.

Set V0,s =
∑

nj=s V
(α),j
0 . Note that

∑∞
n=1 dimVnα =

∑∞
s=1 sdimV0,s. Fur-

thermore, dimV s
0 − dimV s−1

0 is equal to dimV0,s since V0,s is a vector space
complement to V s−1

0 in V s
0 .

Lemma. For all α ∈ π one has α∨(λV ) =
∑∞

n=1 dimVnα.

Proof. By Lemma 3.3, dim grF (V s
0 ) = dimV s

0 . Thus, Lemma 4.2 implies that

α∨(λV ) =
∑

s

s
∑

{µ|α∨(µ)=s}
dimFµ(V s

0 ).

Note that ∑
µ

Fµ(V s
0 ) =

∑
{µ|α∨(µ)=s}

Fµ(V s
0 ) +

∑
{µ|α∨(µ)<s}

Fµ(V s
0 )

=
∑

{µ|α∨(µ)=s}
Fµ(V s

0 ) +
∑

µ

Fµ(V s−1
0 ).

Since these are all direct sums,

dimV s
0 =

∑
{µ|α∨(µ)=s}

dimFµ(V s
0 ) + dimV s−1

0 .

Thus α∨(λV ) =
∑

s s(dimV s
0 − dimV s−1

0 ), so substitution from the paragraph
preceding the lemma gives the required assertion.

4.4. Recall the notation of Section 2.6. Fix vi ∈ V
(µ),i
0 nonzero. Recall that

any choice of the harmonic space HV is a direct sum of dimV0 copies of V . The
set {ϕj} is a basis for Hom(V, HV ) and vi,j = ϕj(vi). Fix α ∈ π and recall the
construction of 4.3.

Lemma. For all i, j = 1, 2, · · · ,dimV0 one has P(vi,j) = S(ni)mi,j for some
mi,j ∈ Uα.
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Proof. Clearly V ′ := Pα(ϕj(V (α),i)) is either zero or a simple ad Uα submodule
of R(Ûα) of dimension 2ni + 1. Hence P(ϕj(V (α),i)) = P(V ′) ⊂ S(ni)Uα, by
2.7.

4.5. Comparing (∗) and (∗∗) of 4.3, we have

Qα :=
dim V0∏

i=1

S(ni) =
∞∏

n=1

(rα − qn(α,α)r−1
α )dim Vnα .

Corollary. For each α ∈ π one has PV = Qα Qα for some Qα ∈ Uα.

Proof. Indeed by definition

PV = det P(vi,j) =

(
dim V0∏

i=1

S(ni)

)
det mi,j

through 4.4. Since Uα is a subalgebra of Û0 the conclusion obtains.

4.6. Set

QV = τ(−2λV )
∏

β∈∆+
re

∞∏
n=1

(1− q−n(β,β)r2
β)dim Vnβ .

Lemma. For all α ∈ π one has QV Q−1
α ∈ Uα.

Proof. Set ∆+
α := ∆+

re \ {α}. It is sα stable. From the definitions of QV and Qα

we have

QV Q−1
α = τ(−2λV +

∞∑
n=1

α dimVnα)
∏

β∈∆+
α

∞∏
n=1

(1− q−n(β,β)r2
β)dim Vnβ ,

up to a power of q. By 4.3, the first factor lies in Tα. Since sα.rβ = rsαβ and
dimVnβ = dimVnsαβ , the second factor is sα. invariant and lies in Û0.

4.7. Recall [JT, 3.6] (see Section 4.1) that PV ∈ τ(−2λV )Aπ, for a choice of
HV described there. For an arbitrary choice PV may be modified by a non-zero
element of K. However such an element is W. invariant and so may be ignored.

Theorem. One has PV = QV , up to a non-zero element of K.

Proof. That PV 	= 0 is just [JT, Proposition 3.6] which shows in the language
of Section 4.1 that τ(−2λV ) is the highest weight term of PV up to a nonzero
scalar. It is clear that PV Q−1

V ∈ Aπ. Hence by 2.3 it suffices to show that this
expression is W. invariant. It is enough for the expression to be sα. invariant
for each α ∈ π. Yet by 4.5 and 4.6 one has PV Q−1

α , QV Q−1
α ∈ Uα. Hence the

assertion.
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5. The Multiplicity Free Case

5.1. Recall that for the choice of HV made in [JT, 3.6] the entries P(vi,j) of
the PRV determinant lie in Aπ, up to multiples by elements in T . If we make
a more general choice, then in a given column of the matrix P(vi,j) the entries
may be multiplied by a fixed non-zero element of K. Indeed this depends on
the choice of the homomorphism ϕj : V → R(Û)V . The linear span over K of
their images defines HV . However since KAπ = TAπ, the first assertion is still
valid. The choice of these scalars in K in the definition of ϕj will be seen to be
a delicate point.

