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FOCAL POINTS AND THE DECREASE OF CURVATURE:
A SURPRISING EXAMPLE

Marlies Gerber

1. Introduction

If γ(t) is a unit speed geodesic on a manifold M and J(t) is a non-trivial
perpendicular Jacobi field along γ such that J(t0) = 0 and (||J ||2)′(t1) = 0 for
some t0 < t1, then the geodesic that is tangent to J(t1) at γ(t1) is said to have
a focal point at γ(t0). If this does not happen for any times t0 < t1 and any
non-trivial perpendicular Jacobi field J , then we say that there are no focal
points along γ. Moreover, if there are no focal points along any geodesic in M ,
then we say M has no focal points. Although manifolds with no focal points can
have sectional curvatures of both signs [4], they have many of the properties of
manifolds of nonpositive curvature that are of interest in the study of geodesic
flows. (See, for example, [2], [5], and [6].)

In the case when M is a surface S with Gaussian curvature K, the existence
of a focal point along γ is equivalent to the following: There is a solution u to
the scalar Riccati equation

u2(t) + u′(t) + K(γ(t)) = 0

defined on (t0, t1] such that limt→t+0
u(t) = ∞ and u(t1) = 0.

The following comparison lemma (see [1]) is often used in estimating solutions
to the Riccati equation.

Lemma 1.1. Suppose ui, i = 1, 2, satisfy

u2
i (t) + u′

i(t) + Ki(t) = 0

on an interval [t0, t1], where K1 and K2 are continuous functions on [t0, t1] with
K2 ≤ K1. If u1(t0) ≤ u2(t0), then u1(t1) ≤ u2(t1).

According to this lemma, if a geodesic γ on a surface S does not have any focal
points when restricted to [t0, t1] and σ is another geodesic on S with K(σ(t)) ≤
K(γ(t)) for all t ∈ [t0, t1], then σ also does not have any focal points when
restricted to [t0, t1]. Now suppose that γ is a closed unit speed geodesic on
a surface S. For simplicity, let us assume that small neighborhoods of γ are
orientable. Suppose that there are no focal points along γ and that the Gaussian
curvature K is strictly decreasing as we move away from γ along geodesics
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perpendicular to γ in a small neighborhood of γ. Moreover, if (s, x) are Fermi
coordinates along γ(s), we assume that

∂K

∂x
(s, 0) ≡ 0(1.1)

and

∂2K

∂x2
(s, 0) < 0(1.2)

for all s. Consequently, if we think of the graph of K(s, x) over a thin strip
(−∞,∞)× [−ε, ε], then the part of this graph corresponding to γ (where x = 0),
forms a ridge and the graph drops down on both sides of this ridge. Now suppose
that σ(t) is another unit speed geodesic such that limt→−∞ dist(σ(t), γ(t)) = 0.
Then for t large and negative, σ is very close to γ and very nearly parallel to γ
in the (s, x) coordinate system. From the comparison lemma, we might expect
that for T sufficiently large, there are no focal points along the restriction of
σ to (−∞,−T ). Our intuitive reasoning proceeds as follows: As σ approaches
γ, the time parameter t along σ could be taken approximately equal to the
Fermi coordinate s. For x very close to 0, but not equal to 0, we have K(s, x) <
K(0, x) and we would then apply the comparison lemma. This argument appears
even more plausible if we take into account the length of the ∂/∂s vector field.
This vector field is a Jacobi field along geodesics perpendicular to γ, and by
considering the Jacobi equation along such geodesics we see that

∂2

∂x2
(‖∂/∂s‖) (s, 0) = −K(s, 0) .

We also have
∂

∂x
(‖∂/∂s‖) (s, 0) = 0,

by the first variation formula. Therefore ‖∂/∂s‖(s, x) is increasing [decreasing]
as we move away from γ along s = s0 curves for those s0 values where K(s0, 0)
is negative [positive]. This effect would contribute to σ spending slightly more
time in regions of negative curvature and slightly less time in regions of positive
curvature than γ.

In this paper we show that contrary to the above reasoning, there is an ex-
ample of a surface containing a closed geodesic γ along which there are no focal
points and (1.1) and (1.2) are satisfied, but there are focal points along every
geodesic σ(t) that is asymptotic to γ as t → −∞. Although our proof uses a
different idea, an intuitive explanation of what is happening is that the angle
φ that σ′ makes with the ∂/∂s vector field can have a greater effect than the
decrease of the curvature. If we consider φ as a function of s, then by Lemma
3.3 in [3],

