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COMPLETELY INTEGRABLE TORUS ACTIONS ON
SYMPLECTIC CONES

Eugene Lerman and Nadya Shirokova

Abstract. We study completely integrable torus actions on symplectic cones
(equivalently, completely integrable torus actions on contact manifolds). We show
that if the cone in question is the punctured cotangent bundle of a torus then the
action has to be free. From this it follows easily, using hard results of Mañe and
of Burago and Ivanov, that a metric on a torus whose geodesic flow admits global
action-angle coordinates is necessarily flat thereby proving a conjecture of Toth
and Zelditch.

1. Introduction

The main result of this paper is:

Theorem 1. Suppose that an n-torus G acts effectively on the co-sphere bun-
dle M := S(T ∗Tn) of the standard n-torus Tn preserving the standard contact
structure on M . Then the action of G is free.

The motivation for proving the theorem comes from a recent work of Toth
and Zelditch who studied the relation between the dynamics of the geodesic flow
on a compact Riemannian manifold (Q, g) and the growth rate of L∞ norms
of L2-normalized eigenfunctions of the Laplace operator ∆g [TZ]. They showed
that if the square root of the Laplace operator

√
∆g is “quantum completely

integrable” and has uniformly bounded eigenfunctions then the metric g is flat,
and hence by the Bieberbach theorems Q is finitely covered by a torus. The
proof is particularly transparent when the geodesic flow is toric integrable. The
latter means that there is an effective action of a torus Tn, n = dimQ, on the
punctured cotangent bundle T ∗Q � Q of Q which

1. commutes with dilations ρt : T ∗Q � Q → T ∗Q � Q, ρ(q, p) = (q, etp),
2. preserves the standard symplectic form on T ∗Q and
3. preserves the energy function h(q, p) = g∗q (p, p), where g∗ denotes the met-

ric on T ∗Q dual to g. (The Hamiltonian flow of h is the geodesic flow.)
Note that any symplectic group action on the punctured cotangent bundle which
commutes with dilations preserves the Liouville 1-form and is, therefore, Hamil-
tonian. Consequently if a metric on a manifold Q is toric integrable, the pull-back
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metric on a finite cover of Q is toric integrable as well. One is therefore lead to
wonder if in the case of tori the boundedness of eigenfunctions is necessary for
the flatness of the metric or if toric integrability by itself is enough. The main
goal of this paper is to prove that, as conjectured by Toth and Zelditch in [TZ],
toric integrable metrics on tori are flat:

Theorem 2. Suppose that g is a toric integrable metric on a torus Tn :=
Rn/Zn. Then g is flat.

The term “toric integrable” is apparently due to Toth and Zelditch (but the
objects involved have been studied since the late 70’s, e.g. by Colin de Verdière,
Duistermaat and Guillemin). It describes a class of completely integrable sys-
tems slightly more general than the systems with global action-angle variables.
Toric integrable systems are much more manageable than arbitrary completely
integrable systems, and one can use the tools of symplectic and contact geometry
to investigate them.

Recall that a symplectic cone is a symplectic manifold (M, ω) with a free
proper action ρt of the real line which expands the symplectic form exponentially:
ρt

∗ω = etω. For example the punctured cotangent bundle T ∗Q � Q with the
standard symplectic form is a symplectic cone: the real line acts by dilations
ρt(q, p) = (q, etp) for all q ∈ Q, p ∈ T ∗

q Q. Given a symplectic cone (M, ω, ρt), a
function h ∈ C∞(M) is toric integrable if there is an effective action of a torus G
with dimG = 1

2 dimM which preserves the symplectic form ω and the function
h and commutes with dilations ρt. Any action of a torus G on a symplectic cone
(M, ω, ρt) that commutes with dilations preserves a 1-form α with dα = ω and
hence is Hamiltonian. Thus toric integrability of a function h on a symplectic
cone M amounts to the existence of n = 1

2 dimM functions f1, . . . , fn which are
homogeneous with respect to dilations, Poisson commute with each other and
with h and whose Hamiltonian flows are all 2π-periodic.

