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ON POLYNOMIAL EIGENFUNCTIONS FOR A CLASS OF
DIFFERENTIAL OPERATORS

Tanja Bergkvist and Hans Rullg̊ard

1. Introduction

Jacobi polynomials are solutions of the differential equation

(z2 − 1)f ′′(z) + (az + b)f ′(z) + cf(z) = 0,(1)

where a, b, c are constants satisfying a > b, a + b > 0 and c = n(1 − a − n) for
some nonnegative integer n. It is a classical fact that the zeros of the Jacobi
polynomials lie in the interval [−1, 1], and that their density in this interval is
proportional to 1/

√
1 − |z|2 in the limit when the degree n tends to infinity. The

usual proof of this statement involves the observation that, for fixed a and b, the
Jacobi polynomials constitute an orthogonal system of polynomials with respect
to a certain weight function on the interval [−1, 1]. The desired conclusion then
follows from the general theory of orthogonal systems of polynomials.
The following appears to be a natural generalization of the differential equation

(1). Let k ≥ 2 be an integer, and let Q0, . . . , Qk be polynomials in one complex
variable satisfying deg Qj ≤ j with equality when j = k. Moreover, we make a
normalization by assuming that Qk is monic. Consider the differential operator

TQ(f) =
k∑

j=0

Qjf
(j)(2)

where f (j) denotes the jth derivative of f . Operators of this type appear for
example in the theory of Bochner-Krall systems of orthogonal polynomials, see
[3]. This operator was studied by G. Masson and B. Shapiro in [4]. Particular
attention was given the more special operators T ′(f) = Qkf (k) and T ′′(f) =
(d/dz)k (f(z)Qk(z)). These are indeed special cases of (2) obtained by taking
Qj = 0 or Qj =

(
k
j

)
Q

(k−j)
k respectively, for j = 0, . . . , k−1. The following result,

which shows that TQ has plenty of polynomial eigenfunctions, was proved for
the operators T ′ and T ′′ in [4].

Theorem 1. For all sufficiently large integers n there is a unique constant λn

and a monic polynomial pn of degree n which satisfy

TQ(pn) = λnpn.(3)

Moreover, we have λn/n(n − 1) . . . (n − k + 1) → 1 when n → ∞.
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G. Masson and B. Shapiro made a number of striking conjectures, based on
numerical evidence, about the zeros of the eigenpolynomials pn. They also ob-
served that when k > 2, the sequence pn is in general not an orthogonal system
of polynomials, so they cannot be studied by means of the extensive theory
known for such systems.
The goal of this note is to prove some of the conjectures in [4]. More precisely,

we shall show that in the limit when n → ∞, the zeros of pn are distributed
according to a certain probability measure. This probability measure depends
only on the “leading polynomial” Qk and may be independently characterized
in the following way.

Theorem 2. Let Qk be a monic polynomial of degree k. Then there exists a
unique probability measure µQk

with compact support whose Cauchy transform

C(z) =
∫

dµQk
(ζ)

z − ζ
(4)

satisfies C(z)k = 1/Qk(z) for almost all z ∈ C.

We record some properties of the measure µQk
which will be encountered in the

proof of Theorem 2. Let suppµ denote the support of a measure µ. Also, let

Ψ(z) =
∫

Qk(z)−1/k dz

be a primitive function of Qk(z)−1/k. At this point, we think of Ψ as a locally
defined function in any simply connected domain where Qk does not vanish. The
choice of a branch of Qk(z)1/k and an integration constant is of no importance
here. As need arises, specifications will be made concerning these choices.

Theorem 3. Let Qk and µQk
be as in Theorem 2. Then suppµQk

is the union
of finitely many smooth curve segments, and each of these curves is mapped to
a straight line by the mapping Ψ. Moreover, suppµQk

contains all the zeros of
Qk, is contained in the convex hull of the zeros of Qk and is connected and has
connected complement.

If p is a polynomial of degree n, we can construct a probability measure µ by
placing a point mass of size 1/n at each zero of p. We will call µ the root measure
of p. Our main result is

Theorem 4. Let pn be the monic degree n eigenpolynomial of the operator TQ

and let µn be the root measure of pn. Then µn converges weakly to µQk
when

n → ∞.

To illustrate, we show the zeros of the eigenpolynomial p40 for the degree 5
operator TQ with Q5(z) = z(z − 1 + i)(z − 5)(z − 2 − 4i)(z − 4 − 4i) and
Q0 = · · · = Q4 = 0. Large dots represent the zeros of Q5 (which are, in this
case, also zeros of pn) and small dots represent (the remaining) zeros of p40. It
is remarkable how well the zeros of the eigenpolynomial line up along the curves
predicted by our results. Notice also how these curves are straightened out by
the mapping Ψ.
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Figure 1. Zeros of the polynomial Q5 and the eigenpolynomial
p40 (left) and the image of these zeros under a branch of the
mapping Ψ.

It is not difficult to deduce various other features of the measure µQk
from the

properties given in Theorem 3 and the defining property (4). For example, a
recipe for computing the angles between the different curve segments is conjec-
tured in [4]. The correctness of the procedure follows easily from our results. We
refrain from going into details, but the key observation is the following. Suppose
z0 is a point on one of the curve segments in suppµQk

and let C1 and C2 be
the limiting values of C(z) as z approaches z0 from different sides of the curve.
Then C1 and C2 are kth roots of 1/Qk(z0), and their actual values are easily
found if the combinatorics of suppµQk

are known (which was assumed in the
recipe mentioned above). From the fact that πµQk

= ∂C/∂z̄ ≥ 0, it follows that
the curve must be perpendicular to C1 −C2 at z0. Using this observation where
several curves meet, it is possible to deduce the angles between them. Notice
also that the density of µQk

at z0 is proportional to |C1 − C2|.
It is particularly easy to compute µQk

when Qk has only real zeros. De-
note the zeros by z1, . . . , zk in increasing order. From Theorem 3 we know
that suppµQk

