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EIGENFUNCTION AND BOCHNER RIESZ ESTIMATES
ON MANIFOLDS WITH BOUNDARY

Christopher D. Sogge

1. Introduction

The purpose of this paper is to give a simple proof of sharp L∞ estimates for
the eigenfunctions of the Dirichlet Laplacian on smooth compact Riemannian
manifolds (M, g) of dimension n ≥ 2 with boundary ∂M and then to use these
estimates to prove new estimates for Bochner Riesz means in this setting. Thus,
we shall consider the Dirichlet eigenvalue problem

(∆ + λ2)u(x) = 0, x ∈ M, u(x) = 0, x ∈ ∂M,(1.1)

with ∆ = ∆g being the Laplace-Beltrami operator associated to the Riemann-
ian metric g. Recall that the spectrum of −∆ is discrete and tends to infinity.
Let 0 < λ2

1 ≤ λ2
2 ≤ λ2

3 ≤ . . . denote the eigenvalues, so that {λj} is the spec-
trum of the first order operator P =

√−∆. Let {ej(x)} be an associated real
orthonormal basis, and let

ej(f)(x) = ej(x)
∫

M

f(y)ej(y) dy,

be the projection onto the j-th eigenspace. Here and in what follows dy denotes
the volume element associated with the metric g.

Grieser [5] recently proved the L∞ estimates

‖ej(f)‖∞ ≤ Cλ
(n−1)/2
j ‖f‖2,(1.2)

which are sharp for instance when M is the upper hemisphere of Sn with the
standard metric. One of our main results is a slight strengthening of this. We
shall consider the unit band spectral projection operators,

χλf =
∑

|λj−λ|≤1

ej(f),(1.3)

and show that these enjoy the same bounds:

Theorem 1.1. Fix a compact Riemannian manifold (M, g) with boundary of
dimension n ≥ 2. Then there is a uniform constant C so that

‖χλf‖∞ ≤ Cλ(n−1)/2‖f‖2, λ ≥ 1.(1.4)
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In the case of manifolds without boundary, this and more general estimates
of the form

‖χλf‖p ≤ Cλσ(p)‖f‖2, λ ≥ 1, p ≥ 2,(1.5)

where

σ(p) = max
{

n − 1
2

− n

p
,

n − 1
2

(
1
2
− 1

p

) }
(1.6)

were proved in [15]. These estimates cannot be improved since one can show
that the operator norms satisfy lim supλ→∞ λ−σ(p)‖χλ‖L2→Lp > 0 (see [17]).

The special case of (1.5) where p = ∞ seems to have been first stated in
[15], but it can be proved using much older estimates of Avakumovic [1], [2] and
Levitan [11] that arise in the proof of the sharp Weyl formula for Riemannian
manifolds without boundary. After that, Hörmander [7] proved the sharp Weyl
formula for general self-adjoint elliptic operators on manifolds without boundary.
Recently, in the case of manifolds without boundary, the author and Zelditch
[18] proved estimates that imply that for generic metrics on any manifold one
has the bounds ‖ej‖∞ = o(λ(n−1)/2

j ) for L2-normalized eigenfunctions. The
corresponding result for manifolds with boundary is not known.

In the case of manifolds with boundary, the only known results for the unit
band spectral projection operators were due to D. Grieser [4] and H. Smith and
the author [14], who showed that the bounds (1.5) hold under the assumption
that the manifold has geodesically concave boundary. The two-dimensional case
was handled in [4], and the higher dimensional in [14].

