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ON THE MINIMAL NUMBER OF CRITICAL POINTS OF
FUNCTIONS ON h-COBORDISMS

P. E. Pushkar and Yu. B. Rudyak

Abstract. Let (W, M0, M1) be a non-trivial h-cobordism (i.e., the Whitehead
torsion of (W, M0) is non-zero) with W compact, connected and dim W ≥ 6. We
prove that every smooth function f : W → [0, 1], f(M0) = 0, f(M1) = 1 has at
least 2 critical points. This estimate is sharp: W possesses a function as above
with precisely two critical points.

Introduction

Let (W, M0, M1) be an h-cobordism, [3]. Here W is always assumed to be
smooth, connected and compact and Mi, i = 0, 1 is always assumed to be closed.
Recall that an h-cobordism (W, M0, M1) is called trivial if there is a diffeo-
morphism (W, M0, M1) ∼= (M × [0, 1], M0, M0). We say that a function (not
necessarily Morse) f : W → [0, 1] is regular if f−1(M0) = 0, f−1(M1) = 1
and both values 0 and 1 are regular values of f . It is well known that an h-
cobordism (W, M0, M1) is trivial if and only if W possesses a regular function
without critical points. In this note we prove the following theorem.

Theorem. Let (W, M0, M1) be a non-trivial h-cobordism with dimW ≥ 6.
Then every regular function on W has at least two critical points. Moreover,
this estimate is sharp: W possesses a regular function with precisely two critical
points.

We denote by I the closed interval [0, 1].

1. Preliminaries

Let f : W → I be a regular Morse function on an h-cobordism (W, M0, M1).
Choose a Riemannian metric on W and consider integral trajectories for the vec-
tor field − grad f , the so-called anti-gradient trajectories. We say that an anti-
gradient trajectory a = a(t) is a special trajectory from p to q if limt→−∞ a(t) = p
and limt→+∞ a(t) = q where p and q are critical points of f such that the index
of p is one more than the index of q. We can and shall assume that the number
of special trajectories is finite (this is true for generic function and metric).

For every critical point of f we fix orientations of unstable disks (left-hand
disks in terminology of [3]). Then every unstable sphere (in a certain level)
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gets an orientation. Moreover, every stable sphere gets a coorientation, i.e., an
orientation of its normal bundle in the corresponding level set. Now, for every
special trajectory a from p to q we define the number ε(a) = ±1 as follows. Take
c ∈]f(q), f(p)[. Then our trajectory a meets the level f−1(c) in a certain point
x, which is a point of transversal intersection of the corresponding stable and
unstable spheres. We define ε(a) to be the intersection index at x.

2. Whitehead torsion

Given a ring R, we define a based R-module to be a free finite generated left
R-module M with a fixed R-free basis.

Recall the definition of the Whitehead torsion of an h-cobordism (W, M0, M1).
Given a group π, let A = A(π) denote the set of long exact sequences

· · · −−−−→ Cn
∂n−−−−→ Cn−1 −−−−→ · · · −−−−→ 0

such that each Ci is a based Z[π]-module and all but finite number of modules Ci

are zero modules. Furthermore, each ∂i is a Z[π]-module homomorphism. Let us
call the exact sequence of based Z[π]-modules trivial if it has only two non-zero
terms and the corresponding isomorphism is given by the identity matrix. The
term-wise direct sum operation converts A into an abelian semigroup. Let R be
the equivalence relation on A generated by the following operations:

• interchanging of the elements;
• replacement of a basis element by the sum of this element with the multiple

of another basis element;
• addition of the trivial exact sequence;
• multiplication of any basis element by the element ±g, g ∈ π.