Recall that if {f1, . . . , fn} is a completely integrable system on a symplectic
manifold (M, ω) and if the fibers of the map f = (f1, . . . fn) : M → Rn are com-
pact, then, by Arnold-Liouville theorem, in a neighborhood of every point of M
the Hamiltonian vector fields of the functions f1, . . . fn generate a Hamiltonian
action of the n-torus Tn [A]. According to Duistermaat there are obstructions to
these “local” Tn actions to patch up to an action of Tn on M — the monodromy
of the period lattice [Du, GS]. Strictly speaking Duistermaat only considered
patching together free torus actions, but essentially the same argument works
in general [BoM]. If these “local” Tn actions patch to a global Tn action, there
is a further obstruction to the existence of global action-angle variables: the
“Chern class of the fibration f : M → Rn.” (The expression is in quotation
marks because if the torus action is not free then f is not a fibration. None the
less one can still speak of the “Chern class” of f [BoM].) The second obstruc-
tion is easily seen to be nontrivial — there are completely integrable systems
with global torus actions but no global action-angle variables. See, for example,
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[Bt]. Thus toric integrability is weaker than the existence of global homogeneous
action variables.

Toric integrable systems have not been studied systematicly. We will see in
this paper that a good way to understand them is through the study contact
toric manifolds. It appears that toric integrability is rare. It would be interesting
to classify all compact manifolds admitting toric integrable geodesic flows. In
particular it would be interesting to find out if there are manifolds other that
S2, S3 and tori that admit such flows. (Toric integrable metrics on S2 other
than the round one were described by Colin de Verdière [CdV].) This will be
addressed elsewhere. See [L1] for a first step in that direction.

A note on notation. Throughout the paper the Lie algebra of a Lie group
denoted by a capital Roman letter will be denoted by the same small letter in
the fraktur font: thus g denotes the Lie algebra of a Lie group G etc. The
identity element of a Lie group is denoted by 1. The natural pairing between g

and g∗ will be denoted by 〈·, ·〉.
When a Lie group G acts on a manifold M we denote the action by an element

g ∈ G on a point x ∈ M by g · x; G · x denotes the G-orbit of x and so on. The
vector field induced on M by an element X of the Lie algebra g of G is denoted
by XM . The isotropy group of a point x ∈ M is denoted by Gx; the Lie algebra
of Gx is denoted by gx and is referred to as the isotropy Lie algebra of x. We
recall that gx = {X ∈ g | XM (x) = 0}.

If P is a principal G-bundle then [p, m] denotes the point in the associated
bundle P ×G M = (P × M)/G which is the orbit of (p, m) ∈ P × M .

2. From toric integrability to contact toric manifolds

In this section we recall an argument of Toth and Zelditch that Theorem 2
follows from Theorem 1. As the first step let us reduce the proof of Theorem 2
to a statement about actions of tori on their punctured cotangent bundles. To
wit, suppose we know that any action of an n-torus G on M = T ∗Tn �Tn which
is symplectic and commutes with the action of R, is actually a free action. Then,
as indicated in [TZ] we can apply a theorem of Mañe

Theorem 3 (Mañe, [M]). Let (Q, g) be a Riemannian manifold with a geodesic
flow φt : T ∗Q � Q → T ∗Q � Q. Suppose the flow φt preserves the leaves of a
non-singular Lagrangian foliation of T ∗Q � Q. Then (Q, g) has no conjugate
points.

to conclude that the toric integrable metric on Tn has no conjugate points.
Finally, following [TZ] again, and applying

Theorem 4 (Burago-Ivanov, [BI]). A metric on a torus Tn with no conjugate
points is flat.

we can conclude that a toric-integrable metric is flat. To summarize, in order to
prove Theorem 2 it is enough to show
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Proposition 2.1. Suppose that an n torus G acts effectively and symplecticly on
the punctured cotangent bundle T ∗Tn�Tn, and suppose that the action commutes
with the action of R. Then the action of G is free.

Clearly the lift of the left multiplication on Tn to the cotangent bundle T ∗Tn

satisfies both the hypotheses of the proposition and the conclusion. The crux is
to show that an arbitrary action of G 
 Tn satisfying the hypotheses has to be
free.

Under the hypotheses of the proposition, the action of G descends to an action
on the co-sphere bundle M := (T ∗Tn � Tn)/R. Moreover this induced action G
preserves the natural contact structure ξ on M (we’ll discuss contact structures
in more detail in the next section). Consequently the proof of Theorem 2 reduces
to Theorem 1.

Our strategy for proving Theorem 1 is to study completely integrable torus
actions on arbitrary (compact connected co-oriented) contact manifolds and to
show that if an action is not free then the underlying manifold cannot be the
product of a torus and a sphere of the appropriate dimensions.

