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ANALYTIC PROPERTIES OF THE RETURN MAPPING OF
LIÉNARD EQUATIONS

J. P. Françoise

Introduction

Bautin’s approach to the bifurcation theory of limit cycles has been recently
generalized in the framework of complex analysis ([8],[9]). There are now more
cases where the Bautin ideal is known. A systematic study of the Poincaré center
focus problem via Abel equations entailed several new examples of Bautin ideals
([2],[3]).

This article deals with Liénard equations which have been used in many ap-
plications (c.f. [10]). Liénard equations play certainly a key role in Hilbert’s
16th problem, as suggested for instance in ([19],[20]), because of the topologi-
cal simplicity of the return mapping. Limit cycles encircle the origin and are
necessarily contained in the domain of existence of the return mapping. This
domain of existence may of course not be equal to the domain of convergence of
the analytic series which defines the return mapping in a neighborhood of the
origin. Nevertheless it is interesting to produce an estimate of the size of this
domain of convergence.

Many contributions have been previously done to Liénard equations and par-
ticularly by N. G. Lloyd and his co-workers ([1],[5],[14],[15],[16],[17]). But the
approach via the Lyapunoff series which is used in all these references does not
entail information on the domain of convergence of the first return mapping
itself.

We develop here a direct computation of the return mapping (indeed of its
converse) which yields an estimate of the domain of convergence by a majorizing
series techniques and a recurrency relation for the coefficients which entail the
Bautin ideal.

Application of the complex analysis methods of ([8],[9]) is then straightfor-
ward. In Liénard case, the use of the Hironaka polynomial division theorem is
replaced by a very simple and explicit argument. This displays a bound to the
number of complex limit cycles in a fixed neighborhood of the origin.

Examples produced with perturbation theory (first-order) of Hamiltonians by
A. Lins Neto, W. de Melo and C. C. Pugh ([12]) show that this bound is optimal
(recall that the complex bound is at least twice the real bound).
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To end this introduction we mention other recent references to generalized
Liénard equations([6],[7],[11],[13],[18]) to which eventually the same type of anal-
ysis should apply.

1. Computation of the Bautin ideal

The perturbation of the linear part into a focus adds one real limit cycle to
the number obtained when the linear part is a center. We consider only the case
where the linear part is a center to simplify the computations.

This paragraph is concerned with the polynomial vector fields X of the fol-
lowing type:

(1.1) X = −x∂/∂y + y∂/∂x +
d∑

i=1

[λix
i]y∂/∂y.

and the associated flow, solution of the system:

(1.2a) ẋ = y,

(1.2b) ẏ = −x +
d∑

i=1

[λix
i]y = −x + p(x)y.

The equations of the flow yield a second order differential equation classically
named the Liénard equation. Note that this differential system is sometimes
written:

(1.2c) ẋ = Y − P (x),

(1.2d) Ẏ = −x,

which is easily changed into the preceding ones with y = Y − P (x), if P ′(x) =
−p(x).

Write (1.2) in polar coordinates (r, θ):

(1.3) x = rcosθ, y = rsinθ.

This displays:

(1.4) 2rṙ = 2(xẋ + yẏ), rṙ = r2p(rcosθ)sin2θ

(1.5) θ̇ = (xẏ − yẋ)/(x2 + y2) = −1 + sinθcosθp(rcosθ).

This yields:

(1.6) dr/dθ = rp(rcosθ)sin2θ/[−1 + sinθcosθp(rcosθ)].

Bautin’s approach is based on the study of solutions of (1.6) r = r(θ) so that
r(0) = r0, given as an expansion:

(1.7) r0 = r + v2(θ)r2 + ... + vk(θ)rk + ...
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Comparison between (1.6) and (1.7) yields:∑
k≥1

v′k(θ)rk[−1 + sinθcosθp(rcosθ)]

(1.8) +
∑
k≥1

[kvk(θ)p(rcosθ)sin2θ]rk = 0.

This displays the following recurrency relation on the coefficients vk(θ):

(1.9) v′k(θ) =
d∑

l=1

λl(cosθ)lsinθ[cosθv′
k−l(θ) + (k − l)sinθvk−l(θ)].