φ′(s) =
∂

∂x
(||∂/∂s||)(s, x) ≈ −K(s, 0)x,(1.3)
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for small values of x. Along σ, we also have

dt

ds
=

||∂/∂s||
cos φ

≈ 1 − K(s, 0)x2

1 − φ2/2
≈ 1 − K(s, 0)x2 + φ2/2,(1.4)

for small x and φ. If we assume there are no focal points, then by [2], horocycles
are convex, and we see that φ ≥ 0 along σ. By (1.3) it is possible, for suitably
chosen K(s, 0), to have the φ2/2 term in (1.4) exceed the absolute value of the
K(s, 0)x2 term, for some values of s. In regions where K(s, 0) > 0, this would
contribute to σ spending more time in positive curvature than γ. This suggests
that we should not assume φ ≡ 0 in our estimates. More precisely, if we use a
coordinate system (t, y), to be described in §2, in which y = 0 corresponds to
γ and y = constant curves are geodesics (with arc length parameter t) that are
asymptotic to γ as t → −∞, then ∂K/∂y ≡ 0 along γ, but ∂2K/∂y2 is positive
at some points of γ. This shows that Lemma 1.1 does not apply.

In our example, the unstable solution v of the Riccati equation along γ satisfies
v ≥ 0, but there is a point p where v(p) = 0. If K were to vanish identically
along γ and the curvature decreases on the average as we move away from γ (as
defined in [3]), then there would be no focal points near γ (see Theorem 4.3 in
[3]).

2. Construction of the example in terms of the functions v and w

We will use a “horocyclic coordinate system,” which K. Burns had suggested
in the context of an earlier, simpler example that is used in §6 of [3]. This
coordinate system (t, y) will be defined on (−∞,∞) × (−1, 1) such that the
curves y = constant will be geodesic segments and the curves t = constant
will be segments of unstable horocycles. The t coordinate will agree with the s
coordinate of the (s, x) Fermi coordinate system along the geodesic γ(s), where
y = 0. We will construct C∞ periodic functions v and w of period � such that
v > 0 on [0, �] \ {p} and v(p) = 0 for some p ∈ (0, �); w ≡ 0 on [−δ, δ], for some
small δ > 0; w(p) < 0; and v and w satisfy the inequality

(2w′ + 4vw)(1/j)2 + (v′′ + 2vv′)v > 0(2.1)

on [0, �], where j(t) = exp
[∫ t

0
v(ξ) dξ

]
. The left hand side of (2.1) turns out

to be −∂2K/∂x2 along γ (as will be shown below), and consequently (2.1) is
equivalent to (1.2).

For (t, y) ∈ (−∞,∞) × (−1, 1), let v̄(t, y) = v(t) + y2w(t) and let ̄(t, y) =
exp[

∫ t

0
v̄(ξ, y) dξ]. We define a Riemannian metric 〈 , 〉 on (−∞,∞) × (−1, 1)

by 〈∂/∂t, ∂/∂t〉 = 1, 〈∂/∂t, ∂/∂y〉 = 0, and 〈∂/∂y, ∂/∂y〉 = ̄2(t, y). Then for
any y0 ∈ (−1, 1), the function ̄(t, y0), −∞ < t < ∞, is a solution to the Jacobi
equation along the geodesic y = y0 and v̄(t, y) = ((∂̄/∂t)(t, y0))/̄(t, y0) is the
corresponding solution to the Riccati equation. Let z(t, y) =

∫ y

0
̄(t, η) dη. Then

z is an arc length parameter along the curves with constant t coordinate.
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In order to prove the smoothness of the metric obtained with the identification
of points along t = 0 and t = � to be described below, we define the map

F (� + t, y) = (t, z(�, y)),

for |t| < δ and y ∈ (−1, 1) sufficiently small so that z(�, y) ∈ (−1, 1). Then

dF (∂/∂y)(�+t,y) = ̄(�, y) (∂/∂y)(t,z(�,y)) .

Since w ≡ 0 on [−δ, δ], ̄(t, z(�, y)) = ̄(t, y), and we obtain

‖dF (∂/∂y)(�+t,y) ‖ = ̄(�, y)̄(t, z(�, y)) = ̄(�, y)̄(t, y)

= ̄(� + t, y) = ‖ (∂/∂y)(�+t,y) ‖.
It follows that F preserves the Riemannian metric 〈 , 〉. If y, y′ ∈ (−1, 1) are
such that z(�, y) = y′, then we identify the points (0, y′) and (�, y). After making
this identification we can extend a small neighborhood of y = 0 in [0, �]× (−1, 1)
to a compact surface S, and γ becomes a closed geodesic of period �. Since F
preserves 〈 , 〉, the metric obtained with this identification is consistently defined
and smooth in a neighborhood of y = 0.