= [z1, zk]. A direct computation shows that on the subinterval
[zj , zj+1], the measure is given by

µQk
=

1
π

∂C

∂z̄
=

2
π|Qk|1/k

sin
(

πj

k

)
dx

where dx denotes Lebesgue measure on the real line. This remains true even if
Qk has multiple zeros, except if all the zeros coincide. In this case, µQk

reduces,
of course, to a point mass at this multiple zero.
Let us finally discuss some possible applications and directions for further re-

search. As we already mentioned, operators of the type we consider occur in the
theory of Bockner-Krall orthogonal systems. More precisely, a Bochner-Krall
system (BKS), is a sequence of polynomials pn which are both eigenpolynomials
of an operator TQ (here one omits the assumption that deg Qk = k) and also or-
thogonal with respect to a suitable inner product. It is a long standing problem
to classify all BKS. A great deal is known about the asymptotic distribution of
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zeros of orthogonal polynomials. By comparing such results with our results on
the distribution of zeros of eigenpolynomials, we believe that it will be possible
to gain new insight into the nature of BKS. To get the most out of this approach,
however, it would be desirable to have generalizations of our results to the case
deg Qk < k. Computer experiments performed by the first author indicate that
a limiting measure exists in this case too, but that it may not have compact
support.
This paper is organized as follows. In section 2 we compute the matrix for the

operator TQ with respect to the basis of monomials 1, z, z2, . . . , and use this to
prove Theorem 1. Section 3 contains a proof of the uniqueness part of Theorem
2. Along the way, we also prove essentially all the statements in Theorem 3.
In section 4 we recall some basic facts on the weak topology of measures in
the complex plane and on logarithmic potentials and Cauchy transforms. We
also outline the connection of these concepts to root measures of polynomials
and prove a general result on the relation between the zeros of a polynomial and
those of its derivative. In the final section 5 we apply the ideas from the previous
section to give a proof of Theorem 4. The existence part of Theorem 2 is also a
consequence of this proof.
Acknowledgements. The authors are sincerely grateful to Harold Shapiro for
highly valuable comments and discussions, and in particular for suggesting the
use of the Cauchy transform. We would also like to thank Gisli Masson and
Boris Shapiro for introducing us to the problem and for their support during
our work.

2. Calculation of the matrix

Recall that the differential operator TQ is defined by

TQ = Qk
dk

dzk
+ Qk−1

dk−1

dzk−1
+ · · · + Q1

d

dz
+ Q0

where the Qm are polynomials such that deg Qm ≤ m for m = 0, . . . , k and
deg Qk = k. Let pn(z) =

∑n
i=0 an,iz

i be a monic polynomial of degree n and let
Qm(z) =

∑m
j=0 qm,jz

j . Using these notations we get

TQ(pn) =
k∑

m=0

Qm · dm

dzm
pn =

k∑
m=0

[ m∑
j=0

qm,jz
j

]
·
[ n∑

i≥m

an,i · i!
(i − m)!

zi−m

]
=

=
k∑

m=0

n∑
s=0

[ ∑
s=j+i−m

m≤i≤n
0≤j≤m

qm,j · an,i · i!
(i − m)!

]
zs =

=
n∑

s=0

[ k∑
m=0

∑
s=j+i−m

m≤i≤n
0≤j≤m

qm,j · an,i · i!
(i − m)!

]
zs.
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Lemma 1. If pn is monic and TQ(pn) = λn · pn then

λn =
k∑

m=0

qm,m · n!
(n − m)!

.

Proof. With pn monic and TQ(pn) = λn · pn = λnzn + λn · an,n−1z
n−1 + . . . +

λn · an,0, finding the eigenvalue λn amounts to finding the coefficient at zn in
TQ(pn). Note that deg Qm

dm

dzm pn ≤ m + n − m = n with equality if and only if
deg Qm = m. Thus we can assume that pn = zn (since any lower degree terms of
pn will result in terms of degree lower than n in TQ(pn)). We therefore consider

TQ(zn) =
k∑

m=0

Qm · dm

dzm
zn =

k∑
m=0

Qm · n!
(n − m)!

zn−m =

=
k∑

m=0

[( m∑
j=0

qm,jz
j

)
· n!
(n − m)!

zn−m

]
=

=
k∑

m=0

[ m∑
j=0

qm,j · n!
(n − m)!

zj+n−m

]
.

Setting j = m we get

λnzn =
k∑

m=0

qm,m · n!
(n − m)!

zn =⇒ λn =
k∑

m=0

qm,m · n!
(n − m)!

.

Lemma 2. For n ≥ 1 the coefficient vector X of pn with components
an,0, . . . , an,n−1 satisfies the linear system MX = Y , where Y is a vector and
M is an upper triangular matrix, both with entries expressible in the coefficients
qm,j (see below).

Proof. The relation

TQ(pn) = λn · pn

is equivalent to

n∑
s=0

[ k∑
m=0

∑
s=j+i−m

m≤i≤n
0≤j≤m

qm,j · an,i · i!
(i − m)!

]
zs = λn

n∑
s=0

an,sz
s.

With j = m + s − i the condition j ≤ m gives i ≥ s and the condition j ≥ 0
results in m ≥ i − s. Therefore the above system will be equivalent to

n∑
s=0

[ ∑
s≤i≤n

∑
i−s≤m≤min(i,k)

qm,m+s−i · i!
(i − m)!

· an,i − λn · an,s

]
zs = 0.
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Thus for each s we have∑
s≤i≤n

∑
i−s≤m≤min(i,k)

qm,m+s−i · i!
(i − m)!

· an,i − λn · an,s = 0

or, equivalently,
∑

s≤i≤n−1

∑
i−s≤m≤min(i,k)

qm,m+s−i · i!
(i − m)!

