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SHARP COUNTEREXAMPLES FOR STRICHARTZ
ESTIMATES FOR LOW REGULARITY METRICS

HART F. SMITH AND DANIEL TATARU

1. Introduction

In this paper we produce examples of time independent C* metrics, for 0 <
s < 2, and solutions u to the wave equation for such metrics, which establish
sharp lower bounds on the index of the Sobolev norm of the initial data of u
required to bound mixed LPL? norms of w.

Consider a second order hyperbolic operator on [0,1] x R™,

P(t,2,04,0;) = 07 — 0y, g (t,2) Oy,

and the following estimates of Strichartz type
(1) ||U||Lng([0,1]an) < C(||U||L;>°([0,1];H;(Rn)) + ||3tU”Lgo([o,1];H;—1(Rn))

t ||P“”L%<[o,u;H;*1<R">>) :

If the coefficients of P are smooth, then it is known that these estimates hold
for (p, q) satisfying

(2) %z(”gl)(%—%) 2§q§%,

provided (n, p,q) # (3,2,00), where the Sobolev index ~ is given by

n+1y/1 1

= < 2 ) (2 q) '
On the other hand, in [3] there were constructed for each s < 2 examples of P
with time independent coefficients of regularity C'* for which the same estimates
fail to hold. The first author then showed in [1] that, in space dimensions
2 and 3, the estimates do hold if the coefficients of P are C''. The second
author subsequently showed in [4] that the estimates hold for C? metrics in all
space dimensions, and that for operators with C* coefficients, 0 < s < 2, such
estimates hold provided that ~ is replaced by v + o /p, where o = g;j . Indeed,
[5] showed that such estimates hold under the condition that s derivatives of the
coefficients belong to L} LS, which is important for applications to quasilinear
wave equations.
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The counterexamples of [3] do not coincide with the estimates established by
[4], however. In this paper we remedy this gap, by producing examples of time
independent C* metrics, with 0 < s < 2, which show that the results established
in [4] are indeed best possible.

Theorem 1. Let 0 < s < 2, and suppose that (p,q) satisfy (2). Assume that
the estimate (1) holds with a constant C' depending only on the C* norm of the
coefficients, for all metrics g (x) sufficiently close in the uniform norm to the
Euclidean metric 5. Then

>(n+1)<1 1)+a 2—s
- — = — o= :
T= 2 2 q p’ 2+s
We remark that this construction also produces examples of C*® metrics, 1 <
s < 2, which show that the closely related spectral projection estimates for C*

metrics established by the first author [2] are best possible. For the spectral
projection estimates, however, the counterexamples of [3] were already sharp.

2. An explicit example

Here we give a simple explicit construction, but which works only for s > %
In the next section we explain how to modify this construction in order to make
it work for 0 < s < % We work with variables t € R, z € R, y € R*~!. For
¢ > 0 a real number, we let

ue(t, z,y) = e CU=n =it €Iyl

P(ya 8t78x78y> = (at2 - (1 + ’y‘2) (93 — Ay) ,
and observe that

n—1

Pue(t,xz,y) = — < >2 ue(t, z,y) .

For an index 0 < s < 2 we set
2 2—s
bl O-: )
24+ s 24+ s

and note that 26 =1+ 0.
We now fix s, and make a change of variables by scaling (¢,z,y) by A%, and
replacing & by rA'=7, to obtain

A irA(t—z)—iATt(25L)— LrA2d|y|?
UT(t,$,y):€ ( ) 2 ) 2 Iyl ,

which satisfies

2
-1
P,\u;\(t,m,y) - - <n?> )‘2Uui(t7x7y)7

where

Py(y, 8¢, 0x,0y) = P(\7y, 0y, 0,,0,) = (0f — (1+ X*|y|?) 92— A,) .
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We next fix a smooth, nonnegative bump function 3 supported in the interval
[1,2], and set

u)‘(t,ﬁc,y) = m /ﬁ((log )\)*27') ui‘(t,x,y) dr .

The function u* is essentially a smooth bump function of size 1 localized to the

set |z —t| < A7 (log ) 2y < Ae (log )\)_1 . Rather than obtain pointwise
estimates, though, it is easier to work with weighted L? estimates. Thus, we
note the following two inequalities:

3) [ 1) dy A (10 0)

(4) /(1 + A2 (log A)* [t — 2| + A% (log A)® [yl?) " [ (¢, 2, )| d dy
<N\ I(m1)s (log /\)_n_1 .