The main result of this paragraph is:

Theorem 1.1. Let 2n be the largest even integer such that 2n ≤ d. Define
the Bautin ideal of the differential system (1.1) as the ideal generated by the
coefficients of the return mapping (equivalently of its inverse) vk(2π) (cf [2][3]).
This Bautin ideal is generated by (λ2, ..., λ2n). Define the Bautin index B as the
first integer k so that the increasing sequence of ideals generated by the k first
coefficients vk(2π) becomes stationary (cf [2][3]). The Bautin index of (1.1) is
equal to 2n + 1.

The proof of the theorem displays several lemmas of independent interest.
Let I be an ideal of R[λ1, ..., λd]. It is convenient to denote vk(θ) ∈ I to

mean that for all values of θ, vk(θ) is a polynomial in the parameters (λ1, ..., λd)
which belongs to the ideal I. In the following ck denotes a sequence of non-
zero numbers (independent of the parameters) which will be defined inductively.
Choose the initial conditions for the recurrency relation (1.9) as:

(1.10) v1(θ) = 1.

Then (1.9) yields:

(1.11a) v′2(θ) = λ1cosθsin2θ, thus : v2(θ) = λ1w
1
2(sinθ), w1

2(0) = 0.

This entails:

(1.11b) v2(2π) = 0.

The first coefficient which really matters for the Bautin ideal is the next one.
The recurrency relation (1.9) displays:

(1.12) v′3(θ) = λ1cosθsinθ[cosθv′
2 + 2sinθv2] + λ2cos2θsin2θ.

This yields:

(1.13a) v3(θ) = f3(θ) + λ1w
1
3(sinθ),

with:

(1.13b) w1
3(0) = 0,
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and

(1.13c) f3(θ) ∈ (λ2),

and

(1.14) v3(2π) = c3λ2, c3 =
∫ 2π

0

cos2θsin2θdθ �= 0.

We now prove by induction the following:

Lemma 1.2. Let k0 be the maximal integer so that 2k0 ≤ k − 1 and k1 be
the maximal integer so that 2k1 + 2 ≤ k. The coefficient vk(θ) displays the
decomposition:

(1.15a) vk(θ) = fk(θ) +
k1∑

j=0

λ2j+1w
2j+1
k (sinθ, λ),

where:

(1.15b) fk(θ) ∈ (λ2, ..., λ2k0),

(1.15c) w2j+1
k (0, λ) = 0.

Proof. This is certainly true for v2(θ) and v3(θ). Assume this is so inductively.
The recurrency relation (1.9) shows that the term fk−l contributes to the ideal
(λ2, ..., λ2k0) and the element w2j+1

k−l (sinθ, λ) contributes either (for l even) to an
element of the ideal (λ2, ..., λ2k0) or (for l = 2h + 1 odd) produces:

λ2h+1(cosθ)2h+1sinθ[cos2θ
∑

j

λ2j+1w
2j+1
k−l (sinθ, λ)′

(1.16) +sinθ(k − 2h − 1)
∑

j

λ2j+1w
2j+1
k−l (sinθ, λ)],

which (once integrated against θ contributes to λ2h+1w
2h+1
k (sinθ, λ)).

An immediate consequence of the proposition is the following:

Lemma 1.3. The coefficients vk(2π) belong to the ideal (λ2, ..., λ2k0).

Proof. The coefficient w2j+1
k (sinθ, λ) vanishes for θ = 2π, hence

(1.17) vk(2π) = fk(θ) ∈ (λ2, ..., λ2k0).

This last result can be improved for the coefficients vk(2π) of odd order k. Denote
n = [d/2] (integer part of d/2).
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Lemma 1.4. For all odd values of k = 2k0 + 1 (k0 = 1, ..., n), the coefficient
v2k0+1(2π) is such that:

(1.18) v2k0+1(2π)∈(λ2, ..., λ2k0−2) + c2k0+1λ2k0 ,

with:

(1.19) c2k0+1 =
∫ 2π

0

(cosθ)2k0(sinθ)2dθ �= 0.

Proof. In the recurrency relation (1.9), the only term which contributes to λ2k0

is:

(1.20) λ2k0(cosθ)2k0sinθ[sinθ],

which yields (1.19).

We now conclude with the proof of the theorem 1.1.
We consider the increasing sequence of ideals generated by the coefficients:

(1.21) (v2(2π), ..., vk(2π)).

The first coefficient v2(2π) is zero, hence the first one which contributes to the
Bautin ideal is v3(2π) which is proportional to λ2. Consider now increasing
values of the integer k. The sequence of ideals does not increase at a step vk(2π)
with even k. When k is odd, k = 2k0 + 1, v2k0+1 contributes with a term
c2k0+1λ2k0 with c2k0+1 �= 0, hence the ideal strictly increases and becomes equal
to:

(1.22) (λ2, ..., λ2k0).