· an,i − λn · an,s =

=
∑

n−s≤m≤min(n,k)

qm,m+s−n · n!
(n − m)!

· an,n

where an,n = 1. The n × n matrix M is thus constructed for 0 ≤ s ≤ n − 1
and 0 ≤ i ≤ n − 1. The left-hand side of the above equation corresponds to the
(s + 1)st row in M multiplied by the column vector X, and the right-hand side
represents the (s + 1)st row in Y . Thus the entries of M are given by

Ms+1,i+1 =
∑

i−s≤m≤min(i,k)

qm,m+s−i · i!
(i − m)!

− λn · δi,s(5)

where δ denotes the Kronecker delta. The condition i ≥ s implies that M is
upper triangular.

We can now prove Theorem 1. Using Lemma 1 we get

λn

n(n − 1) . . . (n − k + 1)
=

∑k
m=0 qm,m · n!

(n−m)!

n(n − 1) . . . (n − k + 1)
=

=
q0,0

n!
n! + q1,1

n!
(n−1)! + q2,2

n!
(n−2)! + . . . + qk−1,k−1

n!
(n−k+1)! + qk,k

n!
(n−k)!

n(n − 1) . . . (n − k + 1)
=

=
q0,0

n(n − 1) . . . (n − k + 1)
+

q1,1

(n − 1) . . . (n − k + 1)
+ . . .+

qk−1,k−1

(n − k + 1)
+qk,k.

Thus

lim
n→∞

λn

n(n − 1) . . . (n − k + 1)
= qk,k = 1,

and the first part of Theorem 1 is proved. To prove the uniqueness part, we show
that the determinant of the matrix M constructed in Lemma 2 is non-zero for
sufficiently large values of n. Since the matrix is upper triangular its determinant
equals the product of the diagonal elements. Thus it suffices to prove that for
sufficiently large n every diagonal element is non-zero.
The diagonal element Mi+1,i+1 of M is obtained by letting i = s in (5) and so

Mi+1,i+1 =
∑

0≤m≤min(i,k)

qm,m · i!
(i − m)!

− λn
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for i = 0, . . . , n−1. But the last expression equals λi−λn. Indeed, if i ≥ k then
∑

0≤m≤min(i,k)

qm,m · i!
(i − m)!

=
∑

0≤m≤k

qm,m · i!
(i − m)!

= λi.

If i < k then this is again true since by definition i!/(i−m)! = 0 for i < m ≤ k.
Thus we have to show that λi − λn �= 0 ∀i < n as n → ∞. For small values
of i (for example, i < k) we have λi < ∞ and λn → ∞ as n → ∞, implying
λi − λn �= 0. For larger values of i (0 < m < k ≤ i) we get

λn − λi =
k∑

m=0

qm,m
n!

(n − m)!
−

k∑
m=0

qm,m
i!

(i − m)!
=

=
k∑

m=0

qm,m

[
n!

(n − m)!
− i!

(i − m)!

]
.

Dividing the last expression by n!
(n−k)! − i!

(i−k)! we obtain

λn − λi

n!
(n−k)! − i!

(i−k)!

= qk,k +
k−1∑
m=1

qm,m

n!
(n−m)! − i!

(i−m)!

n!
(n−k)! − i!

(i−k)!

.

which tends to qk,k = 1 as n → ∞, since for each m ≤ k − 1 we get

lim
n→∞

n!
(n−m)! − i!

(i−m)!

n!
(n−k)! − i!

(i−k)!

= lim
n→∞

i!
(n−m)!

(
n!
i! − (n−m)!

(i−m)!

)
i!

(n−k)!

(
n!
i! − (n−k)!

(i−k)!

)

= lim
n→∞

(n − k)!
(n − m)!

·
(

n!
i! − (n−m)!

(i−m)!

)
(

n!
i! − (n−k)!

(i−k)!

)
= 0.

Therefore λn − λi �= 0. Thus, as n → ∞, every diagonal element of M becomes
non-zero and so its determinant will be non-zero, implying that M is invertible.
Thus the system MX = Y will have a unique solution.

Remark. If deg Qm = m for at least one m (not necessarily k) and if the
coefficients qm,m of all such Qm have equal sign, then there exists a unique
monic eigenpolynomial of degree n for every value of n. To show this consider
as before the determinant of the matrix M :

det M =
n−1∏
i=0

[ ∑
0≤m≤min(i,k)

qm,m · i!
(i − m)!

− λn

]
.

For i ≥ k the i:th factor of this product equals
∑

0≤m≤k

qm,m

[
i!

(i − m)!
− n!

(n − m)!

]
.
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This expression is non-zero since i < n, and by assumption all the qm,m have
equal sign and qm,m �= 0 for at least one m. For i < k the i:th factor of detM
equals

∑
0≤m≤i

qm,m

[
i!

(i − m)!
− n!

(n − m)!

]
−

∑
i+1≤m≤k

qm,m · n!
(n − m)!

=

= −
∑

0≤m≤i

qm,m

[
n!

(n − m)!
− i!

(i − m)!

]
−

∑
i+1≤m≤k

qm,m · n!
(n − m)!

.

This is also non-zero, since i < n, all terms have equal sign and at least one
term is non-zero. Thus every factor in the product defining the determinant is
non-zero and we get a unique solution of MX = Y for every value of n.

3. Probability measures whose Cauchy transform satisfies an
algebraic equation

In this section we will prove the uniqueness part of Theorem 2 and show that
the mesure µQk

, if it exists, has the properties stated in Theorem 3. The proof
relies heavily on the following lemma.

