FOCAL POINTS AND THE DECREASE OF CURVATURE: A SURPRISING EXAMPLE

MARLIES GERBER

1. Introduction

If $\gamma(t)$ is a unit speed geodesic on a manifold M and J(t) is a non-trivial perpendicular Jacobi field along γ such that $J(t_0) = 0$ and $(||J||^2)'(t_1) = 0$ for some $t_0 < t_1$, then the geodesic that is tangent to $J(t_1)$ at $\gamma(t_1)$ is said to have a *focal point* at $\gamma(t_0)$. If this does not happen for any times $t_0 < t_1$ and any non-trivial perpendicular Jacobi field J, then we say that there are no focal points along γ . Moreover, if there are no focal points along any geodesic in M, then we say M has no focal points. Although manifolds with no focal points can have sectional curvatures of both signs [4], they have many of the properties of manifolds of nonpositive curvature that are of interest in the study of geodesic flows. (See, for example, [2], [5], and [6].)

In the case when M is a surface S with Gaussian curvature K, the existence of a focal point along γ is equivalent to the following: There is a solution u to the scalar Riccati equation

$$u^{2}(t) + u'(t) + K(\gamma(t)) = 0$$

defined on $(t_0, t_1]$ such that $\lim_{t \to t_0^+} u(t) = \infty$ and $u(t_1) = 0$.

The following comparison lemma (see [1]) is often used in estimating solutions to the Riccati equation.

Lemma 1.1. Suppose u_i , i = 1, 2, satisfy

$$u_i^2(t) + u_i'(t) + K_i(t) = 0$$

on an interval $[t_0, t_1]$, where K_1 and K_2 are continuous functions on $[t_0, t_1]$ with $K_2 \leq K_1$. If $u_1(t_0) \leq u_2(t_0)$, then $u_1(t_1) \leq u_2(t_1)$.

According to this lemma, if a geodesic γ on a surface S does not have any focal points when restricted to $[t_0, t_1]$ and σ is another geodesic on S with $K(\sigma(t)) \leq K(\gamma(t))$ for all $t \in [t_0, t_1]$, then σ also does not have any focal points when restricted to $[t_0, t_1]$. Now suppose that γ is a closed unit speed geodesic on a surface S. For simplicity, let us assume that small neighborhoods of γ are orientable. Suppose that there are no focal points along γ and that the Gaussian curvature K is strictly decreasing as we move away from γ along geodesics

Received December 9, 2001.

perpendicular to γ in a small neighborhood of γ . Moreover, if (s, x) are Fermi coordinates along $\gamma(s)$, we assume that

(1.1)
$$\frac{\partial K}{\partial x}(s,0) \equiv 0$$

and

(1.2)
$$\frac{\partial^2 K}{\partial x^2}(s,0) < 0$$

for all s. Consequently, if we think of the graph of K(s, x) over a thin strip $(-\infty, \infty) \times [-\epsilon, \epsilon]$, then the part of this graph corresponding to γ (where x = 0), forms a ridge and the graph drops down on both sides of this ridge. Now suppose that $\sigma(t)$ is another unit speed geodesic such that $\lim_{t\to-\infty} \operatorname{dist}(\sigma(t), \gamma(t)) = 0$. Then for t large and negative, σ is very close to γ and very nearly parallel to γ in the (s, x) coordinate system. From the comparison lemma, we might expect that for T sufficiently large, there are no focal points along the restriction of σ to $(-\infty, -T)$. Our intuitive reasoning proceeds as follows: As σ approaches γ , the time parameter t along σ could be taken approximately equal to the Fermi coordinate s. For x very close to 0, but not equal to 0, we have K(s, x) < K(0, x) and we would then apply the comparison lemma. This argument appears even more plausible if we take into account the length of the $\partial/\partial s$ vector field. This vector field is a Jacobi field along geodesics perpendicular to γ , and by considering the Jacobi equation along such geodesics we see that

$$\frac{\partial^2}{\partial x^2} \left(\left\| \partial / \partial s \right\| \right)(s,0) = -K(s,0) \; .$$

We also have

$$\frac{\partial}{\partial x} \left(\left\| \partial / \partial s \right\| \right) (s, 0) = 0,$$

by the first variation formula. Therefore $\|\partial/\partial s\|(s,x)$ is increasing [decreasing] as we move away from γ along $s = s_0$ curves for those s_0 values where $K(s_0,0)$ is negative [positive]. This effect would contribute to σ spending slightly more time in regions of negative curvature and slightly less time in regions of positive curvature than γ .

