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SHARP COUNTEREXAMPLES FOR STRICHARTZ
ESTIMATES FOR LOW REGULARITY METRICS

Hart F. Smith and Daniel Tataru

1. Introduction

In this paper we produce examples of time independent Cs metrics, for 0 ≤
s ≤ 2 , and solutions u to the wave equation for such metrics, which establish
sharp lower bounds on the index of the Sobolev norm of the initial data of u
required to bound mixed LpLq norms of u.

Consider a second order hyperbolic operator on [0, 1] × R
n,

P (t, x, ∂t, ∂x) = ∂2
t − ∂xi gij(t, x) ∂xj

and the following estimates of Strichartz type

(1) ‖u‖Lp
t Lq

x([0,1]×Rn) ≤ C
(
‖u‖L∞

t ([0,1];Hγ
x (Rn)) + ‖∂tu‖L∞

t ([0,1];Hγ−1
x (Rn))

+ ‖Pu‖L1
t ([0,1];Hγ−1

x (Rn))

)
.

If the coefficients of P are smooth, then it is known that these estimates hold
for (p, q) satisfying

1
p

=
(n − 1

2

)(1
2
− 1

q

)
, 2 ≤ q ≤ 2(n − 1)

n − 3
,(2)

provided (n, p, q) �= (3, 2,∞), where the Sobolev index γ is given by

γ =
(n + 1

2

)(1
2
− 1

q

)
.

On the other hand, in [3] there were constructed for each s < 2 examples of P
with time independent coefficients of regularity Cs for which the same estimates
fail to hold. The first author then showed in [1] that, in space dimensions
2 and 3, the estimates do hold if the coefficients of P are C1,1. The second
author subsequently showed in [4] that the estimates hold for C2 metrics in all
space dimensions, and that for operators with Cs coefficients, 0 < s < 2 , such
estimates hold provided that γ is replaced by γ + σ/p, where σ = 2−s

2+s . Indeed,
[5] showed that such estimates hold under the condition that s derivatives of the
coefficients belong to L1

t L
∞
x , which is important for applications to quasilinear

wave equations.
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The counterexamples of [3] do not coincide with the estimates established by
[4], however. In this paper we remedy this gap, by producing examples of time
independent Cs metrics, with 0 ≤ s ≤ 2 , which show that the results established
in [4] are indeed best possible.

Theorem 1. Let 0 ≤ s ≤ 2 , and suppose that (p, q) satisfy (2). Assume that
the estimate (1) holds with a constant C depending only on the Cs norm of the
coefficients, for all metrics gij(x) sufficiently close in the uniform norm to the
Euclidean metric δij. Then

γ ≥
(n + 1

2

)(1
2
− 1

q

)
+

σ

p
, σ =

2 − s

2 + s
.

We remark that this construction also produces examples of Cs metrics, 1 ≤
s ≤ 2 , which show that the closely related spectral projection estimates for Cs

metrics established by the first author [2] are best possible. For the spectral
projection estimates, however, the counterexamples of [3] were already sharp.

2. An explicit example

Here we give a simple explicit construction, but which works only for s ≥ 2
3 .

In the next section we explain how to modify this construction in order to make
it work for 0 ≤ s < 2

3 . We work with variables t ∈ R , x ∈ R , y ∈ R
n−1 . For

ξ > 0 a real number, we let

uξ(t, x, y) = e iξ(t−x)−it( n−1
2 )− 1

2 ξ |y|2 ,

P (y, ∂t, ∂x, ∂y) =
(
∂2

t − (
1 + |y|2) ∂2

x − ∆y

)
,

and observe that

Puξ(t, x, y) = −
(

n − 1
2

)2

uξ(t, x, y) .

For an index 0 ≤ s ≤ 2 we set

δ =
2

2 + s
, σ =

2 − s

2 + s
,

and note that 2δ = 1 + σ .
We now fix s, and make a change of variables by scaling (t, x, y) by λσ, and

replacing ξ by rλ1−σ, to obtain

uλ
r (t, x, y) = eirλ(t−x)−iλσt( n−1

2 )− 1
2 rλ2δ|y|2 ,

which satisfies

Pλuλ
r (t, x, y) = −

(
n − 1

2

)2

λ2σuλ
r (t, x, y) ,

where

Pλ(y, ∂t, ∂x, ∂y) = P (λσy, ∂t, ∂x, ∂y) =
(
∂2

t − (
1 + λ2σ|y|2) ∂2

x − ∆y

)
.
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We next fix a smooth, nonnegative bump function β supported in the interval
[1, 2], and set

uλ(t, x, y) =
1

(log λ)2

∫
β
(
(log λ)−2r

)
uλ

r (t, x, y) dr .

The function uλ is essentially a smooth bump function of size 1 localized to the
set |x − t| ≤ λ−1

(
log λ

)−2
, |y| ≤ λ−δ

(
log λ

)−1
. Rather than obtain pointwise

estimates, though, it is easier to work with weighted L2 estimates. Thus, we
note the following two inequalities:∫

|uλ(t, x, y)|2 dx dy ≈ λ−1−(n−1)δ
(
log λ

)−n−1
,(3)

(4)
∫ (

1 + λ2
(
log λ

)4 |t − x|2 + λ2δ
(
log λ

)2 |y|2)n|uλ(t, x, y)|2 dx dy

≤ C λ−1−(n−1)δ
(
log λ

)−n−1
.