In the other direction, Grieser in his thesis [4], showed that (1.5) cannot hold
if the boundary of M has a point that is geodesically convex. In this case, for
instance, when n = 2, he constructed a counterexample showing that the bounds
in in (1.5) can only hold for p ≥ 8. Showing that they are valid for this range
of exponents appears to be very difficult. The reason for the difference in the
smaller range of exponents for this case is related to the existence of Rayleigh
whispering galleries. Specifically, one can construct functions with spectrum in
λ-unit bands that are concentrated in a λ−2/3 neighborhood of the boundary,
while in the boundaryless case, the counterexample showing that (1.5) is sharp
involves showing that there are functions of this type concentrating in λ−1/2

neighborhoods of geodesics.
We shall follow an idea of Grieser [5] to prove our generalization (1.4) of

his result (1.2). Grieser first showed that one always has the uniform bounds
|ej(x)| ≤ Cλ

(n−1)/2
j when the distance from x to ∂M is bounded from below by

λ−1
j . This first step was achieved by adapting the proof of estimates for the local

Weyl law which are due to Seeley [13], Pham The Lai [12] and Hörmander [8].
He then used these bounds and a form of the maximum principle ([6], Theorem
10, p. 73) for solutions of (1.1) to obtain the bounds in the λ−1

j neighborhood
of the boundary.
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Our proof of (1.4) will be to first see that the aforementioned local Weyl esti-
mate of Seeley, Pham The Lai, and Hörmander immediately gives the stronger
estimate

|χλf(x)| ≤ Cλ(n−1)/2‖f‖2, λ ≥ 1,(1.7)

for all x when n = 2 or when for n ≥ 3 the distance to the boundary is bounded
below by λ−(n−1)/(n−2). If n = 3, one can use this fact and a simple argument
involving Sobolev’s theorem (cf. Theorem 17.5.3 in [8]) to show that (1.7) must
also hold in the missing piece where dist(x, ∂M) ≤ λ−2 . For n ≥ 4; however,
one must use a maximum principle argument as introduced by Greiser for these
problems. We shall not directly use the form of the maximum principle employed
by Grieser, but rather see that its proof can be used to show that the uniform
bounds (1.7) must also hold in a λ−1 neighborhood of the boundary, which would
finish the proof of (1.4).

Our other main result will be some new estimates for Bochner Riesz means
of eigenfunctions. Recall the Bochner Riesz means of index δ ≥ 0 are defined by

Sδ
λf =

∑
λj≤λ

(
1 − λ2

j

λ2

)δ

ej(f).(1.8)

It is known that a necessary condition for these operators to be uniformly
bounded on Lp for a given 1 ≤ p ≤ ∞, p �= 2, is that

δ(p) = max {n|1/2 − 1/p| − 1/2, 0} .(1.9)

Note that when p ≥ 2(n + 1)/(n − 1), one has δ(p) = σ(p), where σ(p) is the
exponent in (1.6). Using this fact, the author used the boundarlyless estimates
(1.5) to prove the first sharp estimates for Bochner Riesz means on compact
Riemannian manifolds in [16]. Specifically, it was shown that for a given p ∈
[1, 2(n + 1)/(n + 3)] ∪ [2(n + 1)/(n − 1),∞] one has the uniform bounds

‖Sδ
λf‖p ≤ C‖f‖p

in this setting, provided that δ > δ(p). Earlier, weaker results were due to many
people, including Hörmander [9].

Since we only know that the desired bounds for eigenfunctions (1.5) hold for
p = ∞, we can only at this stage prove the sharp estimates for Bochner Riesz
means when p = 1 or p = ∞:

Theorem 1.2. Fix a smooth compact Riemannian manifold with boundary
(M, g) of dimension n ≥ 2. Then if δ > (n − 1)/2 one has the uniform bounds

‖Sδ
λf‖p ≤ C‖f‖p,(1.10)

for every 1 ≤ p ≤ ∞.