Lemma 3. Let A ⊂ C be a finite set, U ⊂ C a convex domain and χ : U → A
a measurable function such that ∂χ/∂z̄ ≥ 0 (in the sense of distributions). Let
a ∈ A, z0 ∈ U and assume that χ−1(a) ∩ {|z − z0| < r} has positive Lebesgue
measure for every r > 0. Then χ(z) = a almost everywhere in U ∩ (z0 + Γa)
where

Γa = {z ∈ C; Re(az) ≥ Re(bz),∀b ∈ A}.(6)

Note that if χ−1(a) ∩ {|z − z0| < r} has positive Lebesgue measure for every
a ∈ A and all r > 0, then χ is determined completely (outside a set of measure
0) since the cones Γa cover the whole complex plane.
Proof. Let χa denote the characteristic function of the set χ−1(a). We will show
that if z1, z2 ∈ U with z2 − z1 ∈ Γa, and φ is a positive test function such that
z1 + suppφ and z2 + suppφ are both contained in U , then

(φ ∗ χa)(z1) ≤ (φ ∗ χa)(z2).(7)

The desired conclusion follows from this. Indeed, let φj be a sequence of positive
test functions such that suppφj → 0 and

∫
φj dλ = 1, where λ denotes planar

Lebesgue measure. We know then that φj ∗ χa converges in L1
loc to χa. Hence,

for any ε, r > 0 we can find for all sufficiently large j a point z1 with |z1−z0| < r
such that (φj ∗ χa)(z1) > 1 − ε. It follows from (7) that (φj ∗ χa)(z2) > 1 − ε
and hence

|(φj ∗ χ)(z2) − a| =
∣∣∣∣
∫

φj(z2 − ζ)(χ(ζ) − a) dλ(ζ)
∣∣∣∣ < εmax

b∈A
|b − a|

for all z2 ∈ z1 + Γa. Letting ε and r tend to 0 and j → ∞ it follows that
χ(z) = limj→∞(φj ∗ χ)(z) = a for almost all z in z0 + Γa.
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We now prove the inequality (7). Without loss of generality we may assume
that z2 − z1 > 0 and that a = 0, for the general case can be reduced to this
situation by replacing χ with the function eiθ(χ(eiθz)−a) where θ = arg(z2−z1).
The assumption that z2 − z1 ∈ Γa then implies that A is contained in the closed
left half plane {Re z ≤ 0}.

For any ε > 0, let χ̃ε = log(χ − ε) where we have chosen a branch of the
logarithm function which is continuous in the left half plane. Let ψ be a positive
test function and note that ∂(ψ ∗ χ)/∂z̄ ≥ 0 and Reψ ∗ χ ≤ 0. It follows that

Re
∂

∂z̄
log(ψ ∗ χ − ε) = Re

(
1

ψ ∗ χ − ε
· ∂(ψ ∗ χ)

∂z̄

)
≤ 0.

When suppψ → 0 with
∫

ψ dλ = 1, we have that log(ψ ∗ χ − ε) → χ̃ε in L1
loc,

and hence as a distribution. By passing to the limit it follows that

Re
∂χ̃ε

∂z̄
≤ 0.

If we write χ̃ε = σε + iτε, this means that

∂σε

∂x
≤ ∂τε

∂y
.(8)

Fix a positive test function φ such that zj + suppφ ⊂ U for j = 1, 2 and
consider the function (φ ∗ σε)(z1 + ξ) of the real variable ξ. It follows from (8)
and the fact that τε is uniformly bounded for all ε that

∂

∂ξ
(φ ∗ σε)(z1 + ξ) =

∫
∂φ

∂x
(z1 + ξ − ζ)σε(ζ) dλ(ζ)

≤
∫

∂φ

∂y
(z1 + ξ − ζ)τε(ζ) dλ(ζ)

≤ M

where the constant M does not depend on ε. In particular,

(φ ∗ σε)(z2) − (φ ∗ σε)(z1) ≤ M |z2 − z1|.(9)

On the other hand it is clear that

(φ ∗ σε)(z) = log ε · (φ ∗ χa)(z) + O(1).(10)

Now (7) follows from (9) and (10) when ε → 0.
We deduce two corollaries of Lemma 3.

Corollary 1. Let U ⊂ C be a convex domain and A ⊂ C a finite set. If v is
a subharmonic function defined in U such that 2∂v/∂z ∈ A almost everywhere,
then v is convex.
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Recall that a subharmonic function can locally be written as the sum of a
harmonic function and a logarithmic potential. It follows that the distribution
∂v/∂z is represented by a locally integrable function. The condition 2∂v/∂z ∈ A
should be interpreted by saying that 2∂v/∂z is represented by a measurable
function with values in A.

Proof. Let χ = 2∂v/∂z. Since v is subharmonic, ∂χ/∂z̄ ≥ 0. Take any point
z0 ∈ U and let A0 be the set of all a ∈ A such that χ−1(a) has positive measure
in every neighbourhood of z0. Let U0 be a convex neighbourhood of z0 such that
χ(z) ∈ A0 almost everywhere in U0. By Lemma 3, χ(z) = a almost everywhere
in U0 ∩ (z0 + Γa) where Γa is defined by (6) but with A0 in place of A. This
implies that v(z) = v(z0) + Re a(z − z0) for all z ∈ U0 ∩ (z0 + Γa), so that

v(z) = v(z0) + max
a∈A0

Re a(z − z0), z ∈ U0.

We have shown that in a neighbourhood of z0, v is the maximum of certain
linear functions, hence it is convex there. Since z0 was arbitrary, it follows that
v is convex.

Corollary 2. Let A ⊂ C be a finite set, U ⊂ C a convex domain and let
χ : U → A be a measurable function. Then ∂χ/∂z̄ ≥ 0 if and only if there exist
real numbers ca (possibly equal to −∞) such that χ(z) = a almost everywhere in
Ga where

Ga = {z ∈ U ; ca + Re(az) ≥ cb + Re(bz),∀b ∈ A}.