In this paper we show that contrary to the above reasoning, there is an example of a surface containing a closed geodesic γ along which there are no focal points and (1.1) and (1.2) are satisfied, but there are focal points along every geodesic $\sigma(t)$ that is asymptotic to γ as $t \to -\infty$. Although our proof uses a different idea, an intuitive explanation of what is happening is that the angle ϕ that σ' makes with the $\partial/\partial s$ vector field can have a greater effect than the decrease of the curvature. If we consider ϕ as a function of s, then by Lemma 3.3 in [3],

(1.3)
$$\phi'(s) = \frac{\partial}{\partial x} (||\partial/\partial s||)(s,x) \approx -K(s,0)x,$$

for small values of x. Along σ , we also have

(1.4)
$$\frac{dt}{ds} = \frac{||\partial/\partial s||}{\cos\phi} \approx \frac{1 - K(s,0)x^2}{1 - \phi^2/2} \approx 1 - K(s,0)x^2 + \phi^2/2,$$

for small x and ϕ . If we assume there are no focal points, then by [2], horocycles are convex, and we see that $\phi \geq 0$ along σ . By (1.3) it is possible, for suitably chosen K(s,0), to have the $\phi^2/2$ term in (1.4) exceed the absolute value of the $K(s,0)x^2$ term, for some values of s. In regions where K(s,0) > 0, this would contribute to σ spending more time in positive curvature than γ . This suggests that we should not assume $\phi \equiv 0$ in our estimates. More precisely, if we use a coordinate system (t, y), to be described in §2, in which y = 0 corresponds to γ and $y = \text{constant curves are geodesics (with arc length parameter t) that are$ $asymptotic to <math>\gamma$ as $t \to -\infty$, then $\partial K/\partial y \equiv 0$ along γ , but $\partial^2 K/\partial y^2$ is positive at some points of γ . This shows that Lemma 1.1 does not apply.

In our example, the unstable solution v of the Riccati equation along γ satisfies $v \geq 0$, but there is a point p where v(p) = 0. If K were to vanish identically along γ and the curvature decreases on the average as we move away from γ (as defined in [3]), then there would be no focal points near γ (see Theorem 4.3 in [3]).

2. Construction of the example in terms of the functions v and w

We will use a "horocyclic coordinate system," which K. Burns had suggested in the context of an earlier, simpler example that is used in §6 of [3]. This coordinate system (t, y) will be defined on $(-\infty, \infty) \times (-1, 1)$ such that the curves y = constant will be geodesic segments and the curves t = constantwill be segments of unstable horocycles. The t coordinate will agree with the scoordinate of the (s, x) Fermi coordinate system along the geodesic $\gamma(s)$, where y = 0. We will construct C^{∞} periodic functions v and w of period ℓ such that v > 0 on $[0, \ell] \setminus \{p\}$ and v(p) = 0 for some $p \in (0, \ell)$; $w \equiv 0$ on $[-\delta, \delta]$, for some small $\delta > 0$; w(p) < 0; and v and w satisfy the inequality

(2.1)
$$(2w' + 4vw)(1/j)^2 + (v'' + 2vv')v > 0$$

on $[0, \ell]$, where $j(t) = \exp\left[\int_0^t v(\xi) d\xi\right]$. The left hand side of (2.1) turns out to be $-\partial^2 K/\partial x^2$ along γ (as will be shown below), and consequently (2.1) is equivalent to (1.2).