By interpolating with the trivial estimate for p = 2, and using duality one
gets the bounds (1.10) from the special case where p = 1. However, the bounds
for 1 < p < ∞ certainly are not sharp.
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We shall adapt the argument from [16] to show that (1.5) implies (1.10). In
[16] the Tauberian arguments behind the proof of the sharp Weyl formula were
adapted to show that one could write Sδ

λ = S̃δ
λ+Rδ

λ, where the “remainder” term
Rδ

λ could be controlled by (1.5), while the other piece, S̃δ
λ, could be estimated

by computing its kernel explicitly via the Hadamard parametrix and then esti-
mating the resulting integral operator using straightforward adaptations of the
arguments for the Euclidean case. In the setting of manifolds with boundary,
this approach does not seem to work since the known parametrices for the wave
equation do not seem strong enough unless one assumes that the boundary is
geodesically concave. Here, we shall get around this fact by simplifying the ear-
lier arguments and show that estimates for Bochner Riesz operators just follow
from (1.5) and the finite propagation speed of solutions of the Dirichlet wave
equation.

In what follows we shall use the convention that C will denote a constant that
is not necessarily the same at each occurrence.

It is a pleasure to thank S. Zelditch for a number helpful conversations. I am
also grateful to M. Taylor and X. Xu for helpful comments regarding an early
draft of this paper.

2. L∞ estimates for unit band spectral projection operators

In this section we shall prove Theorem 1.1. Thus, we need to see that one has
the uniform bounds

|χλf(x)| ≤ Cλ(n−1)/2‖f‖2, λ ≥ 1.(2.11)

Note that

χλf(x) =
∫

M

∑
|λj−λ|≤1

ej(x)ej(y)f(y) dy,

therefore, by the converse to Schwarz’s inequality and orthogonality, one has the
bounds (2.11) at a given point x if and only if∑

|λ−λj |≤1

(ej(x))2 ≤ C2λn−1.(2.12)

Because of this, (2.11) would be a consequence of the following two results.

Proposition 2.3. Fix (M, g) as above. Then, given ε > 0, there is a uniform
constant C so that for λ ≥ 1∑

|λ−λj |≤1

(ej(x))2 ≤ Cελ
n−1,(2.13)

for x satisfying

d(x) ≥ ελ−1(2.14)

if n ≥ 3 where d(x) denotes the Riemannian distance to ∂M .
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Proposition 2.4. If (M, g) is as above then for large λ we have

max
{x: d(x)≤ 1

2 (λ+1)−1}

∑
|λ−λj |≤1

(ej(x))2 ≤ 4 max
{x: d(x)= 1

2 (λ+1)−1}

∑
|λ−λj |≤1

(ej(x))2.

(2.15)

Proof of Proposition 2.3. We shall see that (2.13) is an immediate conse-
quence of Theorem 17.5.10 in Hörmander [8], which in turn is based on earlier
work of Seeley [13] and Pham The Lai [12]. To state this result, we let

e(x, λ) = (2π)−n

∫
{ξ∈Rn: |ξ|≤λ}

(
1 − ei2d(x)ξn

)
dξ.(2.16)

If we assume that local coordinates have been chosen so that the Riemannian
volume form is dx1 . . . dxn, then the result just quoted says that there is a
uniform constant C so that for λ ≥ 1

|
∑

λj≤λ

(ej(x))2 − e(x, λ)| ≤ Cλ(λ + d(x)−1)n−2.(2.17)

Since λ(λ + d(x)−1)n−2 = O(λn−1) for all x satisfying (2.14) this yields Propo-
sition 2.3 since

|e(x, λ + 1) − e(x, λ − 1)| ≤ Cλn−1.

Although, we do not need to use it here, the proof of (2.17) actually gives
the bounds (2.13) when d(x) ≥ λ−n−1

n−2 for n ≥ 3 and for all x when n = 2. This
stronger fact just follows from the estimate (17.5.20) in [8].