Proof. Suppose ca are real numbers such that χ(z) = a almost everywhere in
Ga. Let v(z) = maxa∈A (ca + Re(az)). Then v is subharmonic and χ = 2∂v/∂z,
hence

∂χ

∂z̄
= 2

∂2v

∂z∂z̄
≥ 0.

Suppose conversely that ∂χ/∂z̄ ≥ 0. Since ∂χ/∂z̄ is real, there exists a real
valued function v defined in U with 2∂v/∂z = χ. It follows from Corollary 1
that v is convex. Moreover, we see from the proof that

v(z) = max
a∈A

(ca + Re(az))

where

ca = inf
z∈U

(v(z) − Re(az)).

If we define Ga using these constants ca it follows that v(z) = ca + Re(az) for
z ∈ Ga, hence χ(z) = 2∂v/∂z = a in Ga.
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Fix a monic polynomial Qk of degree k and suppose that µ is a compactly
supported probability measure whose Cauchy transform C(z) satisfies

C(z)k = 1/Qk(z).(11)

We will first show that µ has the properties asserted in Theorem 3, except that
suppµQk

is contained in the convex hull of the zeros of Qk, which will be proved
in section 5.

Lemma 4. If the Cauchy transform of µ satisfies (11), then the support of µ is
the union of finitely many smooth curve segments. These curves are mapped to
lines by Ψ.

Proof. It is sufficient to prove that suppµ has these properties in a neighbour-
hood of any given point z0. Assume first that Qk(z0) �= 0. Choose a branch of
Qk(z)−1/k defined in a simply connected neighbourhood of z0 and let Ψ be a
primitive function of Qk(z)−1/k. Let U be a convex neighbourhood of Ψ(z0) so
small that Ψ maps a neighbourhood of z0 bijectively onto U . By (11) we can
write C(z) = χ(Ψ(z))Qk(z)−1/k for z ∈ Ψ−1(U), where χ has values in the set
of kth roots of unity. If we write w = Ψ(z), then

πµ =
∂C

∂z̄
=

∂χ(Ψ(z))
∂z̄

· Q−1/k
k = Ψ∗

(
∂χ

∂w̄

)
· ∂Ψ

∂z
· Q−1/k

k = Ψ∗
(

∂χ

∂w̄

)
· |Qk|−2/k

where Ψ∗ denotes the pullback of distributions in U by Ψ. Since µ is positive,
it follows that

∂χ

∂w̄
≥ 0.

By Corollary 2, U is the union of sets Ga whose boundaries are finite unions
of line segments, such that χ is constant in each Ga. It follows that suppµ ∩
Ψ−1(U) = Ψ−1(supp ∂χ/∂z̄) is the union of finitely many curve segments which
are mapped to straight lines by Ψ.

If z0 is a zero of Qk, we take a disc D centered at z0 wich does not contain any
other zeros of Qk. If γ is any ray emanating at z0, we can define single valued
branches of Q(z)−1/k and Ψ in D �γ. Notice that Ψ is continuous up to z0. Let
U be any half disc centered at Ψ(z0) and contained in Ψ(D �γ). It follows as in
the first part of the proof that suppµ has the required properties in Ψ−1(U). By
varying γ and U , we see that the same holds in a full neighbourhood of z0.

Hence supp µ can be thought of as a graph whose edges are smooth curve
segments connecting certain vertices. The statement that supp µ is connected
and has connected complement then means that it is a connected graph without
cycles, that is a tree. Recall that a connected graph is a tree precisely if the
number of vertices exceeds the number of edges by exactly one.

Lemma 5. If the Cauchy transform of µ satisfies (11), then the support of µ is
a tree.
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Proof. We will first prove that suppµ is connected. To do this we will show that
if U is a bounded domain which is connected and simply connected, and the
boundary of U does not intersect suppµ, then either suppµ ⊂ U or suppµ ⊂
C � U . From this it easily follows that suppµ is connected. Now it is clear that
all the zeros of Qk are either contained in U or in the complement of U , since
C(z) defines a continuous branch of Qk(z)−1/k along ∂U . Observe also that

1
2πi

∫
∂U

C(z) dz =
1

2πi

∫
C

∫
∂U

dz

z − ζ
dµ(ζ) =

∫
U

dµ(ζ).(12)

Now if all the zeros of Qk are contained in the complement of U , there is an
analytic continuation of C(z) across U , hence the left hand side of (12) vanishes.
It follows that suppµ ⊂ C � U . If on the other hand, all the zeros of Qk

are contained in U , then C(z) has an analytic continuation in C � U which is
asymptotically equal to a/z for some kth root of unity a when z → ∞. Thus
the left hand side of (12) is equal to a. Since the right hand side is positive, a
must be 1, which means that all the mass of µ is in U . Hence we have proved
that suppµ is connected.

Now let E be the set of all curve segments in suppµ and let V be the set of
vertices which are endpoints of the edges in E. We may assume that V contains
all the zeros of Qk. To every pair e ∈ E, v ∈ V such that v is an endpoint
of e, we assign a number ν(e, v) by the following rule. Let γ be a small loop
winding once around v in the clockwise direction, and let ν(e, v) be the jump
of (2πi)−1 log C(z) when z crosses e moving along γ. This number, which is
defined modulo Z, will be uniquely determined if we require that 0 < ν(e, v) < 1.
Assume now that v is not a zero of Qk and let e1, . . . , er be the curves in E having
v as one endpoint. (If some curve has both its endpoints in v, it will be counted
twice.) Select a branch of Qk(z)1/k near v and observe that by Lemma 3 and the
proof of Lemma 4, Qk(z)1/kC(z) is a kth root of unity, which moves once around
the unit circle in the counterclockwise direction as z moves along γ. It follows
that ν(e1, v) + · · ·+ ν(er, v) = 1. If instead v is a zero of Qk of multiplicity m, a
slight modification of the argument shows that ν(e1, v)+· · ·+ν(er, v) = 1−m/k.
On the other hand, it is clear that ν(e, v1) + ν(e, v2) = 1 where v1, v2 are the
endpoints of e ∈ E. Hence the sum of all the ν(e, v) is equal both to 9V − 1 and
to 9E. Since suppµ is a connected graph, this implies that it is a tree.