This proceeds till:
k0 = n = [d/2],

and latter the ideal does not increase any more. The Bautin ideal is thus equal
to:

(1.23) (λ2, ..., λ2n),

and the increasing sequence of ideals (1.21) stabilizes at the step 2k0+1 = 2n+1.
This ends the proof of the theorem.

The recurrency relation entails as well the following result:

Theorem 1.5. For all values of λ, there is a neighborhood of the origin on
which the number of real limit cycles is less than n − 1 (n if we consider the
perturbation of a focus).

Proof. This is a consequence of the classical Bautin’s argument. Collecting the
terms of the first return mapping, we write the equation for the real limit cycles
as:

(1.24) v3(2π)r3(1 + ...) + v5(2π)r5(1 + ...) + ... + v2n+1(2π)r2n+1(1 + ...) = 0.
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Successive applications of Rolle’s lemma show that the number of real positive
zeroes of (1.24) is less than n− 1. This shows that the maximal number of limit
cycles which can bifurcate when the linear part is of focus type is n (because
it adds up one term in (1.24)). Note that this bound is in agreement with the
bound foreseen in A. Lins neto-W. de Melo-C.C. Pugh conjecture. (cf [12]). Of
course this computation does not entail any control of the size of the domain
on which the number of limit cycles is less than n in terms of the coefficients
of the perturbation. This is the reason to develop further analysis based on
the complexification of the return mapping. To conclude this paragraph, let us
consider the famous example of the van der Pol equation:

ẋ = y,

(1.25) ẏ = −x + p(x)y, p(x) = λ(1 − x2),

In that case, there is a perturbation of the linear part into a focus, d = 2, and
thus n = 1 and we obtain a bound of 1 to the number of limit cycles. This
is a well known result and it is also known that in van der Pol example there
is effectively a limit cycle which is born from a supercritical Hopf bifurcation.
Note that the existence of a subcritical Hopf bifurcation giving birth to two limit
cycles needs a polynomial p(x) of degree d = 4. Such examples are for instance
quite important for modeling in electrophysiology and biochemistry.

2. Estimates of the radius of convergence of the first return mapping

Let fλ(x) =
∑

ak(λ)xk be an analytic series in x with polynomial coefficients
in the parameters λ = (λ1, ..., λd). Denote | ak | (norm of the polynomial ak)
as the sum of the absolute value of the coefficients and | λ |=| λ1 | +...+ | λd |.
Recall now the following:

Definition 2.1. The series fλ is called an A0-series if the following two condi-
tions are satisfied:

There are positive constants K1, K2, K3, K4 such that:

(2.2a) deg (ak) ≤ K1k + K2,

(2.2b) | ak |≤ K3K
k
4 .

A0-series form a subring of the ring of formal power series in x with polynomial
coefficients in λ. All the usual analytic operations, like substitution to a given
analytic function, composition, inversion,... transform A0-series into themselves.
A0-series have been precisely introduced (in the subject) by M. Briskin and Y.
Yomdin ([4]).

In the following, we also denote fλ the complex analytic function defined for
all λ ∈ CD on a disc D(0, R) by the A0-series.

In the Liénard case, the following holds:
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Proposition 2.2. The series (1.7) is for all values of θ a A0-series with:

(2.4) K1 = 1, K2 = −1, K3 = π/2, K4 = 2,

if | λ |< 1.

Proof. The inverse series of (1.7), which is indeed the Bautin series:

(2.5) r = r0 + w2(θ)r2
0 + ... + wk(θ)rk

0 + ...

solves the differential equation (1.6). We use Siegel majorizing series techniques.
A rough majorizing series (both in λ and r0) of (1.6) is provided by the solution
M of the differential equation:

(2.6) dM/dθ = [M | λ |M/(1 − M)]/[1 − | λ |M/(1 − M)],

which displays the expansion:

(2.7) M = r0 + M2(θ)r2
0 + ... + Mk(θ)rk

0 + ...

The coefficients Mk(θ) are inductively defined by a recurrency relation which is
of following type:

(2.8) M ′
k(θ) = Sk[M2(θ), ..., Mk−1(θ)], k ≥ 2,

where Sk is a polynomial with positive coefficients.
Denote

(2.9) Mk = Max[Mk(θ), θ ∈ [0, 2π]].