Proof of Proposition 2.4. It is convenient to use geodesic coordinates with
respect to the boundary. Specifically, we shall use the fact that we can find a
small constant c > 0 so that the map (x′, xn) ∈ ∂M × [0, c) → M , sending
(x′, xn) to the endpoint, x, of the geodesic of length xn which starts at x′ ∈ ∂M
and is perpendicular to ∂M is a local diffeomorphism. Note then that d(x) = xn.
Under this identification the metric takes the form

n∑
i,j=1

gij(x)dxidxj = (dxn)2 +
n−1∑
i,j=1

g′ij(x
′, xn)dxidxj ,

where g′ij( · , xn) is a Riemannian metric on ∂M depending smoothly on xn ∈
[0, c). Consequently, in this neighborhood of the boundary, the Laplacian can
be written as

∆ =
n∑

i,j=1

gij(x)
∂2

∂xi∂xj
+

n∑
i=1

bi(x)
∂

∂xi
,

using local coordinates for ∂M , where gij the matrix with entries (gij)1≤i,j≤n−1 =
(g′ij)

−1 and gnn = 1, and gnk = gkn = 0, k �= n. Also the bj(x) are C∞ and real
valued.
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In what follows we shall assume that λ is large enough so that λ ≥ 2/c.
Assume further that spec

√−∆ ∩ [λ − 1, λ + 1] �= ∅, and consider the function

H(x) =
1

(w(x))2
∑

λj∈[λ−1,λ+1]

(ej(x))2,

where
w(x) = 1 − (λ + 1)2x2

n.

Suppose that in the strip {x ∈ M : 0 ≤ xn ≤ 1
2 (λ + 1)−1} the function H(x)

has a maximum at an interior point x = x0. Then

v(x) =
1

w(x)

∑
λj∈[λ,λ+1]

ej(x0)
w(x0)

ej(x)

must have a positive maximum at x = x0. For because of our assumptions on
the spectrum we then have v(x0) =

∑
λj∈[λ,λ+1](ej(x0)/w(x0))2 > 0, while at

other points in the strip

|v(x)| ≤ 1
w(x)

( ∑
λj∈[λ,λ+1]

(ej(x))2
)1/2 1

w(x0)
( ∑
λj∈[λ,λ+1]

(ej(x0))2
)1/2

= (H(x))1/2(H(x0))1/2 ≤ H(x0) = v(x0).

Note that in the strip {x ∈ M : 0 ≤ xn ≤ 1
2 (λ + 1)−1} we have

(∆ + λ2
j )w = −2(λ + 1)2 − 2bn(x)xn(λ + 1)2 + λ2

j (1 − (λ + 1)2x2
n)

≤ −(λ + 1)2/2, λj ≤ λ + 1,

assuming that λ is large enough so that |2b1(x)xn| ≤ 1/2. Also, in this strip we
have that 1

2 ≤ w(x) ≤ 1.
Let us set

vj(x) =
ej(x)
w(x)

ej(x0)
w(x0)

,

so that v(x) =
∑

λj∈[λ−1,λ+1] vj(x). We also set

uj(x) =
ej(x0)
w(x0)

ej(x),

and note that (∆ + λ2
j )uj(x) = 0.

A computation (see p. 72, [6]) shows that for a given j we have

0 =
1
w

(∆ + λ2
j )uj

=
n∑

k,l=1

gkl(x)
∂2vj

∂xk∂xl
+

n∑
k=1

( 2
w

n∑
l=1

gkl(x)
∂w

∂xl
+ bk

) ∂vj

∂xk
+

vj

w
(∆ + λ2

j )w.
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Therefore, if we sum over λj ∈ [λ − 1, λ + 1], we get
n∑

k,l=1

gkl(x)
∂2v

∂xk∂xl
+

n∑
k=1

( 2
w

n∑
l=1

gkl(x)
∂w

∂xl
+bk

) ∂v

∂xk
= −

∑
λj∈[λ−1,λ+1]

vj

w
(∆+λ2

j )w.

In particular, at x = x0, we have
n∑

k,l=1

gkl(x0)
∂2v(x0)
∂xk∂xl

+
n∑

k=1

( 2
w

n∑
l=1

gkl(x0)
∂w

∂xl
+ bk

)∂v(x0)
∂xk

=
−1

w(x0)

∑
λj∈[λ−1,λ+1]

(
ej(x0)
w(x0)

)2

(∆ + λ2
j )w(x0) > 0.

