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K3 SURFACES VIA ALMOST-PRIMES

Keiji Oguiso

Abstract. Based on the result on derived categories on K3 surfaces due to Mukai
and Orlov and the result concerning almost-prime numbers due to Iwaniec, we re-
mark the following fact: For any given positive integer N , there are N (mutually
non-isomorphic) projective complex K3 surfaces such that their Picard lattices are
not isomorphic but their transcendental lattices are Hodge isometric, or equiva-
lently, their derived categories are mutually equivalent. After reviewing finiteness
result, we also give an explicit formula for the cardinality of the isomorphism
classes of projective K3 surfaces having derived categories equivalent to the one
of X with Picard number 1 in terms of the degree of X.

§1. Introduction

Our main results are (1.7) - (1.10) and Proposition A in the appendix.

(1.1) Let N := {1, 2, 3, · · · } be the set of natural numbers. We call p ∈ N
prime if n|p and n ∈ N then n = 1 or p. In this note it is convenient to
consider the number 1 is also prime and we shall do so. There is a long standing
conjecture since Dirichlet concerning primes:

Conjecture. Set N1 := {n ∈ N|n2 + 1 is prime }. Then |N1| =∞. �

Contrary to its appearance, this conjecture is very difficult and is completely
open till now. The products of two (not necessarily distinct) primes are called
almost-primes. The best result known now is the following very deep Theorem
due to H. Iwaniec:

Theorem (1.2) [Iw]. Let f(x) = ax2 + bx + c be an irreducible polynomial in
Z[x] such that c ≡ 1(2) and a > 0. Then for each such an f the set of almost-
primes of the form f(n) (n ∈ N) are infinite. In particular, almost-primes of
the form n2 + 1 are infinite. �

This Theorem concerning quadratically represented almost-primes is one of
the most crucial ingredients of this note. In particular, we apply one special
case of this Theorem, namely, the case f(x) = 4x2 + 1 for our study of K3
surfaces. (The argument also goes through if we take f(x) = x2 + 1, but then
we sometimes need case by case description according to the congruence mod 4.
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This is only the reason why we choose 4x2 +1 instead of more attractive x2 +1.)
We set

N2 := {n ∈ N|4n2 + 1 is almost prime}.
By (1.2), |N2| = ∞. If n ∈ N2, then we have the factorization 4n2 + 1 = pq.
Note that 4n2 + 1 ≡ 1 mod 4, p ≡ q ≡ 1 mod 2 and p 
= q; Indeed, if p = q, then
1 = (p− 2n)(p + 2n), a contradiction to p + 2n ≥ 2.

(1.3) Throughout this note, a K3 surface means a 2-dimensional complex
projective smooth variety which admits nowhere vanishing global 2-form but
admits no nonzero global one form. Let X be a K3 surface. Let (∗, ∗∗) be
the symmetric bilinear form on H2(X,Z) given by the cup product. Then
(H2(X,Z), (∗, ∗∗)) is an even unimodular lattice of signature (3, 19). We de-
note by NS (X) � PicX the Néron-Severi lattice of X and by ρ(X) the Picard
number, i.e. rank of NS(X). This lattice NS (X) is primitive in H2(X,Z) and is
of signature (1, ρ(S)− 1). We call the orthogonal lattice of NS (X) in H2(X,Z)
the transcendental lattice and denote it by TX , i.e.

TX := {x ∈ H2(X,Z)|(x, y) = 0 for all y ∈ NS (X)}.
TX is also primitive in H2(X,Z) and is of signature (2, 20− ρ(X)). Let ωX be
a non-zero global 2-form on X. Then, one has the inclusion

CωX ⊕CωX ⊂ TX ⊗Z C .

This inclusion defines the Hodge structure of weight 2 on TX . This is a sub-
Hodge structure of the Hodge structure of H2(X,Z). We refer to the reader
[BPV] for more details. Based on the pioneering work of Mukai [Mu], Orlov [Or]
proved the following beautiful Theorem:

Theorem (1.4) [Or Theorem (3.3)]. Let X1, X2 be K3 surfaces. Then the
following three statements are equivalent to one another:

(1) There is a Hodge isometry between TX1 and TX2 : ϕ12 : (TX1 ,CωX1) →
(TX2 ,CωX2).

(2) The bounded derived categories of choherent sheaves D(X1) and D(X2)
are equivalent as triangulated category.

(3) X2 is isomorphic to (the base space of) a 2-dimensional compact fine
moduli space of some stable sheaves on X1. �

Concerning the derived categories, we refer the reader to an excellent book
[GM]. Although the equivalence (1) and (3) is implicit in [Or], his proof goes as
(2) → (1) → (3) → (2). See also [BM 1, 2], [Cl], [Th] for further progress and
relevant work.

(1.5) In their paper [BO], Bondal and Orlov observed that an equivalence
class of the derived category D(V ) recovers the original manifold V if V is a
Fano manifold or a manifold of ample canonical sheaf. Theorem (1.4) says that
one can at least recover the transcendental lattice and the period inside the
transcendental lattice if a manifold is a K3 surface. Therefore it is natural to
ask:
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Question (1.6).
(1) to what extent does the equivalence class of D(X), or equivalently by

(1.4), the Hodge isometry class of TX , recover the original K3 surface
X?

(2) at least to what extent does the equivalence class of D(X) recover the
algebraic part of the lattice NS(X)? �

In this direction, Mukai [Mu, Proposition (6.2)] already observed that if
ρ(X) ≥ 12, i.e. if rankTX ≤ 10, then the equivalence of D(X) recovers X
itself.

The aim of this note is to prove the following result:

Main Theorem (1.7). Let N be an arbitrarily given natural number. Set
IN := {1, 2, · · · , N} and ∆N := {(i, i)|i ∈ I}. Then there are N K3 surfaces Xi

(i ∈ IN ) depending on N such that
(1) for any (i, j) ∈ I2

N −∆N , the Néron-Severi lattices NS(Xi) and NS(Xj)
are not isomorphic, therefore Xi 
� Xj as well, but such that

(2) there is a Hodge isometry ϕij : (TXi ,CωXi) → (TXj ,CωXj ) for any
(i, j) ∈ I2

N . �

We shall construct such Xi of ρ(Xi) = 2. Note that 2 is the least possible
Picard number for such examples to exist. Indeed, if ρ(X) = 1, then NS (X) = Zl
and (l2) = |detTX | and therefore NS (X) are isomorphic if so are TX . See (1.10)
for the extent to which the Hodge structure of TX recovers X when ρ(X) = 1.
This is related to the factorization of degX. See also Proposition A in the
appendix in higher dimensional case.