The equation (2.8) yields the following inequality:

(2.10) Mk ≤ (2π)Sk[M2, ..., Mk−1], k ≥ 2.

This displays a new majorizing series for (2.5) W (r0) solution of the algebraic
equation:

(2.11a) W (r0) − r0 = (2π)| λ |W (r0)2/[1 − (1 + | λ |)W (r0)].

The algebraic equation (2.11a) has a unique analytic solution W (r0) which is
tangent to r0 for small values of r0. This equation yields r0 in terms of W (r0):

(2.11b) r0 = W (r0) − (2π)| λ |W (r0)2/[1 − (1 + | λ |)W (r0)].

Elementary considerations on majorizing series show that the converse of a ma-
jorizing series provides a majorizing series for the converse. This immediately
provides an estimate of the radius of convergence of (1.7):

(2.12) R(λ) = 1/[1+ | λ |],
and the proof of the proposition 2.2.
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The estimate of the radius of convergence can be improved (for some values
of the parameters) with an elementary scaling argument in the case of Liénard’s
equations. The proof given above works actually for an arbitrary polynomial
perturbation of the rotation flow (with some changes of notations).

Theorem 2.3. The return mapping of the vector field X converges at least on
the disc D(0, R(ρ)) of radius R(ρ) = ρ/2 where ρ is the unique positive real
number such that:

(2.13) ρd | λd | +... + ρ | λ1 |= 1.

This last estimation improves (2.12) for small | λ | but not for large ones.

Proof. Change of coordinates (x, y) into (ρx, ρy) transforms

ẋ = y

(2.14a) ẏ = −x + p(x)y,

into
ẋ = y

(2.14b) ẏ = −x +
d∑

i=1

(λiρ
i)xiy.

This means that any result obtained on the disc D(0, R) for the equation (2.14a)
is valid on the disc D(0, ρR) for the new equation λi �→ λ′

i = ρiλi.

3. Estimates of the number of complex limit cycles on a fixed
neighborhood of the origin

The generalization of Bautin’s approach to complex limit cycles has been
done in ([8],[9]). It yields quite explicit results in the case of homogeneous
perturbations of the linear part. The same type of results can be displayed in
the case of Liénard equations and this is done in this paragraph.

It is quite interesting to note now that in comparison to the ”polynomial
Hironaka division theorem” that we need to use in the general situation, we
have to check a very easy proposition.

In the case of Liénard equations, (λ2, ...λ2n) defines clearly a Hironaka basis
(standard basis or Grobner basis). Recall shortly for need of selfconsistency the
definition of such a basis.

A total ordering ≤ on ND is said to be compatible with the addition if:
i) For all indices α ∈ ND, β ∈ ND, then α ≤ α + β,
ii) For all indices α1, α2, β, α1 + β ≤ α2 + β if and only if α1 ≤ α2.

Definition 3.1. Let f ∈ C[λ], f �= 0, f =
∑

fαλα. The largest exponent α so
that fα �= 0 is called the privileged exponent of f and is denoted exp (f). The
monomial [fαλα, α = exp (f)] is called the initial monomial and denoted In(f).
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Definition 3.2. Given s polynomials g1, ..., gs, the associated partition of ND is
defined as follows: ∆1 = exp (g1)+ND, ..., ∆i = exp (gi)+ND−⋃

j<i ∆j , ..., ∆̄ =
ND − ⋃s

i=1 ∆i.

Definition 3.3. Let I be an ideal of C[λ1, ..., λD]. Consider the set:

(3.1) exp (I) = (exp (f), f∈I).

It can be shown that this set has finitely many extremal points:

(3.2) α1, ..., αs.

Choose g1, ..., gs in the ideal I so that exp (gi) = αi, i = 1, ...s. Such a set of
polynomials is called a standard basis, Hironaka basis or Grobner basis (of the
ideal I relatively to the ordering ≤).

Proposition 3.4. Let I be the Bautin ideal. Let f(λ) be an element of I of
degree k, there is a decomposition:

(3.3a) f(λ) =
n∑

i=1

φi(λ)λ2i,

with

(3.3b) deg (φi) ≤ deg (f) − 1 = k − 1,

and

(3.3c) | φi |≤| f | .

Proof. Consider f(λ), collect in front of λ2 all the monomials which contain λ2.
The difference still belongs to the ideal I. Then repeat the process with λ4,
. . . The two majorations are obvious.