We are now ready to prove the uniqueness part of Theorem 2. This is done
by means of the following two lemmas.

Lemma 6. Suppose the Cauchy transform of µ satisfies (11) and let u be the
logarithmic potential of µ. If Ψ−1 is a (locally defined) inverse of a primitive
function of Qk(z)−1/k, then u ◦ Ψ−1 is convex.
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Proof. Let χ be as in the proof of Lemma 4. Since 2∂u/∂z = C(z) we have

2
∂

∂w
u(Ψ−1(w)) = 2

∂u

∂z
(Ψ−1(w)) · Qk(Ψ−1(w))1/k

= C(Ψ−1(w)) · Qk(Ψ−1(w))1/k

= χ(w).

It follows from Corollary 1, that u ◦ Ψ−1 is convex.

Lemma 7. Let µ be a measure whose Cauchy transform satisfies (11), let Ω =
C � suppµ and let Ψ(z) be defined in Ω by

Ψ(z) =
∫

log(z − ζ) dµ(ζ).

Then Ψ is a multivalued function mapping Ω onto a domain H = {w; Re w >
h(Im w)} where h is a continuous function, and Ψ−1 : H → Ω is a single valued
function.

Proof. It is clear that Ψ is a holomorphic function in Ω defined up to multiples
of 2πi and that Ψ′(z) = C(z). Let γ be a curve segment of suppµ and let U
be a one-sided neighbourhood of γ in Ω on which Ψ has a single valued branch.
Now the restriction of Ψ to U has an analytic continuation across γ, and by
Lemma 4, Ψ maps γ to a line segment. Moreover, since in the notation of the
proof of Lemma 4, χ = 1 in Ψ(U) and Reχ ≤ 1 everywhere, it follows that
Ψ(γ) is not horizontal and that Ψ(U) is on the right hand side of Ψ(γ). Putting
the segments Ψ(γ) together as U moves around suppµ, we obtain a broken line
of the form {Re w = h(Im w)} bounding a domain H = {Re w > h(Im w)}. It
is clear that Ψ maps Ω into H and the boundary of Ω to the boundary of H.
Now ψ(z) = exp(−Ψ(z)) is a single valued proper mapping from Ω ∪ {∞} to
D = {ζ; log |ζ| < −h(− arg ζ)} which does not vanish in Ω and has a simple zero
at ∞. It follows that ψ : Ω∪{∞} → D is a bijection, hence Ψ−1(w) = ψ−1(e−w)
is a single valued holomorphic mapping.

Corollary 3. If µ1 and µ2 are two probability measures whose Cauchy trans-
forms satisfy (11), then µ1 = µ2.

Proof. Let Ψ be defined as in Lemma 7 with µ1 in place of µ, and let u1 and
u2 be the logarithmic potentials of µ1 and µ2. Then u1(Ψ−1(w)) = Re w for all
w ∈ H and u2(Ψ−1(w)) = Re w when Re w is sufficiently large. Since u2 ◦ Ψ−1

is convex by Lemma 6, it follows that u2(Ψ−1(w)) ≥ Re w for all w ∈ H, hence
u1(z) ≤ u2(z) for almost all z. Similarly, u2(z) ≤ u1(z) for almost all z, and it
follows that µ1 = ∆u1/2π = ∆u2/2π = µ2.

4. Root measures and the Cauchy transform

In this section we describe the basic connections between root measures and
the Cauchy transform which will be used to prove Theorem 4.
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Let µn be a sequence of measures in the complex plane. The sequence is said
to converge weakly to a measure µ if∫

φ(z) dµn(z) →
∫

φ(z) dµ(z)

for every continuous function φ with compact support. If in addition there
exists a compact set K such that suppµn ⊂ K for every n, we will say that µn

converges weakly with compact support to µ and write µn → µ (w.c.s.).
If K ⊂ C is a compact set and M(K) denotes the space of all probability

measures with support in K, equipped with the weak topology, it is known that
M(K) is a sequentially compact Hausdorff space. We will use this fact to select
a convergent subsequence from a sequence of measures as a first step in the proof
of Theorem 4.
If φ is a locally integrable function and µ is a compactly supported measure,

the convolution

(φ ∗ µ)(z) =
∫

φ(z − ζ) dµ(ζ)

is a locally integrable function defined almost everywhere in the complex plane.
If µn → µ (w.c.s.), it is easy to show that φ ∗ µn → φ ∗ µ in L1

loc.
We will be particularly interested in the cases where φ(z) = log |z| or φ(z) = 1/z.

Convolution with these functions defines the logarithmic potential

u(z) =
∫

log |z − ζ| dµ(ζ)

and the Cauchy transform

C(z) =
∫

dµ(ζ)
z − ζ

of µ. It is well known that the measure µ can be reconstructed from either u or
C by the formula

µ =
1
2π

· ∆u =
1
π
· ∂C

∂z̄

where ∆ = (∂/∂x)2 + (∂/∂y)2 is the Laplace operator and ∂/∂z̄ = (∂/∂x +
i∂/∂y)/2. These identities should be understood in the sense of distribution
theory.
Let p be a polynomial of degree n and let µ be the root measure of p, as defined

in the introduction. If p is monic, the logarithmic potential of µ is given by

1
n

log |p(z)| =
∫

log |z − ζ| dµ(ζ),(13)

and for any p, the Cauchy transform of µ is

p′(z)
np(z)

=
∫

dµ(ζ)
z − ζ

.(14)
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These two identities, which can easily be verified, are among the main ingredients
in the proof of Theorem 4. We will here use them to prove a general lemma which
will be needed later.