The first follows by the Plancherel theorem applied to the x variable. The second
follows by noting that

λj
(
log λ

)2j (t − x)j uλ(t, x, y)

= e−iλσt( n−1
2 )

∫
eirλ(t−x)

(
log λ

)2j
∂j

r

(
e−

1
2 rλ2δ|y|2 β

((
log λ

)−2
r
))

dr ,

and applying Plancherel as before.
Together, (3) and (4) and the Schwarz inequality imply
∫ (

1 + λ2
(
log λ

)4 |t − x|2 + λ2δ
(
log λ

)2 |y|2)−n|uλ(t, x, y)|2 dx dy

≈ λ−1−(n−1)δ
(
log λ

)−n−1
,

which by Holder’s inequality implies that, for 2 ≤ q ≤ ∞ ,

‖uλ(t, · )‖Lq(Rn) ≥ c λ−(1+(n−1)δ)/q
(
log λ

)−(n+1)/q
,(5)

exactly the bounds for a suitably localized bump function of size 1. On the other
hand, it is easy to compute the Sobolev space bounds

(6) ‖uλ
t (t, · )‖Hγ−1(Rn) + ‖uλ(t, · )‖Hγ(Rn)

≤ C λγ−(1+(n−1)δ)/2
(
log λ

)2γ−(n+1)/2
,

‖Pλuλ(t, · )‖Hγ−1(Rn) ≤ C λγ−1+2σ−(1+(n−1)δ)/2
(
log λ

)2(γ−1)−(n+1)/2
.(7)
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If the Strichartz estimate (1) holds uniformly for Pλ and uλ, then by (5), (6)
and (7) we must have

(8) λ− 1+(n−1)δ
q

(
log λ

)−n+1
q

≤ Cλγ− 1+(n−1)δ
2

(
log λ

)2γ−n+1
2 (1 +

(
log λ

)−2
λ2σ−1) .

If s ≥ 2/3, then 2σ ≤ 1, and therefore we must have

γ ≥
(1

2
− 1

q

) (
1 + (n − 1) δ

)
,

which compared to the smooth case involves a loss of derivatives of the following
degree (

1 + (n − 1) δ − n + 1
2

) (1
2
− 1

q

)
= (2δ − 1)

1
p

=
σ

p
.

This would conclude the proof of Theorem 1 if the coefficients of the operators
Pλ were uniformly bounded in Cs. While this is not true, the bound∫

|y|≥λ−δ

∣∣∂α
t,x,yuλ(t, x, y)

∣∣2 dx dy ≤ CN,α λ−N

shows that we can freely modify the coefficients of Pλ outside the ball {|y| ≤
λ−δ}. Thus, let a(y) denote a positive smooth function, such that

a(y) = |y|2 if |y| ≤ 1 , a(y) = 0 if |y| ≥ 2 ,

and set
P 1

λ = ∂2
t − (

1 + λ2σ−2δ a(λδy)
)
∂2

x − ∆y .

Note that∥∥λ2σ−2δ a(λδy)
)∥∥

C0 ≤ C λ2σ−2δ ,
∥∥λ2σ−2δ a(λδy)

)∥∥
C2 ≤ C λ2σ .

Since (2σ−2δ)(2−s)+2σs = 0 , it follows that P 1
λ has Cs coefficients, uniformly

over λ. Furthermore, the coefficients of P 1
λ converge in the L∞ norm to those of

the usual d’Alembertian ∂2
t − ∂2

x − ∆y as λ → ∞.

3. A modified example

The reason that the previous example fails for s < 2/3 is that Pλuλ
r is too

large. To remedy this, we seek modified functions uξ and operators P of the
form

uξ(t, x, y) = a(y)e iξ(t−x)+iαt−ξφ(y) ,

P (y, ∂t, ∂x, ∂y) = ∂2
t − g(y) ∂2

x − ∆y ,

with a, g, φ smooth on some ball about 0, spherically symmetric, and with
a(0) = g(0) = 1, ∆φ(0) > 0, α > 0, and

Puξ = 0 .
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Given such a function uξ and an operator P then we can substitute them in the
argument of the previous section, and so obtain the desired counterexamples in
the full range 0 ≤ s ≤ 2.

We compute

Puξ =
(
−(ξ + α)2 + ξ2g(y) − ξ2|∇φ|2 + ξ∆φ − ∆a

a
+ 2ξ

∇a · ∇φ

a

)
uξ .

By requiring that this vanish for all ξ we obtain the following nonlinear system
for a, g, φ: 



∆a + α2a = 0

∆φ + 2
∇a · ∇φ

a
− 2α = 0

g = 1 + |∇φ|2
The first equation permits an analytic, spherically symmetric solution,

a(y) = cn

∫
Sn−2

eiα〈y,η〉dσ(η) .

The function g is uniquely determined by the third equation, so it remains to
solve the second equation for φ. Since a has zeros, we only obtain a local solution
φ for y near 0. If we express ∇a/a and φ as formal power series near 0,

∇a(y)
a(y)

= y
∞∑

k=1

a2k |y|2k−2 , φ(y) =
∞∑

k=1

b2k |y|2k ,

then we derive the recurrence relation

k(2k + n − 3)b2k = −
k−1∑
j=1

2j a2(k−j) b2j , k ≥ 2 ,

with the initial condition

b2 =
α

n − 1
> 0 .

This implies that

|b2k| < max
1≤j≤k−1

|a2(k−j)b2j | .

Since a is analytic near 0 we have

|a2k| ≤ Mk ,

where M−1 is the distance to the first complex 0 of a. Combined with the
previous inequality, this inductively leads to the bound

|b2k| ≤ Mk−1b2 ,

which guarantees that the formal series for b generates an analytic function near
0.
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We remark that for dimension n = 2 one can explicitly solve the above system
to obtain

a(y) = cos αy , φ(y) = y tanαy .
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