Following the techniques of ([8],[9]), we prove now that the first return map-
ping belongs to a Bernstein class. It is convenient at this point to change nota-
tions and write:

(3.4) f(λ, r) = r + v2(2π)r2 + ... + vk(2π)rk + ...,

for the (converse of the) first return mapping and fk(λ) = vk(2π) for its coeffi-
cients. Indeed, we consider the analytic extension of the series to the complex
domain and denote now x as the complex variable in place of the real variable r.

(3.5) f(λ, x) = x + f2(λ)x2 + ... + fk(λ)xk + ...

Definition 3.5. Let B be an integer, R > 0 and c > 0 and f(z) =
∑

i≥0 aiz
i be

an analytic function on a neighborhood of 0 ∈ C. The function f belongs to the
Bernstein class B2

B,R,c if and only if for all j ≥ B:

(3.6) | aj | Rj ≤ cmaxi=0,...,B(| ai | Ri).
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Proposition 3.6. The analytic series (3.5) belongs to the Bernstein class
B2

(B,R,c) with:

(3.7a) R = K4(1+ | λ |),
(3.7b) c = nK2

3K2n−1
4 /cn

2n+1.

Proof. Write first the condition for fλ(x) to be an A0-series as follows:

deg [fk] ≤ k − 1,

| fk |≤ K3K
k
4 .

Write next the decomposition:

(3.8) fk(λ) =
n∑

i=1

[φk,i(λ)λ2i].

This yields:

(3.9) | φk,i(λ) |≤| fk | (1+ | λ |)k−2 ≤ K3K
k−1
4 (1+ | λ |)]k−2.

This entails:

(3.10) | fk(λ ≤ K3K
k−1
4 (1+ | λ |)]k−2(Maxi=1,...,n | λ2i |).

A more careful analysis of the recurrency relation (cf. 1.19, 1.20) shows
that equation (3.5) entails a nxn matrix relation between the vectors f2j+1, j =
1, ..., n and λ2i, i = 1, ..., n of the form:

(3.11) f2j+1 =
n∑

i=1

[Cji + ∆ji]λ2i,

where the matrices C and ∆ are respectively diagonal, with non-zero coefficients
c2i+1 defined in (1.20), and nilpotent (upper-triangular). Inverting the matrix
relation (3.11) yields:

(3.12) | λ2i |≤| (C + ∆)−1 | Maxi=1,...,n | f2i+1(λ) | .

This is completed with the inequalities:

(3.13a) | (C + ∆)−1 |≤| C−1 || (1 + C−1∆)−1 |,

(3.13b) ≤| C−1 | [1+ | C−1∆ | +... + (| C−1∆ |)n−1].

The coefficients of the diagonal matrix C entail (cf. 1.20):

(3.14) | C−1 |= 1/c2n+1,

This yields:

(3.15) | (C + ∆)−1 |≤ (1/c2n+1)nnK3K
2n
4 (1+ | λ |)]2n+1.



THE RETURN MAPPING OF LIÉNARD EQUATIONS 265

Equations (3.15), (3.12), (3.9) entail now:

(3.16a)
| fk(λ) | Rk ≤ (1/c2n+1)nnK2

3 [K4(1+ | λ |)]2n−1Maxk=2,...,B(| fk(λ) |),

(3.16b) | fk(λ) | Rk ≤ (1/c2n+1)nnK2
3 [K4(1+ | λ |)]4nMaxj=2,...,B(| fj(λ) |)Rj .

This means that the analytic series (3.3) belongs to the Bernstein class B2
(B,R,c)

(cf. [8], [9])with:
c = nK2

3 [K4(1+ | λ |)]4n/cn
2n+1.

The proposition 3.2 and the results of ([8],[9]) now imply the following:

Theorem 3.7. The number of zeros of fλ(x) in the disc D(0, R′) is less than
B − 1 = 2n with

(3.17a) R′ = cn
2n+1/[26nnK2

3 [K4(1+ | λ |)]4n+1,

(3.17b) R′ = cn
2n+1/[210n−1nπ2(1+ | λ |)4n+1.

For small values of | λ |, this estimate can be improved with the same scaling
argument as used in the previous paragraph as follows:

Theorem 3.8. The vector field X has less than 2n complex limit cycles on the
disc D(0, R′(ρ)) of radius

(3.18a) R′(ρ) = ρcn
2n+1/[π2n214n],

where ρ is the unique positive real number such that:

(3.18b) ρd | λd | +... + ρ | λ1 |= 1.
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