The above mentioned operation in A induces a group structure in A/R. This
groups is called theWhitehead group of π and is denoted by Wh(π), [4]. It turns
out to be that Wh(π) is a functor of π. In particular, every homomorphism
ϕ : π → G induces a homomorphism Wh(ϕ) : Wh(π) → Wh(G). Namely, the
homomorphism ϕ yields the homomorphism Z[ϕ] : Z[π] → Z[G] of group rings,
which turns Z[G] into the right Z[π]-module Z[G]Z[ϕ]. Now, for every based
Z[π]-module C we can form the based Z[G]-module Z[G]Z[ϕ] ⊗C. The sequence
{Z[G]Z[ϕ] ⊗ Cn} turns out to be exact because all the Cn’s are free, etc.

For every h-cobordism (W, M0, M1) with π1(W ) = π the Whitehead torsion
τ(W, M0, M1) ∈ Wh(π) is defined as follows. Consider a regular Morse function
f : W → I, Riemannian metric, etc. as in §1 . Fix a point x0 ∈ W and, for every
critical point p of f , choose a path u(p) from x0 to p. Every special trajectory a
from p to q gives us a map a : R → W which is well defined up to shift of t ∈ R.
We define a path v = va : I → W as follows. Let λ(t) :]0, 1[→ R be a function
such that

lim λ(t)t→0 = −∞, lim λ(t)t→1 = +∞.
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We set v(0) = p, v(1) = q, v(t) = a(λ(t)). Now, consider the loop u(p)◦v◦(u(q))−1

(where ◦ denotes the product of paths) and define g(a) ∈ π = π1(W ) as the based
homotopy class of the loop constructed.

Let p1, . . . , pk be all the critical points of the index n. Define Cn to be the free
Z[π]-module generated by symbols [p1], . . . , [pk]. In other words, Cn consists of
formal linear combinations

k∑
i=1

αi[pi], αi ∈ Z[π].

We define the differential ∂n : Cn → Cn−1 to be a Z[π]-module homomorphism
such that

∂n[p] =
∑

q

∑
a∈T (p,q)

ε(a)g(a)[q]

where q runs over all critical points of the index n − 1 and T (p, q) is the set of
special trajectories from p to q.

It follows from the Morse theory that H∗({Cn, ∂n}) = H∗(W̃ , M̃0) where
(W̃ , M̃0) is the universal covering of the pair (W, M0). Since M0 is a deformation
retract of W , we conclude that M̃0 is a deformation retract of W̃ , and therefore
the complex {Cn, ∂n} is acyclic, i.e. the sequence

· · · −−−−→ Cn
∂n−−−−→ Cn−1 −−−−→ · · · −−−−→ 0

is exact. Thus, the above sequence determines a certain element τ = τ(W, M0) ∈
Wh(π), the so-called Whitehead torsion of the h-cobordism (W, M0, M1).

According to well-known Barden–Mazur–Stallings Theorem, [1, 2, 5], an h-
cobordsim (W, M0, M1) with dimW ≥ 6 is trivial if and only if τ(W, M0) = 0.

2.1. Lemma. Suppose that an h-cobordism (W, M0, M1) possesses a regular
Morse function f such that all the critical points and special trajectories of f are
contained in a simply connected domain U of W . Then τ(W, M0) = 0

Proof. Since τ(W, M0) does not depend on the choice of the based point x0 and
the paths u(p), we can assume that x0 ∈ U and every path u(p) belongs to U .
Then, for every special trajectory a, g(a) is the neutral element of π = π1(W ).
Thus,

τ(W, M0) ∈ Im{Wh(j) : Wh{e} → Wh(π)}
where j : {e} → π is the inclusion of the trivial subgroup. But it follows from
the elementary linear algebra that Wh{e} = 0, see e.g. [4]. Thus, τ(W, M0) = 0.

3. Proof of the theorem

Let f : M → R be a smooth function (not necessarily Morse) on a Riemannian
manifold M . Let U be an open ball in M and suppose that U contains precisely
one critical point o.
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3.1. Lemma. There exists a regular Morse function g which is C∞-close to f
in the Whitney topology and such that every special g-trajectory is contained in
U whenever its ends are contained in U .