Using the global Torelli Theorem of K3 surfaces and Gauss’ Theorem of qua-
dratic forms, we can reduce the Theorem to a problem of algebraic number
theory: find a sequence of real quadratic fields Q(

√
m) having large class num-

ber h(m) compared with a cardinality q(m) of possible discriminant forms, i.e.
Q/2Z-valued quadratic forms on the discriminant groups. However, there is no
relation between the growth of h(m), q(m) and m even if m is square free. In-
deed, there is an open problem whether h(m) = 1 for infinitely many Q(

√
m)

since Gauss. The growth of h(m) is related to the growth of the norms of the
fundamental units and the growth of q(m) is related to the factorization of m.
Theorem (1.2) or the infinite set N2 gives us a way to control the quantities
h(m) and q(m) simultaneously when m = 4n2 + 1 and n ∈ N2. We shall prove
(1.7) in Section 2.

As a direct consequence of (1.4) and (1.7), one obtains:

Corollary (1.8). For any natural number N ,
(1) there exist at least N K3 surfaces whose derived categories are equivalent

but whose Picard groups are non-isomorphic.
(2) there exists a K3 surface X having at least N mutually non-isomorphic

2-dimensional compact fine moduli spaces of stable sheaves on X. �
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In the opposite direction, we recall the following fact found by Bridgeland and
Maciocia (with a bit more constructive proof for the use of the next Proposition
(1.10)):

Proposition (1.9) [BM1, Proposition (5.3)]. Let X be a K3 surface. Let
ST (X) be the set of isomorphism classes of K3 surfaces Y such that there is a
Hodge isometry (TY ,CωY ) � (TX ,CωX). Then, |ST (X)| <∞. �

(1.9) with (1.4) says that the equivalence class of D(X) recovers K3 surface
X up to finitely many ambiguities as manifold.

It is then interesting to seek explicit values of |ST (X)|. We shall carry out
this in the most generic case, i.e. for K3 surfaces with Picard number 1. Here
we write the result in terms of moduli via (1.4):

Proposition (1.10). Let X be a K3 surface with NS(X) = ZlX . Set degX =
(l2X) = 2n. Let m be the number of non-isomorphic 2-dimemsional compact fine
moduli spaces of stable sheaves on X. Then m = |((Z/4n)×)2|/4 if n 
= 1 and
m = |(Z/4)×|/2 = 1 if n = 1. Here (Z/4n)× is the unit group of the ring Z/4n
and ((Z/4n)×)2 is the two torsion subgroup of (Z/4n)×. More explicitly:

(1) m = 1 if degX = 2;
(2) m = 1 if degX = 2a;
(3) m = 2k−1 if degX = 2pe1

1 · · · pek

k ;
(4) m = 2k if degX = 2ape1

1 · · · pek

k .
Here a is a natural number such that a ≥ 2, pi are mutually different primes
such that pi ≥ 3, and k and ei are natural numbers. �

We note that for any given natural number n, there is a K3 surface X such
that ρ(X) = 1 and degX = 2n.

§2. Proof of (1.7)

(2.1) By a lattice L := (L, (∗, ∗∗)), we mean a free abelian group L of finite
rank, which we write by rkL, equipped with an integral valued non-degenerate
symmetric bilinear form (∗, ∗∗) : L × L → Z. We write (x2) = (x, x). Two
lattices L1 = (L1, (∗, ∗∗)L1) and L2 = (L2, (∗, ∗∗)L2) are said to be isomorphic
or isometric if there is an isomorphism of abelian groups f : L1 → L2 such
that (f(x), f(y))L2 = (x, y)L1 . A lattice L is said to be even if (x2) ≡ 0 mod 2.
We often represent a lattice L by a symmetric integral matrix SL = ((ei, ej))
and call SL an associated matrix to L. Here 〈ei〉rk L

i=1 is integral basis of L. An
associated matrix is uniquely determined by L up to the action by GL(rkL,Z):
S �→ tMSM on the space of symmetric matrices of degree rk L. Note also that
two lattices are isomorphic if and only if their associated symmetric matrices lie
in the same orbit under the action by GL(rkL,Z). We define detL := detSL.
This is well defined, because det M = ±1. The signature (p, q) of L is defined
to be the signature of an associated matrix SL. Then q = rkL − p. We call L
hyperbolic if the signature is (1, rkL− 1).
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(2.2) We set L∗ = HomZ(L,Z). Using non-degenerate (∗, ∗∗), one has a
natural inclusions L ⊂ L∗ ⊂ L ⊗Z Q. Then, (∗, ∗∗) is extended to a rational
valued symmetric bilinear forms on L⊗ZQ and on L∗. Set AL := L∗/L. We call
AL the discriminant group of L. The discriminant group AL is a finite abelian
group of order |detL|. The bilinear form (∗, ∗∗) of L induces the symmetric
bilinear form BAL

(∗, ∗∗) : AL × AL → Q/Z. This is defined by BAL
(x, y) =

(x, y) modZ, where x, y ∈ L∗, x = xmod L, y = y mod L. If L is even, then
we have a quadratic form QAL

: AL → Q/2Z. This is defined by QL(x) =
(x2) mod 2Z. This quadratic form QAL

satisfies

QAL
(nx) = n2QAL

(x)

QAL
(x + y) = QAL

(x) + QAL
(y) + 2BAL

(x, y) .

We call (AL, QAL
) a discriminant form of L.