For $(t, y) \in (-\infty, \infty) \times (-1, 1)$, let $\bar{v}(t, y) = v(t) + y^2 w(t)$ and let $\bar{j}(t, y) = \exp[\int_0^t \bar{v}(\xi, y) d\xi]$. We define a Riemannian metric \langle , \rangle on $(-\infty, \infty) \times (-1, 1)$ by $\langle \partial/\partial t, \partial/\partial t \rangle = 1$, $\langle \partial/\partial t, \partial/\partial y \rangle = 0$, and $\langle \partial/\partial y, \partial/\partial y \rangle = \bar{j}^2(t, y)$. Then for any $y_0 \in (-1, 1)$, the function $\bar{j}(t, y_0), -\infty < t < \infty$, is a solution to the Jacobi equation along the geodesic $y = y_0$ and $\bar{v}(t, y) = ((\partial \bar{j}/\partial t)(t, y_0))/\bar{j}(t, y_0)$ is the corresponding solution to the Riccati equation. Let $z(t, y) = \int_0^y \bar{j}(t, \eta) d\eta$. Then z is an arc length parameter along the curves with constant t coordinate.

In order to prove the smoothness of the metric obtained with the identification of points along t = 0 and $t = \ell$ to be described below, we define the map

$$F(\ell + t, y) = (t, z(\ell, y)),$$

for $|t| < \delta$ and $y \in (-1, 1)$ sufficiently small so that $z(\ell, y) \in (-1, 1)$. Then

$$dF\left(\partial/\partial y\right)_{(\ell+t,y)} = \bar{j}(\ell,y)\left(\partial/\partial y\right)_{(t,z(\ell,y))}.$$

Since $w \equiv 0$ on $[-\delta, \delta], \bar{j}(t, z(\ell, y)) = \bar{j}(t, y)$, and we obtain

$$\begin{aligned} \|dF\left(\partial/\partial y\right)_{(\ell+t,y)}\| &= \bar{\jmath}(\ell,y)\bar{\jmath}(t,z(\ell,y)) = \bar{\jmath}(\ell,y)\bar{\jmath}(t,y) \\ &= \bar{\jmath}(\ell+t,y) = \|\left(\partial/\partial y\right)_{(\ell+t,y)}\|. \end{aligned}$$

It follows that F preserves the Riemannian metric \langle , \rangle . If $y, y' \in (-1, 1)$ are such that $z(\ell, y) = y'$, then we identify the points (0, y') and (ℓ, y) . After making this identification we can extend a small neighborhood of y = 0 in $[0, \ell] \times (-1, 1)$ to a compact surface S, and γ becomes a closed geodesic of period ℓ . Since Fpreserves \langle , \rangle , the metric obtained with this identification is consistently defined and smooth in a neighborhood of y = 0.

For y_0 close to 0, but not equal to 0, there is a geodesic ray $\sigma_{y_0}(\tilde{t}), \tilde{t} \leq 0$, such that σ_{y_0} has constant y coordinate, y_k , in each time interval $-(k+1)\ell < \tilde{t} < -k\ell$, for $k = 0, 1, 2, \ldots$. The time coordinate \tilde{t} and the t coordinate of $\sigma_{y_0}(\tilde{t})$ are related by $\tilde{t} \equiv t \mod \ell$. Since $y_k = \int_0^{y_{k+1}} \bar{j}(\ell, \eta) \ d\eta$, for $k = 0, 1, 2, \ldots$, and $\bar{j}(\ell, \eta) > \exp\left[(1/2)\int_0^\ell v(\xi) \ d\xi\right] > 1$ for η close to 0, it follows that (y_k) is a decreasing sequence with $\lim_{k\to\infty} y_k = 0$. Consequently each such geodesic σ_{y_0} is asymptotic to γ as $\tilde{t} \to -\infty$. Hence the curves t = constant are unstable horocycles. The geodesic curvature of the curve $t = t_0$ at (t_0, y) is $\bar{v}(t_0, y)$, which is negative if $t_0 = p$ and $y \neq 0$. Thus there are focal points along σ_{y_0} , but not along γ .