Proof. Let D(r) = {m ∈ M
∣∣ d(m, o) < r) where d is the distance function on

M . We can and shall assume that the injectivity radius at o is at least one and
that U = D(1). Then there are positive constants C and E such that, for every
function g which is C∞-close to f , the following estimates hold in D(1)\D(1/2):

| grad g| ≥ E, |Lgrad g d(m, o)| ≤ C.

Choose a function g close to f . Let p and q be two critical points of g which
belong to U . Suppose that there is a special trajectory a(t) from p to q which
meets the boundary of D(3/4). We claim that in this case

g(p) − g(q) ≥ E2

4C
.

Indeed, since Lgrad g d(m, o)| ≤ C, we conclude that

a

[
t − 1

4C
, t +

1
4C

]
does not meet D(1/2) whenever a(t) /∈ D(3/4) . So, if a(t0) /∈ D(3/4) then

g(p) − g(q) ≥
∫ t0+

1
4C

t0− 1
4C

dg(a(t)) =
∫ t0+

1
4C

t0− 1
4C

| grad g|2dt ≥ E2

4C
.

Now we can finish the proof as follows. Since f has only one critical point,
there exists g close to f and such that g(p)− g(q) is small enough for all critical
points p and q of g. This is a contradiction.

3.2. Corollary. If an h-cobordism (W, M0, M1) possesses a regular function f
with one critical point p, then τ(W, M0) = 0. In particular, if dimW ≥ 6 then
the h-cobordism is trivial.

Proof. Because of Lemma 3.1, we can perturb the function f in a small neighbor-
hood of the critical point and get a function f1 such that all its critical points
and special trajectories belong to a disk neighborhood of p. Now the result
follows from Lemma 2.1.

3.3. Proposition. Every h-cobordism (W, M0, M1) , dimW ≥ 6 possesses a
regular function with at most 2 critical points.

Proof. Consider a regular Morse function f : W → I. Asserting as in [1, Lemme
1] and [3, §4], we can modify f and to get a regular Morse function which has at
most two critical levels a, b, a < b and index of each of critical points is equal to
2 or 3. Because of this, every critical level is path connected. Now, following [6,
Th. 2.7 and Prop.2.9], we can contract the critical points in each of the levels
and get a regular function with at most 2 critical points.

Clearly, Corollary 3.2 and Proposition 3.3 together imply the Theorem.
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3.4. Remarks. 1. Asserting as in 3.2, one can show that, for every regular
function f on a non-trivial h-cobordism, the number of critical levels of f is at
least 2 provided that all the critical points of f are isolated.

2. Every h-cobordism (W, M0, M1) possesses a regular function with 1 critical
level. Namely, choose collars of the boundary components and define f to be
constant on complements of collars and depending on the “vertical” coordinate
only for collars. In greater detail, consider a smooth function

ϕ : I → I, ϕ(t) =
{

t if 0 ≤ t ≤ ε/4 or 1 − ε/4 ≤ t ≤ 1,
1/2 if ε/2 ≤ t ≤ 1 − ε/2

for ε > 0 small enough. Choose collars M0 × [0, ε] and M1 × [1− ε, 1] and define
f : W → I by setting

f(x) =




ϕ(t) if x = (m, t) ∈ M0 × [0, ε],
ϕ(t) if x = (m, t) ∈ M1 × [1, 1 − ε],
1/2 else.

3. Every trivial h-cobordism (M ×I, M, M) possesses a regular function with
1 critical point. Indeed, consider a function ϕ : M → I such that ϕ−1(1) is a
point m0 (and therefore m0 is a critical point of ϕ) and define

f : M × I → I, f(m, t) = (t − 1/2)(1 − ϕ(m)) + ϕ(m)(t − 1/2)3.

It is easy to see that f has just one critical point (m0, 1/2).

4. Notice that, for every h-cobordism (W, M0, M1), the relative Lusternik–
Schnirelmann category cat(W, M0) = 0, while every regular function on any
non-trivial h-cobordism (W, M0, M1) has at least two critical points.

5. It is easy to see that, because of the collar theorem, the regularity condition
for f in the Theorem can be weaken as follows: f(M0) = 0 and f(M1) = 1.
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