(2.3) Let A be a finite abelian group. As in [Ni], QA : A → Q/2Z is called
a quadratic form on A if QA satisfies QA(na) = n2QA(a) for a ∈ A and n ∈ Z
and if there is a symmetric bilinear map B(∗, ∗∗) : A × A → Q/Z such that
QA(a + b) = QA(a) + QA(b) + 2BL(a, b). Two elements a, b ∈ A are said to be
orthogonal if BA(a, b) = 0. Two pairs (A, QA) and (A′, QA′) of finite abelian
groups and their quadratic forms are said to be isomorphic if there is a group
isomorphism ϕ : A → A′ such that QA(a) = QA′(ϕ(a)) for all a ∈ A. We
define the orthogonal sum (A1 ⊕ A2, QA1 ⊕ QA2) of (A1, QA1) and (A2, QA2)
in a natural manner: That is, A1 ⊕ A2 is the direct sum as abelian group and
QA1 ⊕QA2(a1 ⊕ a2) := QA1(a1) + QA2(a2).

Let L be an even lattice. One can decompose AL into the direct sum of the
Sylow subgroups of AL:

AL = ⊕k
i=1(AL)pi .

Here (AL)pi
is the Sylow pi-subgroup of AL, i.e. the maximal pi-primary sub-

group of AL.

Lemma (2.4) [Ni, Page 108-109].
(1) If i 
= j, then BL(xi, xj) = 0 for xi ∈ (AL)pi

and xj ∈ (AL)pj
.

(2) Let x ∈ L∗ and write x =
∑k

i=1 xi, where xi ∈ (AL)pi . Then, QL(x) =∑k
i=1 QL(xi). In other words, we have the orthogonal decomposition

(AL, QL) = ⊕k
i=1((AL)pi , QL|(AL)pi).

Proof. It is clear that (1) implies (2). Let us show (1). Take xi ∈ (AL)pi

and xj ∈ (AL)pj
and set ord (xi) = pn

i . Since pn
i and pj are coprime, there is

yj ∈ (AL)pj such that xj = pn
i yj . Then one calculates

BL(xi, xj) = BL(xi, p
n
i yj) = BL(pn

i xi, yj) = BL(0, yj) = 0 . �
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Lemma (2.5). Let p 
= q be odd primes. Set Lp,q to be the isomorphism classes
of even hyperbolic lattices L such that |detL| = pq. Set Qp,q to be the set of the
isomorphism classes of (AL, QAL

) such that L ∈ Lp,q. Then there is a positive
integer B being independent of p, q such that |Qp,q| ≤ B for all p 
= q.

Proof. Let L ∈ Lp,q. Then the decomposition of AL into the Sylow subgroups
is Z/p⊕Z/q. By (2.4), one has QL = Qp ⊕Qq, where Qp and Qq are quadratic
forms on Z/p and Z/q respectively. It suffices to estimate the cardinality of the
isomorphism classes (Z/p, Qp). Note that Qp is determined by the value Qp(1).

If p = 1, then there is just one quadratic form on Z/1 = {0}. So, we may
assume p ≥ 3. Choose and fix an element p− ∈ N such that (p−

p ) = −1. Here
(∗p ) is the Legendre symbol of the quadratic residue, i.e. (a

p ) = −1 if and only if
a is not a square in the multiplicative group (Z/p)×. By Qp(p) = Qp(0) = 0, one
has Qp(1) = 2a/p, where a is some integer. Note that the maps n : Z/p→ Z/p
defined by 1 �→ n · 1 are all isomorphism as abelian group provided that n
is coprime to p and satisfy Qp(n) = n2Qp(1). Thus, (Z/p, Qp) is isomorphic
to either (Z/p, q0), (Z/p, q+) or (Z/p, q−), where q∗ are defined by q0(1) = 0,
q+(1) = 2/p, q−(1) = 2p−/p. Therefore one can take B = 3 · 3 = 9. �

Let m > 1 be a square free natural number such that m ≡ 1(4). Then Q(
√

m)
is a real quadratic field. We write Q(

√
m) by K(m). Denote by O(m), h(m),

ε(m) > 1, D(m) the ring of integers, the class number, the fundamental unit,
the discriminant of K(m) respectively. O(m) is by definition, the normalization
of Z in K(m) and O(m) = Z[(1+

√
m)/2]. One has D(m) = m. The unit group

O(m)× of O(m) satisfies O(m)× = 〈ε(m)〉 × 〈−1〉 � Z × Z/2. Among the four
possible free generators ±ε(m)±1 of O(m)×, the fundamental unit is the one
which is greater than 1. The class number h(m) is defined to be the cardinality
of the ideal class group C(m) of O(m). We need the following two Theorems
(2.7) and (2.8). The first one is attributed to Gauss and the second one is (a
special case of) the Theorem of Siegel-Brauer. For the statement, we recall that
an integral binary quadratic form f(x, y) = ax2 + bxy + cy2 is called primitive
if (a, b, c) = 1. The integer d(f) := b2 − 4ac is called the discriminant of f . By
Sf , we denote the associated symmetric (rational) matrix, i.e.

Sf =
(

a b
2

b
2 c

)
.

Note that detSf = −d(f)/4. We call two integral binary quadratic forms f and
f ′ are properly equivalent if Sf and Sf ′ lie in the same orbit under the natural
action by SL(2,Z), i.e. if there is M ∈ SL(2,Z) such that tMSfM = Sf ′ .

Theorem (2.7) (e.g. [Nr, Theorem (8.6)]). There is a natural one-to-one
correspondence between the class group C(m) and the set of the properly equiva-
lent classes of primitive integral binary forms of discriminant m. In particular,
h(m) is the cardinality of the set of the properly equivalent classes of primitive
integral binary forms of discriminant m. �
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Theorem (2.8) (e.g. [Nr, Theorem (8.5)]).

lim
m→∞

log(h(m) · log ε(m))
log D(m)

=
1
2

. �

The following Proposition is crucial for the main Theorem:

Proposition (2.9). Let N be an arbitrarily given natural number. Set IN :=
{1, 2, · · · , N} and ∆N := {(i, i)|i ∈ IN} ⊂ I2

N . Then, there exist N even hyper-
bolic lattices of rank 2, say, Si (i ∈ IN ) such that

(1) if (i, j) ∈ I2
N −∆N , then Si and Sj are not isomorphic, but

(2) for all (i, j) ∈ I2
N , the discriminant forms (ASi , QASi

) and (ASj , QASj
)

are isomorphic.