For y0 close to 0, but not equal to 0, there is a geodesic ray σy0(t̃), t̃ ≤ 0, such
that σy0 has constant y coordinate, yk, in each time interval −(k+1)� < t̃ < −k�,
for k = 0, 1, 2, . . . . The time coordinate t̃ and the t coordinate of σy0(t̃) are
related by t̃ ≡ t mod �. Since yk =

∫ yk+1

0
̄(�, η) dη, for k = 0, 1, 2, . . . , and

̄(�, η) > exp
[
(1/2)

∫ �

0
v(ξ) dξ

]
> 1 for η close to 0, it follows that (yk) is a

decreasing sequence with limk→∞ yk = 0. Consequently each such geodesic σy0

is asymptotic to γ as t̃ → −∞. Hence the curves t = constant are unstable
horocycles. The geodesic curvature of the curve t = t0 at (t0, y) is v̄(t0, y),
which is negative if t0 = p and y �= 0. Thus there are focal points along σy0 , but
not along γ.

Let K be the curvature for the metric 〈 , 〉 and its extension to S. Near γ,
K may be regarded as a function of the coordinates (t, y), 0 ≤ t < �, or the
Fermi coordinates (s, x) along γ(s). The symmetry of the metric in the (t, y)
coordinate system with respect to y = 0 implies that

∂K/∂y ≡ 0(2.2)

along γ. Since j(∂/∂x) = ∂/∂y along γ, (1.1) is satisfied. It follows from the
Riccati equation that

K(t, y) = −∂v̄

∂t
(t, y) − v̄2(t, y),

and by differentiating, we obtain

∂2K

∂y2
= −2w′ − 4vw

and
∂K

∂t
= −v′′ − 2vv′
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along γ.
Let U be the gradient vector field for the function t. This vector field consists

of unit normal vectors to the unstable horocycles. We have
∂t

∂x
=

〈
U,

∂

∂x

〉

and
∂2t

∂x2
=

∂

∂x

〈
U,

∂

∂x

〉
=

〈
DU

dx
,

∂

∂x

〉
+

〈
U,

D

dx

(
∂

∂x

)〉
.

The (D/dx)(∂/∂x) term is 0, because ∂/∂x consists of vectors tangent to geodesics
perpendicular to γ. Along γ we have ∂/∂x = ∂/∂z and

∂2t

∂x2
=

〈
DU

dz
,

∂

∂z

〉
= v,

because 〈DU/dz, ∂/∂z〉 is the curvature of the unstable horocycle.
Using the fact that ∂t/∂x ≡ 0 along γ, together with (2.2), and applying the

chain rule twice, we find that

∂2K

∂x2
=

∂2K

∂y2

(
∂y

∂x

)2

+
∂K

∂t

∂2t

∂x2

= (−2w′ − 4vw)(1/j)2 + (−v′′ − 2vv′)v.

Thus (1.2) will follow from (2.1), once that is established in §3.

3. Construction of the functions v and w

If we multiply (2.1) by the integrating factor j4(t), then we see that (2.1) is
equivalent to (

w(t)j2(t)
)′

>
−j4(t)

2

(
v′′(t) + 2v(t)v′(t)

)
v(t)(3.1)

We will choose v so that v is C∞, has period �, v ≥ 0,(
v′′(0) + 2v(0)v′(0)

)
v(0) > 0,(3.2)

v(p) = 0,(3.3)

and ∫
I

j4(t)
(
v′′(t) + 2v(t)v′(t)

)
v(t) dt > 0(3.4)

for I = [0, p] and for I = [p, �]. We can define w in terms of v, as follows.
Choose δ > 0 sufficiently small so that

(
v′′(t) + 2v(t)v′(t)

)
v(t) > 0 for t ∈ [0, δ]

and t ∈ [� − δ, �] and (3.4) holds for I = [δ, p] and for I = [p, � − δ]. Let
f(t) = −(j4(t)/2)

(
v′′(t) + 2v(t)v′(t)

)
v(t).
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If δ > 0 is sufficiently small, then there exists a C∞ function g on [0, �] such that
g ≡ 0 in [0, δ] ∪ [� − δ, �], g(t) > f(t) on [0, �],

∫ p

0
g(t) dt < 0, and

∫ �

0
g(t) dt = 0.

Let

w(t) = j−2(t)
∫ t

0

g(ξ) dξ.(3.5)

Then w ≡ 0 on [0, δ] ∪ [�− δ, �], w(p) < 0, and
(
w(t)j2(t)

)′ = g(t) > f(t), which
is (3.1). The function w defined by (3.5) is not periodic due to the j−2(t) term,
but we will just use (3.5) to define w on [0, �] and then extend w periodically.
Next we will define v in terms of a parameter α. This parameter will eventually
be taken very small, but to define v, we only need 0 < α < 1/2. Figures 1 and 2
show the graphs of v(t) and K(t), respectively, for α = 1/8. We calculate K(t)
from the Riccati equation K(t) = −v′(t) − v2(t). Our initial choice of v will be
C1, but not C2. At the end of our calculations we will explain how to modify v
to make it C∞, while maintaining the other properties that we need.