Lemma 8. Let pm be a sequence of polynomials, such that nm := deg pm → ∞
and let µm and µ′

m be the root measures of pm and p′m respectively. If µm → µ,
µ′

m → µ′ (w.c.s.) and u and u′ are the logarithmic potentials of µ and µ′, then
u′ ≤ u with equality in the unbounded component of C � suppµ.

Proof. Assume with no loss of generality that pm are monic. Let K be a compact
set containing the zeros of every pm. By (13) we then have

u(z) = lim
m→∞

1
nm

log |pm(z)|
and

u′(z) = lim
m→∞

1
nm − 1

log
∣∣∣∣p

′
m(z)
nm

∣∣∣∣ = lim
m→∞

1
nm

log
∣∣∣∣p

′
m(z)
nm

∣∣∣∣
with convergence in L1

loc. Hence by (14),

u′(z) − u(z) = lim
m→∞

1
nm

log
∣∣∣∣ p′m(z)
nmpm(z)

∣∣∣∣ = lim
m→∞

1
nm

log
∣∣∣∣
∫

dµm(ζ)
z − ζ

∣∣∣∣ .(15)

Now, if φ is a positive test function it follows that∫
φ(z)(u′(z) − u(z)) dλ(z) = lim

m→∞
1

nm

∫
φ(z) log

∣∣∣∣
∫

dµm(ζ)
z − ζ

∣∣∣∣ dλ(z)

≤ lim
m→∞

1
nm

∫
φ(z)

∫
dµm(ζ)
|z − ζ| dλ(z)

= lim
m→∞

1
nm

∫∫
φ(z) dλ(z)
|z − ζ| dµm(ζ)

(16)

where λ denotes Lebesgue measure in the complex plane. Since 1/|z| is locally
integrable, the function

∫
φ(z)|z − ζ|−1 dλ(z) is continuous, and hence bounded

by a constant M for all z in K. Since suppµm ⊂ K, the last expression in (16) is
bounded by M/nm, hence the limit when m → ∞ is 0. This proves that u′ ≤ u.

In the complement of suppµ, u is harmonic and u′ is subharmonic, hence
u′ − u is a negative subharmonic function. Moreover, in the complement of
K, p′m/(nmpm) converges uniformly on compact sets to the Cauchy transform
C(z) of µ. Since C(z) is a nonconstant holomorphic function in the unbounded
component of C � K, it follows from (15) that u′ − u = 0 there. By the maxi-
mum principle for subharmonic functions it follows then that u′ − u = 0 in the
unbounded component of C � suppµ. The proof is complete.

5. Root measures of eigenpolynomials

We now turn to the proof of Theorem 4. The plan is to show that µn converges
to a measure whose Cauchy transform satisfies (11). This will prove Theorem 4
and the existence part of Theorem 2. Let µn be the root measure of pn as in the
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statement of Theorem 4. Also let µ
(i)
n be the root measure of the ith derivative

p
(i)
n . We begin by showing that there is a compact set K containing the supports

of all the measures µ
(i)
n .

Lemma 9. Let Q0, ..., Qk be fixed and let pn be an eigenpolynomial of degree n
of the operator TQ. Then there exists a compact set K such that all the zeros of
every p

(i)
n lie in K for every n and every i ≥ 0. If Q0 = . . . = Qk−1 = 0, K may

be taken as the convex hull of the zeros of Qk.

Proof. The case with Q0 = · · · = Qk−1 = 0 was treated in [4]. In the general
case it suffices to check the roots of pn, since by Gauss-Lucas’ theorem the roots
of any derivative p

(i)
n are contained in the convex hull of the roots of pn. Fur-

thermore it suffices to show that there exists a compact set containing the zeros
of pn for large values of n, since for any finite value of n we have finitely many
roots of the polynomial pn, and these are clearly contained in some compact set.

Let z be a root of pn. Then

TQ(pn)(z) =
k∑

i=0

Qi(z) · p(i)
n (z) = λn · pn(z) = 0

or, equivalently,

Qk(z) · p(k)
n (z) + Qk−1(z) · p(k−1)

n (z) + . . . + Q1(z) · p(1)
n (z) = 0.(17)

We will show that for sufficiently large choices of |z| and n this equation will not
hold. It is possible to find some r0 and some n0 such that if |z| ≥ r0 and n > n0

then z cannot be a root of pn. Using formula (14) we have

p
(i+1)
n (z)

(n − i) · p(i)
n (z)

=
∫

dµ
(i)
n (ζ)

z − ζ
=: bi.

Thus

p(k−1)
n (z) =

p
(k)
n (z)

(n − k + 1) · bk−1
,

p(k−2)
n (z) =

p
(k−1)
n (z)

(n − k + 2) · bk−2
=

p
(k)
n (z)

(n − k + 1)(n − k + 2) · bk−1 · bk−2
,

and so on. Generally we have

p(i)
n (z) =

p
(k)
n (z)

(n − k + 1) . . . (n − i) · ∏k−1
j=i bj

.

Now assume that z is the root of pn with the largest modulus and let |z| = r.
With ζ being a root of some p

(i)
n we have |ζ| ≤ |z| by Gauss-Lucas’ theorem. We
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will estimate bi =
∫ dµ(i)

n (ζ)
z−ζ so that |bi| ≥ 1/2r ∀i ≤ k. We have

1
z − ζ

=
1
z
· 1
1 − ζ/z

=
1
z
· 1
1 − θ

and |θ| = |ζ/z| ≤ 1.
With w = 1/(1 − θ) we obtain

|w − 1| =
∣∣∣∣ 1
1 − θ

− (1 − θ)
(1 − θ)

∣∣∣∣ =
|θ|

|1 − θ| = |θ||w| ≤ |w|
⇔

|w − 1| ≤ |w|
⇔

Re(w) ≥ 1
2
.