3. Group actions on contact manifolds

Recall that a co-oriented contact manifold is a pair (M, ξ) where ξ ⊂ TM
is a distribution globally given as the kernel of a 1-form α such that dα|ξ is
nondegenerate. Such a 1-form α is called a contact form and the distribution ξ is
called a contact structure. A co-sphere bundle S(T ∗N) of a manifold N (defined
with respect to some metric) is a natural example of a contact manifold: the
contact form is the restriction of the Liouville 1-form to the co-sphere bundle.

The condition that a distribution ξ ⊂ TM is contact is equivalent to: the
punctured line bundle ξ◦ � M is a symplectic submanifold of the punctured
cotangent bundle T ∗M � M , where ξ◦ denotes the annihilator of ξ in T ∗M .
Note that if ξ = kerα then the 1-form α is a nowhere zero section of the line
bundle ξ◦ → M . (Conversely any nowhere vanishing section of ξ◦ is a contact
form.) Thus if ξ = kerα then ξ◦ � M has two components. If a compact
connected Lie group G acts on M and preserves the contact distribution ξ, then
the action of G on ξ◦ maps the components of ξ◦ � M into themselves. Hence
given a contact 1-form α with ξ = kerα, we can average it over G and obtain a
G-invariant contact form ᾱ with ξ = ker ᾱ. Note that each component of ξ◦ �M
is the symplectization of (M, ξ).

Definition 3.1. An action of a torus G on a contact manifold (M, ξ) is com-
pletely integrable if it is effective, preserves the contact structure ξ and if
2 dimG = dimM + 1.

A contact toric G-manifold is a co-oriented contact manifold with a completely
integrable action of a torus G.

Note that if an action of a torus G on (M, ξ) is completely integrable, then the
action of G on a component ξ◦+ of ξ◦�M is a completely integrable Hamiltonian
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action and thus ξ◦+ is a symplectic toric manifold (for more information on
symplectic toric manifolds and orbifolds see [D] and [LT]).

Completely integrable torus actions on co-oriented contact manifolds and con-
tact toric manifolds have been studied by Banyaga and Molino [BM1, BM2, B]
and by Boyer and Galicki [BG]. To state their results it would be convenient
to first digress on the subject of moment maps for group actions on contact
manifolds.

If a Lie group G acts on a manifold M preserving a contact form α, the
corresponding α-moment map Ψα : M → g∗ is defined by

〈Ψα(x), X〉 = αx(XM (x))(3.1)

for all x ∈ M and all X ∈ g, where XM denotes the vector field corresponding
to X induced by the infinitesimal action of the Lie algebra g of the group G:
XM (x) = d

dt |t=0(exp tX) · x.
Note that if f is a G-invariant nowhere zero function, then α′ = fα is also

a G-invariant contact form defining the same contact structure. Clearly the
corresponding moment map Ψα′ satisfies Ψα′ = fΨα. Thus the definition of a
contact moment map above is somewhat problematic: it depends on a choice
of an invariant contact form rather then solely on the contact structure and
the action. Fortunately there is also a notion of a contact moment map that
doesn’t have this problem. Namely, suppose again that a Lie group G acts on
a manifold M preserving a contact structure ξ (and its co-orientation). The lift
of the action of G to the cotangent bundle then preserves a component ξ◦+ of
ξ◦ � M . The restriction Ψ = Φ|ξ◦

+
of the moment map Φ for the action of G on

T ∗M to depends only on the action of the group and on the contact structure.
Moreover, since Φ : T ∗M → g∗ is given by the formula

〈Φ(q, p), X〉 = 〈p, XM (q)〉
for all q ∈ M , p ∈ T ∗

q M and X ∈ g, we see that if α is any invariant contact
form with kerα = ξ then 〈α∗Ψ(q, p), X〉 = 〈α∗Φ(q, p), X〉 = 〈αq, XM (q)〉 =
〈Ψα(q), X〉. Here we think of α as a section of ξ◦+ → M . Thus Ψ ◦α = Ψα, that
is, Ψ = Φ|ξ◦ is a “universal” moment map.