Let K be the curvature for the metric \langle , \rangle and its extension to S. Near γ , K may be regarded as a function of the coordinates $(t, y), 0 \leq t < \ell$, or the Fermi coordinates (s, x) along $\gamma(s)$. The symmetry of the metric in the (t, y)coordinate system with respect to y = 0 implies that

$$\partial K/\partial y \equiv 0$$

along γ . Since $j(\partial/\partial x) = \partial/\partial y$ along γ , (1.1) is satisfied. It follows from the Riccati equation that

$$K(t,y) = -\frac{\partial \bar{v}}{\partial t}(t,y) - \bar{v}^2(t,y),$$

and by differentiating, we obtain

$$\frac{\partial^2 K}{\partial y^2} = -2w' - 4vw$$

and

$$\frac{\partial K}{\partial t} = -v'' - 2vv'$$

along γ .

Let U be the gradient vector field for the function t. This vector field consists of unit normal vectors to the unstable horocycles. We have

$$\frac{\partial t}{\partial x} = \left\langle U, \frac{\partial}{\partial x} \right\rangle$$

and

$$\frac{\partial^2 t}{\partial x^2} = \frac{\partial}{\partial x} \left\langle U, \frac{\partial}{\partial x} \right\rangle = \left\langle \frac{DU}{dx}, \frac{\partial}{\partial x} \right\rangle + \left\langle U, \frac{D}{dx} \left(\frac{\partial}{\partial x} \right) \right\rangle$$

The $(D/dx)(\partial/\partial x)$ term is 0, because $\partial/\partial x$ consists of vectors tangent to geodesics perpendicular to γ . Along γ we have $\partial/\partial x = \partial/\partial z$ and

$$\frac{\partial^2 t}{\partial x^2} = \left\langle \frac{DU}{dz}, \frac{\partial}{\partial z} \right\rangle = v,$$

because $\langle DU/dz, \partial/\partial z \rangle$ is the curvature of the unstable horocycle.

Using the fact that $\partial t/\partial x \equiv 0$ along γ , together with (2.2), and applying the chain rule twice, we find that

$$\frac{\partial^2 K}{\partial x^2} = \frac{\partial^2 K}{\partial y^2} \left(\frac{\partial y}{\partial x}\right)^2 + \frac{\partial K}{\partial t} \frac{\partial^2 t}{\partial x^2}$$
$$= (-2w' - 4vw)(1/j)^2 + (-v'' - 2vv')v.$$

Thus (1.2) will follow from (2.1), once that is established in §3.

3. Construction of the functions v and w

If we multiply (2.1) by the integrating factor $j^4(t)$, then we see that (2.1) is equivalent to

(3.1)
$$\left(w(t)j^{2}(t)\right)' > \frac{-j^{4}(t)}{2} \left(v''(t) + 2v(t)v'(t)\right)v(t)$$

We will choose v so that v is C^{∞} , has period ℓ , $v \ge 0$,

(3.2)
$$\left(v''(0) + 2v(0)v'(0)\right)v(0) > 0,$$

$$(3.3) v(p) = 0,$$

and

(3.4)
$$\int_{I} j^{4}(t) \Big(v''(t) + 2v(t)v'(t) \Big) v(t) \, dt > 0$$

for I = [0, p] and for $I = [p, \ell]$. We can define w in terms of v, as follows. Choose $\delta > 0$ sufficiently small so that (v''(t) + 2v(t)v'(t))v(t) > 0 for $t \in [0, \delta]$ and $t \in [\ell - \delta, \ell]$ and (3.4) holds for $I = [\delta, p]$ and for $I = [p, \ell - \delta]$. Let $f(t) = -(j^4(t)/2)(v''(t) + 2v(t)v'(t))v(t).$

FIGURE 2

If $\delta > 0$ is sufficiently small, then there exists a C^{∞} function g on $[0, \ell]$ such that $g \equiv 0$ in $[0, \delta] \cup [\ell - \delta, \ell], g(t) > f(t)$ on $[0, \ell], \int_0^p g(t) dt < 0$, and $\int_0^\ell g(t) dt = 0$. Let