Proof. Let N2 be the set in the Introduction. Let n ∈ N2 and write d(n) :=
4n2 + 1 = pq. Note that d(n) ≡ 1 mod 4. Set Kn := K(d(n)), On := O(d(n)),
O×

n = O(d(n))×, εn := ε(d(n)), hn := h(d(n)), Dn := D(d(n)) = 4n2 + 1 = pq
under the notation in (2.6). Recall that N2 is an infinite set.

Lemma (2.10). For any given ε > 0, there is a natural number M such that

log(log εn)
log Dn

< ε

for all natural numbers n such that n > M and n ∈ N2.

Proof of (2.10). Consider 2n+
√

pq ∈ On. We may assume that n ≥ 3. We have
log εn > 0 by the definition. Note that

(2n +
√

pq)(2n−√pq) = 4n2 − pq = 4n2 − (4n2 + 1) = −1 .

From this identity, we obtain
1

2n +
√

pq
= −(2n−√pq) ∈ On .

In particular, 2n +
√

pq ∈ O×
n . Combining this with 2n +

√
pq > 1, we find a

natural number l such that (2n +
√

pq)2 = εl
n. Using 4n ≥

√
4n2 + 1 =

√
pq,

n ≥ 3 and εn > 1, we calculate that

4 log 2n ≥ 2 log 2n + 2 log 3 = 2 log 6n ≥ 2 log(2n +
√

pq)

= log(2n +
√

pq)2 = log εl
n = l log εn ≥ log εn .

We have also
Dn = 4n2 + 1 ≥ 2n .

Combining these two inequalities, one has

log(log εn)
log Dn

≤ log(4 log 2n)
log 2n

=
log(log 2n) + log 4

log 2n
.

Since limx→∞ log x =∞ and limx→∞(log x)/x = 0, this gives the result. �
Combining (2.8) with (2.10) applied for ε = 1/8, we obtain
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Corollary (2.11). There is a natural number M such that

log hn

log Dn
>

1
4

for all natural numbers n such that n > M and n ∈ N2. In particular,

lim
n→∞,n∈N2

hn =∞ . �

Let us return back to the proof of (2.9). Let B be the constant in (2.5). Take
an arbitrary natural number N . By (2.11), there is n ∈ N2 such that hn > 2BN .
We write 4n2 + 1 = pq. Then by (2.7), there are more than 2BN binary forms
of discriminant pq which are not properly isomorphic to one another. We write
them by aix

2 + bixy + ciy
2, i ∈ {1, 2, · · · , 2BN}. These binary forms satisfy

b2
i − 4aici = pq. Then, the associated symmetric matrices multiplied by 2, i.e.

M1 =
(

2a1 b1

b1 2c1

)
, · · · , M2BN =

(
2a2BN b2BN

b2BN 2c2BN

)

are all even, hyperbolic, and of determinant −pq and lie in mutually different
orbits under the natural action by SL(2,Z). Since SL(2,Z) is a normal subgroup
of GL(2,Z) of index 2, among these 2BN matrices Mi, one can find BN matrices
lying in mutually different orbits under the action by GL(2,Z). By renumbering,
we may assume they are Mi (i ∈ {1, · · · , BN}). Then, these BN matrices Mi

(i ∈ {1, · · · , BN}) define BN mutually non-isomorphic even hyperbolic lattices
Si of determinant −pq < 0 and of rank 2. On the other hand, by (2.5), there
are at most B discriminant forms (ASi , QASi

) up to isomorphism when i runs
through {1, · · · , BN}. Therefore, among these Si (i ∈ {1, · · · , BN}), there are
at least BN/B = N lattices, say, Si (i ∈ {1, · · · , N}), which have mutually
isomorphic discriminant forms. Now we are done for (2.9). �

We shall construct K3 surfaces in the main Theorem (1.7) by using the lat-
tices Si in (2.9). For this, we need the following Theorem due to Nikulin. For
the statement, we recall that an embedding as lattice Φ : M → L is said to be
primitive if the abelian group L/Φ(M) is free, in other words, free basis of Φ(M)
can be extended to free basis of L, or passing to the dual, the natural homomor-
phism L∗ → Φ(M)∗ is surjective. A sublattice M of L is called primitive if the
inclusion map is primitive.

Theorem (2.11) [Ni, Theorem (1.14.4), Corollary (1.13.3)]. Let M be
an even lattice of signature (m+, m−) (therefore rkM = m+ + m−). Let L be
an even unimodular lattice of signature (l+, l−).

(1) Let Φ : M → L be a primitive embedding and K the orthogonal lattice of
Φ(M) in L, i.e. K = {x ∈ L|(x, y) = 0 for all y ∈ Φ(M)}. (Note that
K is primitive in L.) Then, under isomorphism

M∗/M � Φ(M)∗/Φ(M) � L/(Φ(M)⊕K) � K∗/K
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given by the natural surjective homomorphism L∗ = L → Φ(M)∗ and
L∗ = L→ K∗, one has

(AM , QAM
) � (AK ,−QAK

) .

(2) Assume that l+ −m+ > 0, l− −m− > 0 and rkL− rkM ≥ 2 + l(AM ),
where l(AM ) is the minimal number of generators of the finite abelian
group AM = M∗/M . Then, M can be primitively embedded into L.
Moreover, a primitive embedding M → L is unique in the sense that if
fi : M → L (i = 1, 2) are two primitive embeddings, then there is an
isometry ϕ : L→ L such that f2 = ϕ ◦ f1.

(3) Let M̃ be an even lattice. Assume that the signature of M̃ is (m+, m−),
i.e. the same as the signature of M and that (AM̃ , QAM̃

) is isomorphic
to (AM , QAM

). Then M̃ is isomorphic to M provided that rkM ≥ 2 +
l(AM ), m+ > 0 and m− > 0. �

Set Λ := U⊕3⊕E8(−1)⊕2. Here U is the lattice given by
(

0 1
1 0

)
and E8(−1)

is the negative lattice given by the Dynkin diagram of type E8. This Λ is an even
unimodular lattice of signature (3, 19) and is called the K3 lattice. This is the
unique even unimodular lattice of signature (3, 19) up to isomorphism. For any
K3 surface X, there is an isometry τ : H2(X,Z)→ Λ (See for instance [BPV]).
We call an isometry τ from H2(X,Z) to Λ a marking of X. We call such a pair
(X, τ) a marked K3 surface.