There is another reason why the universal moment map Ψ : ξ◦+ → g∗ is a
more natural notion of the moment map than the one given by (3.1). The vector
fields induced by the action of G preserving a contact distribution ξ are contact.
The space of contact vector fields is isomorphic to the space of sections of the
bundle TM/ξ → M . Thus a contact group action gives rise to a linear map

g → Γ(TM/ξ), X 
→ XM mod ξ.(3.2)

The moment map should be the transpose of the map (3.2). The total space of
the bundle (TM/ξ)∗ naturally maps into the space dual to the space of sections
Γ(TM/ξ):

(TM/ξ)∗ � η 
→ (s 
→ 〈η, s(π(η))〉) ,

where π : (TM/ξ)∗ → M is the projection and 〈· , ·〉 is the paring between
the corresponding fibers of (TM/ξ)∗ and TM/ξ. In other words, the transpose
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Ψ : (TM/ξ)∗ → g∗ of (3.2) should be given by

〈Ψ(η), X〉 = 〈η, XM (π(η)) mod ξ〉(3.3)

Under the identification ξ◦ 
 (TM/ξ)∗, the equation above becomes

〈Ψ(q, p), X〉 = 〈p, XM (q)〉
for all q ∈ M , p ∈ ξ◦q and X ∈ g, which is the definition of Ψ given earlier as the
restriction to ξ◦+ of the moment map for the lifted action of G on the cotangent
bundle T ∗M .

Thus part of the above discussion can be summarized as

Proposition 3.2. Let (M, ξ) be a co-oriented contact manifold with an action of
a Lie group G preserving the contact distribution and its co-orientation. Suppose
there exists an invariant 1-form α with ker α = ξ. Then the moment map Ψα

for the action of G on (M, α) and the moment map Ψ for the action of G on
the symplectization ξ◦+ are related by

Ψ ◦ α = Ψα.

Here ξ◦+ is the component of ξ◦ � 0 containing the image of α : M → ξ◦.

Remark 3.3. We will refer to Ψ : ξ◦+ → g∗ as the moment map for the action
of a Lie group G on a co-oriented contact manifold (M, ξ = kerα). It is easy to
show that Ψ is G-equivariant with respect to the given action of G on M and
the coadjoint action of G on g∗. Hence for any invariant contact form α the
corresponding moment map Ψα : M → g∗ is also G-equivariant.

Definition 3.4. Let (M, ξ = kerα) be a co-oriented contact manifold with an
action of a Lie group G preserving the contact distribution and its co-orientation.
Let Ψ : ξ◦+ → g∗ denote the corresponding moment map. We define the moment
cone C(Ψ) to be the image of a connected component ξ◦+ of ξ◦ � M plus the
origin:

C(Ψ) := Ψ(ξ◦+) ∪ {0}.
Remark that

C(Ψ) = R+Ψα(M) ∪ {0}
where Ψα : M → g∗ is the α-moment map.

Note that the moment cone does not depend on the choice of a contact form;
it is a true invariant of the co-oriented contact structure and the group action.

Remark 3.5. An action of a Lie group G on a manifold M preserving a contact
form α is completely encoded in the moment map Ψα : M → g∗. Therefore it
will be convenient for us to think of a contact toric G-manifold as an equivalence
class of triples (M, α,Ψα : M → g∗) where the Ψα is the moment map for
a completely integrable action of a torus G on a contact manifold (M, α), or,
somewhat more sloppily, as a triple (M, α,Ψα : M → g∗).
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4. Proof of Theorem 1

Banyaga and Molino made the first step towards classifying compact con-
nected contact toric manifolds in [BM1]. A revised version of this paper circu-
lated as the preprint [BM2]. The main classification result of [BM2] is cited in
[B] roughly as follows:

Theorem 4.1. Let (M, α,Ψα : M → g∗) be a compact connected contact toric
G-manifold.

Suppose the action of G on M is free. Then the orbit space M/G is diffeo-
morphic to a sphere. If additionally dimG > 2 then the map Ψ̄α : M/G → g∗

induced by the moment map Ψα is an embedding. If furthermore dimG > 3,
then M is the co-sphere bundle of G, i.e., M = S(T ∗G).

Suppose the action of G on M is not free and suppose dimG > 2. Then the
moment cone C(Ψ) is a convex polyhedral cone and the map Ψ̄α : M/G → g∗ in-
duced by the moment map is an embedding. Moreover the cone C(Ψ) determines
the contact toric manifold.

Remark 4.2. It is easy to construct examples of a completely integrable action
of a 2-torus on a contact 3-torus for which the fibers of the corresponding moment
map are not connected: let M = T3 with coordinates θ1, θ2 and t, let α =
cos 2t dθ1 + sin 2t dθ2 be the contact form, and let T2 act by (µ, ν) · (θ1, θ2, t) =
(θ1+µ, θ2+ν, t). Also there are examples of completely integrable 2-torus actions
on overtwisted lens spaces for which the corresponding moment cones are not
convex. See [L2].