5.2. For all β ∈ Nπ, let |β| denote the sum of its coefficients (with respect to
π). Given cβ ∈ k((q)) : β ∈ Nπ, we say that the sum

∑
β∈Nπ cβ converges (in

the Krull topology) if for each n ∈ N there exists m ∈ N such that cβ ∈ qnk[[q]],
for all β ∈ Nπ satisfying |β| ≥ m.

Let a ∈ Aπ. We may write a as an infinite sum

a =
∑

β∈Nπ

cβt2β : cβ ∈ k(q).

We say that a is defined at ν ∈ P (π), if
∑

β∈Nπ cβq2(β,ν) converges in the Krull
topology to an element of k((q)) which we denote by a(ν). It is clear that if a is
defined at 0, then it is defined at all ν ∈ P+(π).

A basic question is whether the P(vi,j) are defined at 0. For this we must
obviously make a correct choice of scalars in the definition of the homomorphisms
ϕj : V → R(Û)V , equivalently in the choice of the harmonic space HV identified
as the K linear span of the ϕj(V ). The most obvious choice (made in [JT, 3.6])
may not be appropriate.

Following [J3, 6.1] let OP denote the full subcategory of O whose simple
factors have highest weights in W.P+(π). A straightforward modification of [J3,
6.13] shows that if the P(vi,j) are defined at 0, then the corresponding harmonic
space HV is defined on all M ∈ ObOP. This means (but see [J3, 6.2] for more
details) that we may extend the action of U on M to elements of HV , where we
replace an infinite sum of torus elements on a weight vector of weight ν, by its
value at ν.

5.3. Recall the definition of QV from Section 4.6.

Lemma. QV is defined at 0.

Proof. By 4.1, there exists a positive integer s such that up to a multiple of T ,
we can write

QV =
∏

β∈∆+
re

s∏
n=1

(1− q2(ρ,β)−n(β,β) t2β)dim Vnβ .

Except for finitely many positive real roots one has 2(ρ, β) > s(β, β). The
required assertion follows.
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5.4. Combining 4.7 and 5.3, it follows that up to a choice of scalars (equiva-
lently up to a choice of HV ) PV is defined at 0. However there will obviously be
many bad choices for which HV will not be defined on some M ∈ ObOP. Con-
jecturally there is always a choice so that this does hold; but the question seems
to be rather delicate. Yet if HV is multiplicity-free (equivalently if dimV0 = 1)
then of course we can choose the scalar to obtain this desired conclusion.
5.5. Take λ ∈ P+(π) and recall that V (λ) is the simple highest weight module of
highest weight λ. Take a ∈ EndV (λ) of weight 0. Recall [J3, 6.5]. The quantum
trace trq(a, V (λ)) of a on V (λ) is the infinite sum∑

µ∈Nπ

tr
(
a V (λ)λ−µ

)
q−2(ρ,λ−µ)

given that the latter converges in the Krull topology. In this case we say that
trq(a, V (λ)) converges (in the Krull topology). This convergence condition is
equivalent to the assertion that

cλ(a) :=
∑

µ∈Nπ

tr
(
a V (λ)λ−µ

)
q−2(ρ,λ−µ)τ(−2(λ− µ))

is defined at 0. We say that trq(a, V (λ)) converges (in the Krull topology) up
to K, if there exists 0 	= b ∈ K such that bcλ(a) is defined at 0. We can express
the conclusion of 5.4 in the following manner.

Let V be a simple admissible integral module with a one dimensional zero
weight space. By [J3, 5.12] one has dim Homg(V, EndV (λ)) ≤ 1, for all λ ∈
P+(π). Moreover there is a unique minimal µ ∈ P+

0 (π) s.t. Homg(V, EndV (λ)) =
1, for all λ�µ and zero otherwise. In the former case we can view a ∈ V0 \ {0}
as an element of EndV (λ)λ−µ, for all µ ∈ Nπ.

Corollary. Retain the above hypotheses and notation. Then trq(a, V (λ)) : λ�µ
converges up to K.

Proof. Recall (2.6) that R(Û)V is free over Z(R(Û)) and [J3, 6.2] that the lat-
ter is spanned over K by the elements zµ : ν ∈ P+(π). The latter acts by
trq(1, V (ν)) ∈ k((q)) on V (0). Consequently, it is enough to take λ = µ and
then the assertion is just the observation made in 5.4.

5.5. Retain the hypotheses and notation of 5.5. Our preliminary investigation
[J5, 3.2] indicated that the quantum trace trq(a, V (µ)) will not in general con-
verge. In any case we calculated the q = 1 limit of the PRV determinant in the
simplest possible case (basically the adjoint representation for ŝl2) by the use
of such traces and obtained an expression which agreed with the q = 1 limit of
QV up to factors involving τ(δ)2. This is of course no contradiction; it indicates
that the choice of HV by the procedure of [JT, 3.6] may not be the best one. A
similar calculation for a second ŝl2 module with a one dimensional zero weight
space is given in [GJ]. The conclusion is similar. These special cases are almost
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as difficult than our general theorem. However they do give a little extra infor-
mation on imaginary root factors and indicate that the choice of scalars (or the
harmonic space) is a delicate point.
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