Lemma (2.12). Let Si (1 ≤ i ≤ N) be the lattices found in (2.9). Then
(1) Si are primitively embedded into Λ, say, Φi : Si → Λ.
(2) Denote the orthogonal lattices of Φi(Si) in Λ by Ti. Then Ti are isomor-

phic to one another.

Proof. By the elementary divisor theory, one has l(AS) ≤ rkS. Since rkSi = 2,
(2.11)(2) implies (1). Let us check (2). Since (ASi , QASi

) � (ASj , QASj
) by

the construction, we have (ATi , QATi
) � (ATj , QATj

) by (2.11)(1). Since Si is
of signature (1, 1) and Λ is of signature (3, 19), Ti are of signature (2, 18). By
(2.11)(1), we have also l(ATi) = l(ASi) ≤ 2. Now the assertion (2) follows from
(2.11)(3). �

Let Ti (i ∈ {1, · · · , N}) be the sub-lattices of Λ found in (2.12). Take an even
lattice T of signature (2, 18) which is isomorphic to all these Ti. We denote by
ϕi : T → Λ a primitive embedding of T such that ϕi(T ) = Ti.

Lemma (2.13). There is a positive definite 2-dimensional subspace P of T⊗ZR
such that P⊥ ∩ T = {0}, where P⊥ is the orthogonal space of P in T ⊗Z R.

Proof. Since the signature of T is (2, 18), there is a positive definite 2-dimensional
subspace P0 of T ⊗Z R. Note that positive definiteness is an open condition in
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the real Grassman manifold Gr(2, T ⊗Z R) in the classical topology. Moreover,
in Gr(2, T ⊗Z R), the locus P⊥ ∩ T 
= {0} is countable union of the proper
Zariski closed subsets (P, t) = 0 (t ∈ T − {0}) in Gr(2, T ⊗Z R). Here the
properness is because T is non-degenerate. Therefore, there is a desired P near
P0 in Gr(2, T ⊗Z R). �

(2.14) Let us complete the proof of (1.7). Let P be the space found in (2.13).
Let 〈η1, η2〉 be the orthonomal basis of P . Set ω := η1 +

√
−1η2 in P ⊗R C.

Then, by (η1, η1) = (η2, η2) = 1 and (η1, η2) = 0, one has (ω, ω) = 0 and
(ω, ω) = 2 > 0. Here ω is the complex conjugate of ω with respect to the real
structure P . Therefore if we set ωi = ϕi(ω) ∈ Λ ⊗Z C, then ωi ∈ Ti ⊗Z C,
(ωi, ωi) = 0 and (ωi, ωi) > 0 as well. Moreover, by (2.13) and by Φi(Si) = T⊥

i

in Λ, the following equalities hold in Λ⊗Z C:

ω⊥
i ∩ Λ = 〈ϕi(η1), ϕi(η2)〉⊥ ∩ Λ

= ϕi(P )⊥ ∩ Λ = T⊥
i ∩ Λ = Φi(Si).

Therefore (Λ,Cωi) (i ∈ {1, · · · , N}) define the weight two Hodge structures on
Λ such that ω⊥

i = Φi(Si). Then, by the surjectivity of the period mapping of
K3 surfaces and by the Lefschetz (1, 1)- Theorem, there are marked K3 sur-
faces (Xi, τi) such that τ(CωXi) = Cωi and τi(NS(Xi)) = Φi(Si). This implies
τi(TXi) = Ti as well. Since Φi(Si) are hyperbolic, so are NS(Xi). Therefore
Xi are projective. Moreover, by the construction, the following homomorphism
gives a Hodge isometry between (TXi

,CωXi
) and (TXj

,CωXi
):

TXi

τi−→ ϕi(Ti)
ϕ−1

i−→ T
ϕj−→ ϕj(Tj)

τ−1
j−→ TXj .

These K3 surfaces Xi(i ∈ {1, · · · , N}) satisfy all the requirement in (1.7). �

§3. Proof of (1.9)

Let (T,Cω) be a lattice with weight two Hodge structure isomorphic to the
Hodge structure (TX ,CωX). (For this notation, we note that the Hodge struc-
ture on the lattice TX is determined by the inclusion CωX ⊂ TX ⊗Z C.) Let
Y ∈ ST (X). Then rkNS(Y ) = 22− rkT and |det NS (Y )| = |det TY | = |det TY |.
Therefore, the finiteness of reduction of non-degenerate integral quadratic forms
with bounded determinant and bounded rank (see for instance [Cs, Page 128,
Theorem 1.1]), one has

|{NS(Y )|Y ∈ ST (X)}/isom| <∞ .

Let Si (i ∈ {1, · · · , N}) be the complete representative of the set above. Then
one has ST (X) = ∪N

i=1Si(X) (disjoint union), where

Si(X) := {Y ∈ ST (X)|NS (Y ) � Si}/isom .
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Therefore, it suffices to show that |Si(X)| < ∞ for each i. Choose i. For
simplicity of notation, we write S, S(X) for Si, Si(X) and so on from now.

A Z-module L such that S ⊕ T ⊂ L ⊂ S∗ ⊕ T ∗ is called an over lattice
of S ⊕ T . Let us consider all the even unimodular over lattices L of S ⊕ T
such that S and T are both primitive in L. Such an L is an even unimodular
lattice of signature (3, 19). Therefore L is isomorphic to the K3 lattice. Since
(S∗⊕T ∗)/(S⊕T ) = S∗/S⊕T ∗/T is a finite group, there are only finitely many
such L as a subset of S∗ ⊕ T ∗. We write all of them by Lj (j ∈ {1, · · · , M}).