(3.5)
$$w(t) = j^{-2}(t) \int_0^t g(\xi) \, d\xi.$$

Then $w \equiv 0$ on $[0, \delta] \cup [\ell - \delta, \ell]$, w(p) < 0, and $(w(t)j^2(t))' = g(t) > f(t)$, which is (3.1). The function w defined by (3.5) is not periodic due to the $j^{-2}(t)$ term, but we will just use (3.5) to define w on $[0, \ell]$ and then extend w periodically. Next we will define v in terms of a parameter α . This parameter will eventually be taken very small, but to define v, we only need $0 < \alpha < 1/2$. Figures 1 and 2 show the graphs of v(t) and K(t), respectively, for $\alpha = 1/8$. We calculate K(t)from the Riccati equation $K(t) = -v'(t) - v^2(t)$. Our initial choice of v will be C^1 , but not C^2 . At the end of our calculations we will explain how to modify vto make it C^{∞} , while maintaining the other properties that we need.

Let $\beta = (\sin^{-1} \alpha)/\alpha$, $a = 1/(2\beta)$, $b = \sqrt{1 - \alpha^2} + \beta/2$, $c = 8\alpha^3/3^{3/2}$, $p = 1/4 + \beta + \pi/(3\alpha) + c^{-1/3}$, and $\ell = p + 2\sqrt{1 - \alpha^2} - 1/2$. Define closed intervals $I_i = [a_i, b_i]$, $i = 1, \ldots, 5$, by $a_1 = 0$, $a_2 = 1/4$, $a_3 = 1/4 + 2\beta$, $a_4 = a_3 - \beta + \pi/(3\alpha) = p - c^{-1/3}$, $a_5 = p$, $b_5 = \ell$, and $a_{i+1} = b_i$, for $i = 1, \ldots, 4$. Let $c_1 = -1/4 + \sqrt{1 - \alpha^2}$, $c_2 = -c^{-1/3} + \pi/(6\alpha)$, $c_3 = c/2$, $c_4 = (1/4)c_1^{-1}$, and $q = \beta + 1/4$. We define

$$v(t) = \begin{cases} t + c_1, & \text{for } t \in I_1, \\ -a(t-q)^2 + b, & \text{for } t \in I_2, \\ -\alpha \tan\left(\alpha(t-p-c_2)\right), & \text{for } t \in I_3, \\ c_3(t-p)^2, & \text{for } t \in I_4, \\ c_4(t-p)^2, & \text{for } t \in I_5, \end{cases}$$

and extend v periodically to $(-\infty, \infty)$ with period ℓ . It is clear that (3.3) is satisfied, and it is easy to verify that v is C^1 and v > 0 on $[0, \ell] \setminus \{p\}$. Moreover, (3.2) is satisfied if v''(0) is replaced by the second derivative of v from the right or the left at 0.

We now prove that (3.4) holds for I = [0, p]. On I_2 , v''(t) = -2a, $v'(t) = -2a(t - 1/4 - \beta)$, and $\sqrt{1 - \alpha^2} \le v(t) \le b$. Also $1 \le \beta \le \pi/2$, $1/\pi \le a \le 1/2$, $b < 1 + \pi/4$, and $v'(t) \ge -1$. Thus $(v'' + 2vv')v \ge (-2a - 2v)v \ge (-2a - 2b)b \ge -(3 + \pi/2)(1 + \pi/4) > -9$ on I_2 .

We obtain the following table:

INTERVAL	(v''(t) + 2v(t)v'(t))v(t)	
$egin{array}{c} I_1 \ I_2 \end{array}$	positive greater than -9	
$\overline{I_3}$	0	

MARLIES GERBER

$$I_4 \qquad (c+c^2(t-p)^3)(c/2)(t-p)^2$$

$$I_5 \qquad \text{positive except at } p$$

Note that the entry in this table for (v''(t) + 2v(t)v'(t))v(t) on I_4 is positive except at the endpoints of I_4 and that $\int_{I_4} (v''(t) + 2v(t)v'(t))v(t) dt = c/12 = (2/3^{5/2})\alpha^3$. Then

$$\int_{0}^{p} j^{4}(t) \Big(v''(t) + 2v(t)v'(t) \Big) v(t) dt \ge j^{4}(b_{2})(b_{2} - a_{2})(-9) + j^{4}(a_{4}) \int_{I_{4}} \Big(v''(t) + 2v(t)v'(t) \Big) v(t) dt$$

$$(3.6) \ge -18\beta j^{4}(1/4 + 2\beta) + (2/3^{5/2})\alpha^{3} j^{4}(p - c^{-1/3}).$$