Contact toric manifolds have also been studied by Boyer and Galicki [BG].
The following result is implicit in their paper:

Theorem 4.3. Let (M, α,Ψα : M → g∗) be a compact connected contact toric
G-manifold. Suppose there exits a vector X ∈ g such that the component of the
moment map 〈Ψα, X〉 is strictly positive on M . Then M is a Seifert bundle over
a (compact) symplectic toric orbifold.

We remind the reader that a symplectic toric orbifold is a symplectic orbifold
with a completely integrable Hamiltonian torus action. Compact connected
symplectic toric orbifolds were classified in [LT].

Proof of Theorem 4.3. Since M is compact, the image Ψα(M) is compact.
Therefore the set of vectors X ′ ∈ g, such that the function 〈Ψα, X ′〉 is strictly
positive on M , is open. Hence we may assume that X lies in the integral lattice
ZG := ker(exp : g → G) of the torus G. Let H = {exp tX | t ∈ R} be the
corresponding circle subgroup of G.

Let f(x) = 1/(〈Ψα(x), X〉) and let α′ = fα. The form α′ is another G-
invariant contact form with kerα′ = ξ. The moment map Ψα′ defined by α′

satisfies Ψα′ = fΨα. Therefore 〈Ψα′(x), X〉 = 1 for all x ∈ M .
Since the function 〈Ψα, X〉 is nowhere zero, the action of H on M is locally

free. Consequently the induced action of H on the symplectization (N, ω) =
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(M × R, d(etα′)) is locally free as well. Hence any a ∈ R is a regular value
of the X-component 〈Φ, X〉 of the moment map Φ for the action of G on the
symplectization (N, ω). Note that Φ(x, t) = −etΨα′(x). Now M ×{0} is the −1
level set of 〈Φ, X〉. Therefore B := (〈Φ, X〉)−1(−1)/H 
 M/H is a (compact
connected) symplectic orbifold with an effective Hamiltonian action of G/H.
The orbit map π : M 
 (〈Φ, X〉)−1(−1) → B makes M into a Seifert bundle
over B. A dimension count shows that the action of G/H on B is completely
integrable.

Remark 4.4. It is easy to see that the moment cone for the action of G on M
is the cone on the moment polytope of B. In particular it is a proper polyhedral
cone, that is, it contains no linear subspaces.

Corollary 4.5. Let (M, α,Ψα : M → g∗) be a (compact connected) contact
toric manifold. Suppose there exits a vector X ∈ g such that the component of
the moment map 〈Ψα, X〉 is strictly positive on M . Then dimQ H1(M, Q) ≤ 1.

Proof. By Theorem 4.3 the manifold M is a Seifert bundle over a compact
connected symplectic toric orbifold B. A generic component of the moment
map on B is a Morse function with all indices even. The Morse inequalities
hold rationally for Morse functions on orbifolds (see [LT]). Therefore the first
cohomology H1(B, Q) is zero.

Next we apply the Gysin sequence to the map π : M → B. Since the Gysin
sequence comes from the collapse of the Leray-Serre spectral sequence for π and
since rationally the “fibration” π is a circle bundle, the Gysin sequence does
exist. We have 0 → H1(B, Q) → H1(M, Q) π∗→ H0(B, Q) → H2(B, Q) → · · · .
Since H0(B, Q) = Q and since H1(B, Q) = 0, the result follows.

We conclude immediately

Corollary 4.6. If M is a contact toric manifold satisfying the hypotheses of the
Theorem 4.3, then M is not the co-sphere bundle of a torus.

Combining Corollary 4.6 with Theorem 4.1 we see that if an n-dimensional
torus G (n > 2) acts on the co-sphere bundle M = S(T ∗Tn) preserving a contact
form α and if the action is not free, then the corresponding moment cone C(Ψ)
contains a linear subspace P of positive dimension.

Proposition 4.7. Suppose (M, α,Ψα : M → g∗) is a compact connected contact
toric G-manifold of dimension 2n− 1 > 3, the action of G on M is not free and
the moment cone C(Ψ) contains a linear subspace P of dimension k, 0 < k < n.
Then dimH1(M, Q) = k �= n = dimH1(S(T ∗Tn), Q).