Let Y ∈ S(X). Then, we have an isometry f : NS(Y ) → S and a Hodge
isometry g : (TY ,CωY )→ (T,Cω). This induces an isomorphism (f ⊕ g) : S∗

Y ⊕
T ∗

Y → S∗⊕T ∗. Then there is j ∈ {1, · · · , M} such that (f ⊕ g)(H2(Y,Z)) = Lj .
Write τY := (f ⊕ g)|H2(Y,Z). Conversely, by the surjectivity of the period
mapping of K3 surfaces, for each j ∈ {1, · · · , M}, there is a marked K3 surface
(Xj , τXj

) such that τXj
: H2(Xj ,Z)→ Lj is a Hodge isometry in the sense that

τj(ωXj ) = ω. Since T and S are both primitive in Lj , we have τXj (TXj ) = T
and τXj (NS(Xj)) = S in this case. Moreover, if we put f = τXj |NS(Xj) and g =
τXj |TXj , then τXj is recovered from f and g by the process explained above. Let
us choose for each j ∈ {1, · · · , M} a marked K3 surface (Xj , τXj ) as above. Let
Z ∈ S(X). Then τZ(H2(Z,C)) = Lj for some j ∈ {1, · · · , M}. By construction,
we have τZ(H2(Z,Z)) = Lj = τXj

(H2(Yj ,Z)) and τ(CωZ) = Cω = τXj
(CωXj

).
Thus, τ−1

Z ◦ τXj
: H2(Xj ,Z) → H2(Z,Z) is a Hodge isometry. By the global

Torelli Theorem for K3 surface, we have then Z � Xj . Therefore S(X) consists
of at most M elements. �

§4. Proof of (1.10)

Idea of proof of (1.10) is similar to that of (1.9), but we need a bit more
precise argument in order to obtain the exact number |ST (X)|.

Let S = 〈l〉 be a lattice of rank 1 such that (l2) = 2n. Let X be the same
as in (1.10). As before, we choose an abstract lattice with weight two Hodge
structure (T,Cω) isomorphic to (TX ,CωX). If Y ∈ ST (X), then NS(Y ) = ZlY
and (lY )2 = |detTY | = |detTX | = (l2X) = 2n. We take lY the ample class. So, lY
is uniquely determined by Y . We have an isometry fY : NS(Y ) � S; lY �→ l and
a Hodge isometry gY : (TY ,CωY )→ (T,Cω). We choose and fix fY and gY for
each Y ∈ ST (X).

Lemma (4.1). Hodge isometry from (TY ,CωY ) to (T,Cω) is either gY or −gY .
Conversely both are Hodge isometries.

Proof. The last statement is clear. Let us show the first assertion. Let g :
(TY ,CωY ) → (T,Cω) be a Hodge isometry. Then g−1

Y ◦ g is a Hodge isometry
of (TY ,CωY ). So, it suffices to show that if h is a Hodge isometry of (TY ,CωY ),
then h = id or −id.

Since T ⊗Z R = P ⊕ N , where P = (CωY ⊕ CωY ) ∩ (T ⊗Z R) and N =
H1,1(Y,C) ∩ (T ⊗Z R). Here P is positive definite. Since Y is projective, N
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is negative definite by the Hodge index Theorem. Since h is a Hodge isometry,
h ∈ O(P ) × O(N). Here O(∗) is the orthogonal group. Since P and N are
both definite, h is diagonalizable and the eigenvalues of h (in C) are all absolute
value 1. On the other hand, since h is defined over Z, the eigenvalues of h are
all algebraic integers. Therefore, the eigenvalues of h are all root of unity by
the Theorem of Kronecker. In particular, there is a natural number I such that
h(ωY ) = ζIωY , where ζI is a primitive I-th root of unity. Then ord(h) = I.
Otherwise, we have ord(h) = kI for some integer k ≥ 2. However, since h is
defined over Z, the space T ′ = {x ∈ TY |hI(x) = x} would be a primitive sub-
module of H2(Y,Z), T ′ 
= T and ωY ∈ T ′ ⊗Z C. However, this contradicts the
direct consequence of the Lefschetz (1, 1)-Theorem: TY is the minimal primitive
sub-module of H2(Y,Z) such that ωY ∈ TY ⊗Z C.

On the other hand, since dimN = rkTY −2 = 19 is odd, h|N and therefore h
has 1 or −1 as its eigenvalue. Since h is defined over TY and ±1 is rational, there
then exists an element a ∈ TY − {0} such that either h(a) = a or h(a) = −a.
Therefore we have two cases:

(1) h has eigenvalue 1;
(2) h does not have eigenvalue 1 but has eigen value −1.

We shall show that in the first case h = id and in the second case h = −id.
Let us consider the Case 1. Take a ∈ TY − {0} such that h(a) = a. Then:

(ζIωY , a) = (h(ωY ), h(a)) = (ωY , a) .

If I 
= 1, this would imply (ωY , a) = 0. Then a ∈ NS(Y ) ∩ TY = {0}, a
contradiction. Therefore I = 1 and h = id.

Let us consider the Case 2. There is a ∈ TY −{0} such that h(a) = −a. Then
the formula

(ζIωY ,−a) = (h(ωY ), h(a)) = (ωY , a)

implies I = 2. Indeed, otherwise, we would have (ωY , a) = 0 and get the same
contradiction as Case 1. From this and the case assumption, the eigenvalues of
h are all −1. Since h is diagonalizable, this implies h = −id. �

As in Section 3, we take all the even unimodular over lattices L of S⊕T such
that S and T are both primitive in L. Write all of them by Lj (j ∈ {1, · · · , M}).
As in the proof of (1.9), if Y ∈ ST (X), then under the natural extension (fY ⊕
gY ) : NS(Y )∗ ⊕ T ∗

Y → S∗ ⊕ T ∗, there is j such that (fY ⊕ gY )(H2(Y,Z)) = Lj .
We write τY := (fY ⊕gY )|H2(Y,Z) as before. We already observed the following
fact in Section 3:

Lemma (4.2).

(1) For each j ∈ {1, · · · , M}, there is a K3 surface Xj ∈ ST (X) such that
τXj (H

2(Xj ,Z)) = Lj. We fix such an Xj for each j in what follows.
(2) For each Y ∈ ST (X), there is j ∈ {1, · · · , M} such that Y � Xj. �
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So, one can find complete representatives of ST (X) in {Xj}Mj=1.