We will show that the first term in (3.6) is bounded from below, independently of α , while the second term goes to ∞ as $\alpha \to 0$. Since $v(t) \leq b$ on $I_1 \cup I_2$,

$$-18\beta j^{4}(1/4+2\beta) = -18\beta \exp\left[4\int_{0}^{1/4+2\beta} v(\xi) d\xi\right]$$
$$\geq -18\beta \exp\left[4b(1/4+2\beta)\right]$$
$$\geq -9\pi \exp\left[(4+\pi)(1/4+\pi)\right].$$

Also,

$$\int_{I_3} v(\xi) \ d\xi = \int_{-\frac{\pi}{2\alpha} + \beta}^{-\frac{\pi}{6\alpha}} -\alpha \tan(\alpha \tau) \ d\tau = \log(\cos(\alpha \tau)) \Big|_{-\pi/(2\alpha) + \beta}^{-\pi/(6\alpha)} = \log(\sqrt{3}/2) - \log \alpha.$$

Therefore

$$\alpha^3 j^4 (p - c^{-1/3}) \ge \alpha^3 \exp\left[4 \int_{I_3} v(\xi) \ d\xi\right] \ge (\sqrt{3}/2)^4 (1/\alpha).$$

Consequently, the expression in (3.6) goes to infinity as α goes to 0. We now fix a choice of α so that the expression in (3.6) is positive. Then (3.4) holds for I = [0, p]. It is clear that (3.4) holds for $I = [p, \ell]$, since the integrand is positive except at p. Thus K satisfies condition (1.2).

We now replace v by a C^{∞} function \tilde{v} such that \tilde{v} has period ℓ , $\tilde{v} > 0$ on $[0, \ell] \setminus \{p\}$, and \tilde{v} satisfies (3.2), (3.3), and (3.4). (In fact, \tilde{v} will be real analytic, but w is only C^{∞} .) Let $\tilde{v}_1(t) = \int_{-\infty}^{+\infty} v(\xi) P_{\mu}(t-\xi) d\xi$, where P_{μ} is the Poisson kernel, $P_{\mu}(t) = (\mu/\pi)/(t^2 + \mu^2)$, and $\mu > 0$. Then \tilde{v}_1 is C^{∞} , has period ℓ , and satisfies $\tilde{v}_1 > 0$. If μ is small, then \tilde{v}_1 has a minimum at $t = \tilde{p}$, where \tilde{p} is close to p. Let $\tilde{v}(t) = \tilde{v}_1(t+\tilde{p}-p) - \tilde{v}_1(\tilde{p})$. For μ sufficiently small, \tilde{v} satisfies (3.2), (3.3), and (3.4).

136

References

- Ballmann, W., Brin, M., and Burns, K., On surfaces with no conjugate points, J. Differential Geom. 25 (1987), no. 2, 249-273.
- [2] Eschenburg, J., Horospheres and the stable part of the geodesic flow, Math. Z. 153 (1977), no. 3, 237-251.
- [3] Gerber, M., On the existence of focal points near closed geodesics, preprint (2001).
- [4] Gulliver, R., On the variety of manifolds without conjugate points, Trans. Amer. Math. Soc. 210 (1975), 185-201.
- [5] Hurley, D., Ergodicity of the geodesic flow on rank one manifolds without focal points, Proc. Roy. Irish Acad. Sect. A 86 (1986), no. 1, 19–30.
- [6] O'Sullivan, John J., Manifolds without conjugate points. Math. Ann. 210 (1974), 295-311.

Department of Mathematics, Indiana University, Bloomington, IN 47405, U.S.A. $E\text{-mail}\ address:\ \texttt{gerber@indiana.edu}$