Using this result we get

|bi| =

∣∣∣∣∣
∫

dµ
(i)
n (ζ)

z − ζ

∣∣∣∣∣ =
1
r

∣∣∣∣∣
∫

dµ
(i)
n (ζ)

1 − θ

∣∣∣∣∣ =

=
1
r

∣∣∣∣
∫

wdµ(i)
n (ζ)

∣∣∣∣ ≥ 1
r

∣∣∣∣
∫

Re(w)dµ(i)
n (ζ)

∣∣∣∣ ≥
≥ 1

2r

∫
dµ(i)

n (ζ) =
1
2r

.

Now we choose r0 in such a way that |Qk(w)| ≥ rk/2 as |w| ≥ r0 and then a
constant C such that |Qi(w)| ≤ C · ri for every i = 1, . . . , k − 1. Finally we
choose n0 such that C·2k−i+1

(n−i)...(n−k+1) < 1
k−1 as n > n0 for every i = 1, . . . , k − 1.

Then, as |z| = r ≥ r0 and n > n0, we get∣∣∣∣∣
Qi(z) · p(i)

n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ =
|Qi(z)|
|Qk(z)| ·

(n − k)!
(n − i)!

· 1∏k−1
j=i |bj |

≤

≤ |Qi(z)|
|Qk(z)| ·

(n − k)!
(n − i)!

· 2k−i · rk−i ≤

≤ C · ri

rk/2
· (n − k)!

(n − i)!
· 2k−i · rk−i =

=
C · 2k−i+1

(n − i) . . . (n − k + 1)
<

1
k − 1

.

Dividing (17) by Qk(z) · p(k)
n (z) we obtain

1 +
k−1∑
i=1

Qi(z) · p(i)
n (z)

Qk(z) · p(k)
n (z)

= 0,
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but with r ≥ r0 and n > n0 we get∣∣∣∣∣
k−1∑
i=1

Qi(z) · p(i)
n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ ≤
k−1∑
i=1

∣∣∣∣∣
Qi(z) · p(i)

n (z)

Qk(z) · p(k)
n (z)

∣∣∣∣∣ <
k−1∑
i=1

1
k − 1

= 1

and so (17) cannot be fulfilled with such choices of r and n.

Assume that N is a subsequence of the natural numbers such that

µ(j) = lim
n→∞,n∈N

µ(j)
n(18)

exists for j = 0, . . . , k. The following lemma shows that the Cauchy transform
of µ = µ(0) satisfies (11).

Lemma 10. The measures µ(j) are all equal and the Cauchy transform C(z) of
this common limit satisfies C(z)k = 1/Qk(z) for almost every z.

Proof. By (14) we have that

p
(j+1)
n (z)

(n − j)p(j)
n (z)

→
∫

dµ(j)(ζ)
z − ζ

(19)

with convergence in L1
loc, and by passing to a subsequence once again we can as-

sume that we have pointwise convergence almost everywhere. From the relation
TQpn = λnpn it follows that

Qk
p
(k)
n

n . . . (n − k + 1)pn
=

λn

n . . . (n − k + 1)

−
k−1∑
l=0

Ql

(n − l) . . . (n − k + 1)

l−1∏
j=0

p
(j+1)
n

(n − j)p(j)
n

.

(20)

Now λn/n . . . (n− k + 1) → 1 by Theorem 1, while the sum converges pointwise
to 0 almost everywhere by virtue of the factors (n − l) . . . (n − k + 1) in the
denominators. It follows that

p
(k)
n (z)

n . . . (n − k + 1)pn(z)
→ 1

Qk(z)
(21)

when n → ∞ through the sequence N for almost every z. If u(j) denotes the
logarithmic potential of µ(j), then it follows from (13) and (21) that

u(k) − u(0) = lim
n→∞

1
n

log

∣∣∣∣∣
p
(k)
n

n . . . (n − k + 1)pn

∣∣∣∣∣ = − lim
n→∞

1
n

log |Qk| = 0.

On the other hand we have from Lemma 8 that u(0) ≥ u(1) ≥ · · · ≥ u(k), hence
the potentials u(j) are all equal, and it follows that µ(j) = ∆u(j)/2π are all equal.
Finally we have from (19) and (21) that

C(z)k = lim
n→∞

k−1∏
j=0

p
(j+1)
n (z)

(n − j)p(j)
n (z)

= lim
n→∞

p
(k)
n (z)

n . . . (n − k + 1)pn(z)
=

1
Qk(z)
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for almost every z. This completes the proof.

Corollary 4. There exists a unique measure µQk
satisfying the requirements in

Theorem 2. The sequence µn converges weakly to µQk
. Moreover, suppµQk

is
contained in the convex hull of the zeros of Qk.

Proof. By Theorem 1, the operator TQ has an eigenpolynomial pn of degree n
for all sufficiently large n. By Lemma 9, there exists a compact set K such that
suppµ

(j)
n ⊂ K for all n. By compactness, there exists a subsequence N such that

the limit (18) exists for j = 0, . . . , k. By Lemma 10, µQk
= µ(0) has the required

properties, so existence is proved. Uniqueness was established in section 3. Since
we may take Q0 = . . . = Qk−1 = 0, and in this case suppµ

(j)
n ⊂ K where K is

the convex hull of the zeros of Qk by Lemma 9, it follows that suppµQk
is also

contained in K.
Assume that µn does not converge to µQk

Then we can find a subsequence
N ′ of the natural numbers such that µn stays away from a fixed neighbourhood
of µQk

in the weak topology, for all n ∈ N ′. Again by compactness, we can
find a subsequence N of N ′ such that the limit (18) exists for j = 0, . . . , k. By
Lemma 10 and the uniqueness of µQk

, it follows that µ(0) = µQk
, contradicting

the assumption that µn stays away from µQk
for all n in N ′ and hence all n in

N . The proof is complete.
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