However, by (4.1), there are exactly two choices of gXj for each Xj ∈ ST (X):
gXj and −gXj . Therefore in order to find out the complete representatives in
{Xj}Mj=1, we also need to seek how Lj changes when we replace gXj by −gXj .

Let L be any one of Lj . Then T ∗/T � L/(T ⊕ S) � S∗/S � Z/2n by
(2.11)(1). Therefore, S∗/S = 〈 l

2n 〉 and there is t ∈ T such that T ∗/T = 〈 t
2n 〉.

This t is independent of L. Note that L/(T⊕S) = 〈al+bt
2n 〉 for some a, b ∈ Z. This

is because Z/2n � L/(T ⊕ S) ⊂ S∗/S ⊕ T ∗/T = (S∗ ⊕ T ∗)/(S ⊕ T ). Note also
that under the natural isomorphism L/(T ⊕S) � S∗/S and L/(T ⊕S) � T ∗/T ,
al+bt
2n is mapped to al

2n and bt
2n . Therefore, (a, 2n) = (b, 2n) = 1. So, we may

write from the first that L/(T ⊕ S) = 〈 l+bt
2n 〉, where (b, 2n) = 1. Note that there

is a natural one to one correspondence between over lattices of S ⊕ T and the
subgroups of (S∗⊕T ∗)/(S⊕T ) = S∗/S⊕T ∗/T . Therefore b mod 2n is uniquely
determined by L.

Lemma (4.3). Let Y ∈ ST (X).

(1) Assume that n 
= 1. Then (fY⊕gY )(H2(Y,Z)) 
= (fY⊕(−gY ))(H2(Y,Z))
and there exists unique i = i(Y ) ∈ {1, · · · , M} such that τXi(H

2(Xi,Z)) =
(fY ⊕ (−gY ))(H2(Y,Z)).

(2) Assume that n = 1. Then (fY⊕gY )(H2(Y,Z)) = (fY⊕(−gY ))(H2(Y,Z)).

Proof. We can write H2(Y,Z)/(NS(Y )⊕ TY ) = 〈 lY +btY

2n 〉, where lY is the same
as before and tY is an element of TY such that gX(tY ) = t and b is an in-
teger such that (b, 2n) = 1. Then, (fY ⊕ gY )(H2(Y,Z))/(S ⊕ T ) = 〈 l+bt

2n 〉
and (fY ⊕ −gY )(H2(Y,Z))/(S ⊕ T ) = 〈 l−bt

2n 〉. Then, (fY ⊕ gY )(H2(Y,Z)) =
(fY ⊕−gY )(H2(Y,Z)) in S∗⊕T ∗ if and only if 2b ≡ 0 mod 2n. Since (b, 2n) = 1,
this implies 2 ≡ 0mod 2n. However, this is possible only when n = 1. Thus, we
get the first part of (1). The last part of (1) is nothing but the definition of the
set {Xj}Mj=1. If n = 1, one has b = −b mod 2 and the two lattices are the same
in S∗ ⊕ T ∗. �

Lemma (4.4).

(1) For each j ∈ {1, · · · , M}, there is exactly one i ∈ {1, · · · , M} such that
i 
= j and such that Xi � Xj when n 
= 1. When n = 1, Xi � Xj if and
only if i = j.

(2) In particular, |ST (X)| = M/2 if n 
= 1 and |ST (X)| = M if n = 1.

Proof. (2) follows from (1) and (4.2). Let us show (1). If n 
= 1, then setting
ρj := (fXj ⊕−gXj )|H2(Xj ,Z), one has ρj(H2(Xj ,Z)) = Li(j) for some i(j) 
= j

by (4.3). For this i = i(j), the map τ−1
i ◦ρj : H2(Xj ,Z)→ H2(Xi,Z) is a Hodge

isometry. Therefore Xi � Xj by the global Torelli Theorem.

Assume that Xk � Xj . Let ϕ : Xk → Xj be an isomorphism. Note that
lXk

is the unique ample generator of NS(Xk). Then one has ϕ∗(lXj ) = lXk
,
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ϕ∗(TXj ) = TXk
and ϕ∗(H2(Xj ,Z)) = H2(Xk,Z). Set ρ := τXk

◦ ϕ∗ This ρ is a
Hodge isometry and satisfies

ρ(lXj ) = τXk
(lk) = l and ρ(H2(Xj ,Z)) = τXk

(H2(Xk,Z)) = Lk .

On the other hand, by (4.1), we have exactly two Hodge isometries from
H2(Xj ,Z) into S∗⊕T ∗ which mapps lXj

to l. They are (fXj
, gXj

) and (fXj
,−gXj

).
Thus, ρ = (fXj , gXj ) or ρ = (fXj ,−gXj ). In the first case, we have Lk = Lj and
in the second case we have Lk = Li(j). By the definition of L∗, we have then
k = j and k = i(j) respectively. Then, by the definition of the set {Xi}Mi=1, we
have Xk = Xj and Xk = Xi(j) respectively. This completes the proof of (1) in
the case n 
= 1. Proof for the case n = 1 is exactly the same. �

In order to complete the proof of (1.10), it now suffices to prove the following
Lemma:

Lemma (4.5). M = (|((Z/4n)×)2|)/2.

Proof. Recall that M is the cardinality of the set consisting of the even unimod-
ular over lattices L of S ⊕ T such that S and T are both primitive in L. We
write this set byM.

Let L ∈ M. Then, as remarked before (4.3), taking an element t such that
T ∗/T = 〈 t

2n 〉, we can write L/(T ⊕ S) = 〈 l+bt
2n 〉. Then b := b mod 2n is an

element of (Z/2n)× and is uniquely determined by L.

Conversely, if an over lattice L of S⊕T satisfies L/(S⊕T ) = 〈 l+bt
2n 〉 for some

natural number b such that (b, 2n) = 1, i.e. b ∈ (Z/2n)×, then |det L| = 1 and
both S and T are primitive in L. Therefore, there is one-to-one correspondence
between M and the set of element b of (Z/2n)× such that the overlattice S +
T + 〈 l+bt

2n 〉 is even and integral. We write the latter set by D. Then |M| = |D|
and we may calculate |D|. Since ( t

2n , u) ∈ Z and ( l
2n , u) ∈ Z if u ∈ S⊕T (by the

definition of the dual) and since S, T are both even, we see that L = S+T+〈 l+bt
2n 〉

is even and integral if and only if ( l+bt
2n )2 is an even number. Since ( t

2n , t) ∈ Z,
we have (t2) = 2nc for some integer c. Then b satisfies that

(
l + bt

2n
)2 =

2n + b2(t2)
4n2

=
1 + b2c

2n
.