Let β = (sin−1 α)/α, a = 1/(2β), b =
√

1 − α2 + β/2, c = 8α3/33/2, p =
1/4 + β + π/(3α) + c−1/3, and � = p + 2

√
1 − α2 − 1/2. Define closed intervals

Ii = [ai, bi], i = 1, . . . , 5, by a1 = 0, a2 = 1/4, a3 = 1/4 + 2β, a4 = a3 −
β + π/(3α) = p − c−1/3, a5 = p, b5 = �, and ai+1 = bi, for i = 1, . . . , 4. Let
c1 = −1/4 +

√
1 − α2, c2 = −c−1/3 + π/(6α), c3 = c/2, c4 = (1/4)c−1

1 , and
q = β + 1/4. We define

v(t) =




t + c1, for t ∈ I1,

−a(t − q)2 + b, for t ∈ I2,

−α tan
(
α(t − p − c2)

)
, for t ∈ I3,

c3(t − p)2, for t ∈ I4,

c4(t − p)2, for t ∈ I5,

and extend v periodically to (−∞,∞) with period �. It is clear that (3.3) is
satisfied, and it is easy to verify that v is C1 and v > 0 on [0, �]\{p}. Moreover,
(3.2) is satisfied if v′′(0) is replaced by the second derivative of v from the right
or the left at 0.

We now prove that (3.4) holds for I = [0, p]. On I2, v′′(t) = −2a, v′(t) =
−2a(t − 1/4 − β), and

√
1 − α2 ≤ v(t) ≤ b. Also 1 ≤ β ≤ π/2, 1/π ≤ a ≤ 1/2,

b < 1 + π/4, and v′(t) ≥ −1. Thus (v′′ + 2vv′)v ≥ (−2a− 2v)v ≥ (−2a− 2b)b ≥
−(3 + π/2)(1 + π/4) > −9 on I2.

We obtain the following table:

INTERVAL
(
v′′(t) + 2v(t)v′(t)

)
v(t)

————————————————————————————————
I1 positive
I2 greater than −9
I3 0
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I4

(
c + c2(t − p)3

)
(c/2)(t − p)2

I5 positive except at p

Note that the entry in this table for
(
v′′(t) + 2v(t)v′(t)

)
v(t) on I4 is positive

except at the endpoints of I4 and that
∫

I4

(
v′′(t) + 2v(t)v′(t)

)
v(t) dt = c/12 =

(2/35/2)α3. Then
∫ p

0

j4(t)
(
v′′(t) + 2v(t)v′(t)

)
v(t) dt ≥

j4(b2)(b2 − a2)(−9) + j4(a4)
∫

I4

(
v′′(t) + 2v(t)v′(t)

)
v(t) dt

≥ −18βj4(1/4 + 2β) + (2/35/2)α3j4(p − c−1/3).(3.6)

We will show that the first term in (3.6) is bounded from below, independently
of α, while the second term goes to ∞ as α → 0. Since v(t) ≤ b on I1 ∪ I2,

−18βj4(1/4 + 2β) = −18βexp
[
4

∫ 1/4+2β

0
v(ξ) dξ

]

≥ −18βexp
[
4b(1/4 + 2β)

]

≥ −9πexp
[
(4 + π)(1/4 + π)

]
.

Also,
∫

I3

v(ξ) dξ =
∫ − π

6α

− π
2α +β

−α tan(ατ) dτ = log(cos(ατ))
∣∣∣∣
−π/(6α)

−π/(2α)+β

= log(
√

3/2) − log α.

Therefore

α3j4(p − c−1/3) ≥ α3exp
[
4

∫
I3

v(ξ) dξ
]
≥ (

√
3/2)4(1/α).

Consequently, the expression in (3.6) goes to infinity as α goes to 0. We now
fix a choice of α so that the expression in (3.6) is positive. Then (3.4) holds for
I = [0, p]. It is clear that (3.4) holds for I = [p, �], since the integrand is positive
except at p. Thus K satisfies condition (1.2).

We now replace v by a C∞ function ṽ such that ṽ has period �, ṽ > 0 on
[0, �] \ {p}, and ṽ satisfies (3.2), (3.3), and (3.4). (In fact, ṽ will be real analytic,
but w is only C∞.) Let ṽ1(t) =

∫ +∞
−∞ v(ξ)Pµ(t − ξ) dξ, where Pµ is the Poisson

kernel, Pµ(t) = (µ/π)/(t2 + µ2), and µ > 0. Then ṽ1 is C∞, has period �, and
satisfies ṽ1 > 0. If µ is small, then ṽ1 has a minimum at t = p̃, where p̃ is close
to p. Let ṽ(t) = ṽ1(t + p̃ − p) − ṽ1(p̃). For µ sufficiently small, ṽ satisfies (3.2),
(3.3), and (3.4).
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