Proof. By Theorem 4.1 the fibers of the contact moment map Ψα are connected.
Let Φ : M × R → g∗ denote the symplectic moment map for the Hamiltonian
action of G on the symplectization (M × R, d(etα)) of (M, α). It is given by
Φ(m, t) = −etΨα(m). Thus Φ(M × R) ∪ {0} = −C(Ψ) and the fibers of Φ
are connected. The triple (M × R, d(etα),Φ) is a symplectic toric manifold.
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Since the image of Φ is contractible and since the fibers of Φ are connected,
it follows from a result of Lerman, Tolman and Woodward (Lemma 7.2 and
Proposition 7.3 in [LT]), that the image of Φ determines the symplectic toric
manifold (M × R, d(etα),Φ) uniquely.1 In particular the image determines the
first cohomology group of M .

A standard argument for Hamiltonian G-spaces implies that the subspace P is
the annihilator of the Lie algebra h of a subtorus H of G. Since H is a subtorus,
the exact sequence

1 → H → G → G/H → 1
splits. Let K 
 G/H be a subtorus in G complementary to H and let g∗ =
h∗ × k∗ be the corresponding splitting of the duals of the Lie algebras. Then
P 
 k∗ and C(Ψα) = P × W where W ⊂ h∗ is a proper cone. It follows from
a theorem of Delzant [D] that the exists a basis w1, w2, . . . , wl of weight lattice
of the torus H so that the edges of the cone W are of the form R+wi. In
particular the representation of H on Cl defined by the infinitesimal characters
w1, . . . , wl has the property that the image of the corresponding moment map is
W . Consequently we can realize Φ(M ×R) as the image of the moment map for
the product action of K × H on K × (

k∗ × Cl � (0, 0)
) ⊂ T ∗K × Cl. Therefore

M × R is G-equivariantly symplectomorphic to K × (
k∗ × Cl � (0, 0)

)
, which is

homotopy equivalent to K × Sk+2l−1 = (S1)k × Sk+2l−1. Since 0 < k < n and
since l = n − k > 0, k = dimH1((S1)k × Sk+2l−1) = dimH1(M).

It remains to consider the case where (M, α,Ψα : M → g∗) is a contact toric
manifold of dimension 3 and the action of the 2-torus G is not free.

Proposition 4.8. Suppose (M, α,Ψα : M → g∗) is a compact connected contact
toric G-manifold of dimension 3 and suppose the action of the 2-torus G is not
free. Then M is a lens space and hence cannot be the co-sphere bundle of a
2-torus.

Remark 4.9. We consider the 3-manifold S1 × S2 a lens space.

Proof of Proposition 4.8. As we remarked earlier the symplectization
(M×R, d(etα),Φ(m, t) = −etΨα(m)) is a symplectic toric manifold. Delzant [D]
showed that for symplectic toric manifolds all the isotropy groups are connected
and all fixed points are isolated. If a point x ∈ M is fixed by the action of G
then the line {x}×R is fixed by the action of G on M ×R. Therefore the action
of G on a contact toric G-manifold has no fixed points (one can also give a direct
proof of this fact).

Next we use the fact that dim M = 3 and dimG = 2. By the above observa-
tions the isotropy groups for the action of G on M are either trivial or circles.
If the isotropy group of x ∈ M is trivial, then a neighborhood of the orbit G · x
in M is G-equivariantly diffeomorphic to G × (−ε, ε) for some small epsilon. If
the isotropy group of a point x ∈ M is a circle H < G, then a neighborhood of

1In proving the result Lerman, Tolman and Woodward rediscovered the ideas of Boucetta
and Molino [BoM].
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the orbit G · x in M is G-equivariantly diffeomorphic to G ×H D2 for a small
disk D2 = {z ∈ C | |z| < ε}. Moreover the action of H on D2 must be effective;
hence we may identify H with S1 in such a way that the action of H on D2 is
given by λ · z = λz.

We conclude that locally M/G is homeomorphic to either (−ε, ε) or to
D2/S1 
 [0, ε). Thus if the action of G on M is not free, then M/G is a
one-dimensional manifold with boundary. Since M is compact and connected,
M/G has to be an interval. Therefore, by a theorem of Haefliger and Salem
(Proposition 4.2 in [HS]), M as a G-space is uniquely determined by the isotropy
representations at the points in M above the endpoints of the interval M/G. It
is easy to see that in this case M is diffeomorphic to two solid tori glued along
their boundaries. We conclude that if M is a three dimensional compact con-
nected contact toric manifold and if the action of a 2-torus G is not free, then
M is a lens space. In particular M is not diffeomorphic to T3 = S(T ∗T2).

This finishes the proof of the main result, Theorem 1.
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complètement intégrables: fibrations lagrangiennes singulières et coordonnées
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