Thus, the condition b mod 2n ∈ D is equivalent to

1 + b2c = 0 mod 4n , i.e. b2c = −1 inZ/4n.

There is at least one b mod 2n ∈ D corresponding to the original X. We write
this b by b0. Then b2

0c = −1 inZ/4n. In particular, both b0 and c are unit
elements in Z/4n. Therefore the condition b mod 2n ∈ D is equivalent to the
condition ( b

b0
)2 = 1 in Z/4n, that is, b is written as b0u for an integer u which
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gives an element of (Z/4n)× of order at most 2. Since b0 is invertible in Z/4n,
we see that b0 is invertible in Z/2n as well. Then b0u = b0v in Z/2n if and only
if u = v in Z/2n, i.e. v = u or v = u + 2n in Z/4n. Note that u + 2n 
= u in
Z/4n. Note also that if u is a unit element in Z/4n, then u + 2n is also a unit
element in Z/4n. Indeed, if uc = 1 in Z/4n, then u = c = 1 in Z/2. Therefore

(u + 2n)(c + 2n) = uc + 2n(u + c) + 4n2 = 1 inZ/4n .

Hence M = |D| = |{b0u mod 2n}| = |((Z/4n)×)2|/2. �
Now combining (4.4) and (4.3), we obtain (1.10). The explicit formula follows

from the Chinese remainder Theorem and the fact (Z/22)× � Z/2, (Z/2a)× �
Z/2⊕ Z/2a−2 if a ≥ 3 and (Z/pe)× � Z/pe−1(p− 1) if p ≥ 3 is a prime. �

Appendix

In this appendix, we shall remark a generalization of (1.7) for hyperkähler
manifold of higher dimension.

By a hyperkähler manifold, we mean a simply-connected compact Kähler
manifold X which admits a everywhere non-degenerate holomorphic 2-form ωX

and satisfies H2,0(X) = CωX . Let X be a hyperkähler manifold. X is of
even dimensional. By Beauville [Be], X admits a non-degenerate primitive in-
tegral symmetric bilinear form (∗, ∗) : H2(X,Z) × H2(X,Z) → Z of signature
(3, B2(X)− 3). By his construction, this bilinear form together with the Hodge
decomposition H2(X,C) = H1,1(X) ⊕CωX ⊕CωX forms a weight two Hodge
structure on H2(X,Z). We define the transcendental lattice TX of X to be the
orthogonal lattice of NS(X) � PicX in H2(X,Z) with respect to this bilin-
ear form. TX is the minimal primitive sub-lattice of H2(X,Z) whose C-linear
extension contains ωX . As is remarked in [Hu1] (all of which results are now
avaiable by [Hu2]), H2(X,Z) and H2(X ′,Z) are Hodge isometric if X and X ′

are birational.

If X is the Hilbert scheme Hilbn(S) of 0-dimensional subschemes of length
n(≥ 2) on a K3 surface S or its (Kähler) deformation, then X is a hyperkähler
manifold of dimension 2n and satisfies (H2(X,Z), (∗, ∗)) � Λ⊕〈−2(n−1)〉. Here
Λ is a K3 lattice.

Proposition A. Let n be any natural number. For any given natural number N ,
there are N mutually non-birational projective hyperkähler manifolds {Xj}Nj=1 of
dimension 2n such that (TXj ,CωXj ) are mutually Hodge isometric but NS(Xj)
are not isomorphic to one another.

Proof. Let Si and Ti (i = 1, · · · , N) be the lattices found in (2.9) and (2.12).
Consider the sublattices T̃i := Ti ⊕ 〈−2(n − 1)〉 ⊂ Λ ⊕ 〈−2(n − 1)〉. Then,
T̃i are primitive, of signature (2, 19) and are isomorphic to one another by the
construction and (2.11). (We remark that l(AT̃i

) ≤ l(ATi) + 1 ≤ 3 so that we
can apply (2.11) to see these T̃i are isomorphic.) Fix a lattice T̃ isomorphic
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to all T̃i and fix primitive embeddings ϕ̃i : T̃ � T̃i ⊂ Λ ⊕ 〈−2(n − 1)〉. As in
(2. 13), we also take a positive definite 2 dimensional subspace P̃ of T̃ ⊗Z R
such that P̃⊥ ∩ T̃ = {0}. One can then obtain a weight 2 Hodge structure on
T̃ , say, (T̃ ,Cω̃) as in (2.14). Then, by applying the surjectivity of the period
mapping by Huybrechts [Hu1] for the weight two Hodge structures (Λ⊕〈−2(n−
1)〉,Cϕ̃i(ω̃)) and repeating exactly the same argument as in (2.14), one can find
for each i a marked hyperkḧler manifold (Xi, τi) (equivalent to Hilbn(S) under
deformation) such that (TXi ,CωXi) � (T̃i,Cϕ̃i(ω̃)) and NS(Xi) � Si via τi.
Since Si is of signature (1, 1), Xi is projective by the projectivity criterion due
to Huybrechts [Hu1] (See [Hu2] for a correction of proof). Therefore, these Xi

give the result. �
Remark.

(1) In [Yo], Yoshioka finds K3 surfaces X 
� Y such that Hilb2(X) �
Hilb2(Y ). In addition, there are several lattices S, S′ and M such that
S 
� S′ but S ⊕M � S′ ⊕M . So, Hilbert schemes of K3 surfaces found
in (1.7) may not satisfy the condition of Propsition A.

(2) Namikawa [Nm] finds a counter example of the birational injectivity of
the period mapping for hyperkähler manifolds of dimension 4. Therefore,
the argument for the finiteness (1.9) in Section 3 cannot be exploited in
higher dimensional hyperkähler manifolds. �
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