But this is impossible since v has a positive maximum at x0, which implies
that ∂v(x0)/∂xk = 0 for every k, and

∑n
k,l=1 gkl(x0)

∂2v(x0)
∂xk∂xl

≤ 0. Thus, we
conclude that the function H(x) cannot have a maximum at an interior point of
the strip, {x : 0 ≤ xn ≤ 1

2 (λ + 1)−1}. Because of this, the Dirichlet conditions,
and our lower bound for w, we get that

sup
{x: 0≤xn≤ 1

2 (λ+1)−1}

∑
λj∈[λ−1,λ+1]

(ej(x))2 ≤ 4 sup
{x: xn= 1

2 (λ+1)−1}

∑
λj∈[λ−1,λ+1]

(ej(x))2,

as desired, which completes the proof of Proposition 2.4.

3. Estimates for Bochner Riesz means

In this section we shall see how favorable estimates for the unit band spectral
projection operators imply sharp estimates for Bochner Riesz means. Specifi-
cally, we shall prove the following result which implies Theorem 1.2.

Proposition 3.5. Assume that for a given 1 ≤ p < 2 one has the uniform
bounds

‖χλf‖2 ≤ Cλ
n
p −n+1

2 ‖f‖p, λ ≥ 1.(3.18)

Then for a given δ > n
p − n+1

2 there is a uniform constant Cδ so that

‖Sδ
λf‖p ≤ Cδ‖f‖p.(3.19)

This implies Theorem 1.2, since, by duality, (1.4) implies that (3.18) must
hold when p = 1. This implies that if δ > (n − 1)/2 the Sδ

λ are uniformly
bounded on L1, which implies the same for all Lp, 1 ≤ p ≤ ∞ by duality and
interpolation.

The proposition also shows that if (3.18) holds then one has the sharp estimate
that the Sδ

λ operators are uniformly bounded on Lp when δ > δ(p), with 1 ≤
p ≤ 2n/(n + 1), if, as in (1.9), δ(p) is the so-called critical index for Bochner
Riesz summability. However, as we pointed out before, (3.18) can only hold for
a much smaller range of exponents. For instance, when n = 2 the bounds can
only hold for at most 1 ≤ p ≤ 8/7, instead of 1 ≤ p ≤ 6/5, if any boundary
points is geodesically convex.
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To prove Proposition 3.5, we shall require the following straightforward con-
sequences of its hypotheses.

Lemma 3.6. Suppose that (3.18) holds. Suppose also that ρ ∈ C(R) satisfies
|ρ(τ)| ≤ CN (1+|τ |)−N for some N > n

p − n+1
2 +1. Assume also that 1 ≤ 2k ≤ λ.

Then there is a uniform constant C so that

‖ρ(2−k(λ − P))f‖2 + ‖ρ(2−k(λ + P))f‖2 ≤ C2k/2λ
n
p −n+1

2 ‖f‖p, λ ≥ 1,

(3.20)

where the constant only depends on CN and the constant in (3.18).

Here we are of course using the notation that ρ(P)f =
∑

j ρ(λj)ej(f).

Proof of Lemma 3.6. If we just use orthogonality, (3.18), and our assumptions
on ρ we find that

‖ρ(2−k(λ − P))f‖2
2 + ‖ρ(2−k(λ + P))f‖2

2

≤ C
∞∑

j=0

(
sup

λl∈[j,j+1]

|ρ(2−k(λ − λl))|2 + sup
λl∈[j,j+1]

|ρ(2−k(λ + λl))|2
)
‖χjf‖2

2

≤ C
∞∑

j=0

(
(1 + 2−k|λ − j|)−N + (1 + 2−k|λ + j|)−N

)
(1 + j)2(

n
p −n+1

2 )‖f‖2
p.