The first follows by the Plancherel theorem applied to the x variable. The second
follows by noting that

N (log )\) 2 (t — x)7 uMt, z,y)
_ e—iz\"?ﬁ(%) /eir/\(t—ac) (log )\)2j Gﬁ (e—%r)\%‘yp ﬁ((log )\)727‘)> dr,

and applying Plancherel as before.
Together, (3) and (4) and the Schwarz inequality imply

/(1 + )2 (log )\)4 it —z|? + 22 (log )\)2 \y|2)7n\u>‘(t, z,y)|? dx dy
~ NI (n=1)0 (log ) et ,
which by Holder’s inequality implies that, for 2 < ¢ < 0o,
(5) (&, lzaany = eA=0FE=0D/ (10g 3) =D

exactly the bounds for a suitably localized bump function of size 1. On the other
hand, it is easy to compute the Sobolev space bounds

(6) Nup(t, a1y + 1wt e @
< O\~ (1+(n=1)8)/2 (log /\)27—(n+1)/2

)

1420 — (14 (n— 2(y—1)—(n+1)/2
(7) |’P)\u>\(t, ')HH’Y—l(R") < C\Y 1420 —(14(n—1)4)/2 (log)\) (v=1)=(n+1)/ ]
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If the Strichartz estimate (1) holds uniformly for Py and uy, then by (5), (6)
and (7) we must have
1+ (n—1 _ntl
(8) AT (log\) @
14+(n—1)§ _ntl
2

<O~ (log A)*"™ % (1+ (log A) “A%" 1),

If s > 2/3, then 20 < 1, and therefore we must have

'y><%—%> (1+(n—1)6),

which compared to the smooth case involves a loss of derivatives of the following
degree

(1+(n1)5”‘2“)(%3):(251)%:%.

This would conclude the proof of Theorem 1 if the coefficients of the operators
P, were uniformly bounded in C*. While this is not true, the bound

/ 07, 0 b2, y) [P dedy < Oy AN
ly|>a—s

shows that we can freely modify the coefficients of Py outside the ball {|y| <
A~%}. Thus, let a(y) denote a positive smooth function, such that

a(y) =lyI> if |yl <1, aly)=0 it |y >2,
and set
Py =07 — (1+ A7 a(Xy))07 — A,
Note that
S a0 < €N [ i)
Since (20 —2§)(2—s)+20s = 0, it follows that P} has C*® coefficients, uniformly

over \. Furthermore, the coefficients of P} converge in the L> norm to those of
the usual d’Alembertian 87 — 92 — A, as A — oc.

< O N,

3. A modified example

The reason that the previous example fails for s < 2/3 is that Pyu) is too
large. To remedy this, we seek modified functions u¢ and operators P of the
form

ug(t, z,y) = a(y)e St Tiot=6o()

P(yuahaxuay) = 8t2 _g(y) ag - Ay7

with a,g,¢ smooth on some ball about 0, spherically symmetric, and with
a(0) = g(0) =1, A¢p(0) >0, a > 0, and

Pues =0.
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Given such a function u¢ and an operator P then we can substitute them in the
argument of the previous section, and so obtain the desired counterexamples in
the full range 0 < s < 2.

We compute

A .
Pu¢ = <_(§+a)2 +E9(y) — IV + 06— = *25w> e

By requiring that this vanish for all £ we obtain the following nonlinear system
for a, g, ¢:
Aa+ a?a=0

Ap+2

Va-Vo o500
a

g=1+|Vo[?

The first equation permits an analytic, spherically symmetric solution,

aly)=ca [ e do(y).
S7z—2

The function g is uniquely determined by the third equation, so it remains to
solve the second equation for ¢. Since a has zeros, we only obtain a local solution
¢ for y near 0. If we express Va/a and ¢ as formal power series near 0,

va oo B oo
B) S e g2, o) =S oy
aly) i ot

then we derive the recurrence relation

k—1
k(2k +n — 3ok = — Y 2] as(—j) baj k>2,
j=1
with the initial condition
«
by = > 0.
2 n—1

This implies that
[bai] < max azge—j)baj -
Since a is analytic near 0 we have
|age| < M*,

where M~! is the distance to the first complex 0 of a. Combined with the
previous inequality, this inductively leads to the bound

|bog| < M* by,

which guarantees that the formal series for b generates an analytic function near
0.
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We remark that for dimension n = 2 one can explicitly solve the above system
to obtain

a(y) = cosay, é(y) = ytanay.
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