The first term in the right dominates the second term. Since N > n
p − n+1

2 + 1
and 2−kλ ≥ 1, by comparing the sums to the corresponding integrals, one sees
that both terms on the right can be dominated by the square of the right hand
side of (3.20), which finishes the proof.

We now have the main tools needed to prove Proposition 3.5. To be able to
rewrite the operators Sδ

λ in a way that will allow us to use the above estimates we
need to relate the operator to the wave equation. For this purpose, we need to
compute the Fourier transform of the symbol τ → (1 − τ2/λ2)δ

+ of the Bochner
Riesz means. We shall use the Bessel function formula,

∫ 1

−1

eiτt(1 − τ2)δ dτ =
√

πΓ(1 + δ)
(

t

2

)−δ− 1
2

Jδ+ 1
2
(t), t > 0.

Recall that as r → ∞, we have the following asymptotics for Bessel functions of
order m

Jm(r) =
∑
±

α±
m(r)e±ir,

where

|∂jα±
m(r)| ≤ Cjr

−j−1/2, r ≥ 1, j = 0, 1, 2, . . . .
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Therefore, since this Fourier transform is an even function, we can write

Sδ
λf =

∑
λj≤λ

(1 − λ2
j/λ2)δej(f)(3.21)

=
1
2π

∫ ∞

−∞
λ
√

πΓ(1 + δ)
(

λ|t|
2

)−δ− 1
2

Jδ+ 1
2
(λ|t|)

∑
j

cos tλj ej(f) dt

=
1
2π

∫ ∞

−∞

∑
±

λm±
δ (λt)e±iλt cos tPf dt,

where, for every j, |(1 + |t|)j∂j
t m±

δ (t)| ≤ Cδ(1 + |t|)−1−δ, and hence

λ|(1 + |t|)j∂j
t m±

δ (λt)| ≤
{

Cδλ, |t| ≤ λ−1

Cδλ
−δ|t|−1−δ, |t| ≥ λ−1.

(3.22)

Here, P =
√−∆, and

u(t, x) = cos tPf(x) =
∞∑

j=1

cos tλjej(f)(x),

is the cosine transform of f . Thus, it is the solution of the wave equation

(∂2
t − ∆g)u = 0, u(0, · ) = f, ∂tu(0, · ) = 0.

We shall use the finite propagation speed for solutions to the wave equation.
Specifically, if f is supported in a geodesic ball B(x0, R) centered at x0 with
radius R, then x → cos tPf vanishes outside of B(x0, 2R) if 0 ≤ t ≤ R.

We shall now proceed to break up the operators Sδ
λ into a sum of pieces

that we can estimate using a combination of (3.20) and Hölder’s inequality,
along with a “remainder term”. This is related to an argument of Fefferman [3]
for the Euclidean case, and also an argument of the author [16] for the case of
Riemannian manifolds without boundary. The latter argument also relied on the
small time parametrix for the wave equation, which is impossible to use in this
setting. Instead we use a simpler argument that only uses the finite propagation
speed of the wave equation.

Let us first deal with the remainder term. We fix an even function b ∈ C∞(R)
satisfying b(t) = 0, |t| < 1 and b(t) = 1, |t| > 2, and then set

Rδ
λf =

1
2π

∫ ∞

−∞

∑
±

λm±
δ (λt)b(t)e±iλt cos tPf dt.

If ρλ denotes the inverse Fourier transform t → 1
2m±

δ (λt)b(t), then

Rδ
λf = ρλ(λ − P)f + ρλ(λ + P)f.

Using (3.22), one finds that for fixed δ one has the uniform bounds

|ρλ(τ)| ≤ CNλ−δ(1 + |τ |)−N ,
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for every N . Hence, (3.20) and Hölder’s inequality imply that for every λ ≥ 1

‖Rδ
λf‖p ≤ C‖Rδ

λf‖2 ≤ Cλ
n
p −n+1

2 −δ‖f‖p,

which shows that the remainder terms Rδ
λ are uniformly bounded when δ ≥

n
p − n+1

2 .
If we let a(t) = 1 − b(t), so that a(t) = 1 for |t| < 1 and 0 for |t| > 2, we

would be done if we could prove the same for

S̃δ
λf =

1
2π

∫ ∞

−∞

∑
±

λm±
δ (λt)a(t)e±iλt cos tPf dt.

To do this, we shall make a dyadic decomposition of the integral. Fix β ∈ C∞
0 (R)

satisfying β(t) = 0 t /∈ [1/2, 4] and
∑∞

−∞ β(2−jt) = 1, t > 0. We then set
β0(t) =

∑∞
j=0 β(2−j |t|) so that β0 is smooth and satisfies β0(t) = 0, |t| > 2. We

then define for j = 1, 2, . . .

S̃δ
λ,jf =

1
2π

∫ ∞

−∞

∑
±

λm±
δ (λt)β(λ2−j |t|)a(t)e±iλt cos tPf dt,

and

S̃δ
λ,0f =

1
2π

∫ ∞

−∞

∑
±

λm±
δ (λt)β0(λt)a(t)e±iλt cos tPf dt,

so that S̃δ
λf =

∑
j≥0 S̃δ

λ,jf . Note that, because of the support properties of a(t),
S̃δ

λ,jf vanishes if j is larger than a fixed multiple of log λ.
We claim that if δ > n

p − n+1
2 is fixed then

‖S̃δ
λ,jf‖p ≤ C2−(δ−( n

p −n+1
2 ))j‖f‖p,(3.23)

where C is independent of λ and j. This would of course complete the missing
step of obtaining the uniform boundedness of the S̃δ

λ for δ > n
p − n+1

2 .
To prove this estimate we shall exploit the fact that the finite propagation

speed of the wave equation mentioned before implies that the kernels of the
operators, S̃δ

λ,j(x, y) must satisfy

S̃δ
λ,j(x, y) = 0, if dist(x, y) ≥ 8(2jλ−1),

since cos tP will have a kernel that vanishes on this set when t belongs to the
support of the integral defining S̃δ

λ,j . Because of this, in order to prove (3.23),
it suffices to show that for all geodesic balls BRλ,j

of radius Rλ,j = λ−12j one
has the bounds

‖S̃δ
λ,jf‖Lp(BRλ,j

) ≤ C2−(δ−( n
p −n+1

2 ))j‖f‖p,(3.24)

for the Lp norms over BRλ,j
, with C, as before, being independent of λ and j.

However, by Hölder’s inequality,

‖S̃δ
λ,jf‖Lp(BRλ,j

) ≤ C(λ−12j)
n
p −n

2 ‖S̃δ
λ,jf‖L2(M),
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and so we would be done if we could show that

‖S̃δ
λ,jf‖2 ≤ C(λ−12j)−

n
p + n

2 2−(δ−( n
p −n+1

2 ))j‖f‖p = Cλ
n
p −n+1

2 (λ2−j)
1
2 2−δj ‖f‖p.

(3.25)

To prove this for j = 1, 2, . . . we note that, by (3.22), the inverse Fourier
transform of t → 1

2λmδ(λt)β(λ2−j |t|) behaves like that of λ−δ|t|−1−δβ(λ2−j |t|).
Since the dyadic cutoff localizes to |t| ≈ λ−12j , we conclude that we can write

S̃δ
λ,jf = 2−jδρλ,j(λ−12j(λ − P))f + 2−jδρλ,j(λ−12j(λ + P))f,

where the ρλ,j satisfy the uniform bounds

|ρλ,j(τ)| ≤ CN (1 + |τ |)−N ,

for every N . Because of this, the estimates (3.25) with j = 1, 2, . . . just follow
from (3.20) with 2k being replaced by λ2−j . Since the estimate for j = 0 follows
from the same argument, the proof is complete.
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