THE MAP $V \longrightarrow V/\!/ G$ **NEED NOT BE SEPARABLE**

Ben Martin and Amnon Neeman

ABSTRACT. We construct a vector space V with a linear action of a reductive group *G* such that the quotient map $V \longrightarrow V/G$ (in the sense of geometric invariant theory) fails to be separable. This gives a counterexample to an assertion of Bardsley and Richardson.

0. Introduction

Let *G* be a reductive algebraic group, possibly nonconnected, and let *X* be an irreducible affine *G*–variety. Suppose that the ground field *k* has characteristic $p > 0$. In their paper on étale slices in characteristic p, Bardsley and Richardson claim([1], Section 2, 2.1.9(b)) that the canonical projection from *X* to the quotient X/\sqrt{G} is separable. We give a counterexample to show that this map need not be separable, not even when *X* is a vector space *V* and *G* acts linearly. Bardsley and Richardson extend Luna's important Etale Slice Theorem[2] from ´ characteristic zero to characteristic p . At only one point (see [1], Section 4, 4.3) do they use the separability of the quotient map. There the group *G* is finite and their assertion is justified: for the function field $k(X/\sqrt{G})$ is the whole of the field of invariants $k(X)^G$ of the function field $k(X)$, by [1], Section 4, 4.3.1, and whenever a group Γ acts on a field *K*, the extension K/K^{Γ} is separable [3], IV.1, Lemma 1.5. The main results of [1], therefore, remain valid.

Separability questions come up when one tries to generalise or strengthen the results of Bardsley and Richardson's [1]. A major interest of the counterexample presented here is that it indicates limits on any possible Luna slice theorem in characteristic $p > 0$. The first author will explore this point further in a forthcoming paper.

Throughout this article, *k* will be an algebraically closed field. We denote by X/\sqrt{G} the quotient of *X* by *G* in the sense of geometric invariant theory; see [1] for details.

Key words and phrases. Reductive group. Received April 11, 2001.

1. The counterexample

Notation 1.1. Let *W* be a finite dimensional vector space over *k*, of dimension $d = \dim(W) \geq 2$. Let $G = GL(W)$ be the group of all linear automorphisms of *W*. Let W^* be the dual of *W*, with the usual *G*–action. For any integer $n > 0$, we let W^n stand for the direct sum $W \oplus W \oplus \cdots \oplus W$ of *n* copies of *W*. We first wish to consider the *G*–module $W^* \oplus W^n$.

This *G*–module is naturally an affine variety. Choose a basis (x_1, x_2, \ldots, x_d) for *W*, and take the natural dual basis (y_1, y_2, \ldots, y_d) for *W*^{*}. The polynomial functions on W^* form the ring $k[x_1, \ldots, x_d]$, while the polynomial functions on *W* form the ring $k[y_1, \ldots, y_d]$. The difference is that the *G*–actions on these rings are dual. The polynomial functions on $W^* \oplus W^n$ form a ring $R = k[x_j, y_j^i]$, with $1 \leq j \leq d$ and $1 \leq i \leq n$. Note that in y_j^i the *i* is a superscript; y_j^i stands for the jth component of the ith vector. We are not raising anything to the ith power. Our notation for raising to the p^{th} power, in this article, will be $\{y_j^i\}^p$.

Lemma 1.2. With the notation as in Notation 1.1, let $I \subset R = k[x_j, y_j^i]$ be the ideal generated by all $\{x_j, y_j^i \mid j \geq 2\}$. Then any *G*–invariant element of *R* that lies in the ideal *I* must vanish. In symbols, $I \cap R^G = 0$.

Proof. In the *G*–orbit of any point of W^* there is a point $(\lambda, 0, \dots, 0)$. Therefore in the *G*–orbit of any point of $W^* \oplus W^n$ there is a point whose coordinates are

$$
\begin{pmatrix}\n\lambda \\
0 \\
\vdots \\
0\n\end{pmatrix} ; \begin{pmatrix}\n\mu_1^1 \\
\mu_2^1 \\
\vdots \\
\mu_d^1\n\end{pmatrix}, \begin{pmatrix}\n\mu_1^2 \\
\mu_2^2 \\
\vdots \\
\mu_d^2\n\end{pmatrix}, \dots, \begin{pmatrix}\n\mu_1^n \\
\mu_2^n \\
\vdots \\
\mu_d^n\n\end{pmatrix}
$$

Now the element of *GL*(*W*) given by the diagonal matrix

$$
\left(\begin{array}{cccc} 1 & 0 & \cdots & 0 \\ 0 & t & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & t \end{array}\right)
$$

takes the above to the point

$$
\begin{pmatrix}\n\lambda \\
0 \\
\vdots \\
0\n\end{pmatrix} ; \begin{pmatrix}\n\mu_1^1 \\
t\mu_2^1 \\
\vdots \\
t\mu_d^1\n\end{pmatrix}, \begin{pmatrix}\n\mu_1^2 \\
t\mu_2^2 \\
\vdots \\
t\mu_d^2\n\end{pmatrix}, \cdots, \begin{pmatrix}\n\mu_1^n \\
t\mu_2^n \\
\vdots \\
t\mu_d^n\n\end{pmatrix}
$$

Taking the limit as $t \rightarrow 0$, we have that the closure of any *G*–orbit must contain a point of the form

$$
\left(\begin{array}{c} \lambda \\ 0 \\ \vdots \\ 0 \end{array}\right) ; \left(\begin{array}{c} \mu_1^1 \\ 0 \\ \vdots \\ 0 \end{array}\right) , \left(\begin{array}{c} \mu_1^2 \\ 0 \\ \vdots \\ 0 \end{array}\right) , \dots , \left(\begin{array}{c} \mu_1^n \\ 0 \\ \vdots \\ 0 \end{array}\right)
$$

Now any polynomial in the ideal $I \subset R$ vanishes on the points above. Since *G*–invariant polynomials are constant on closures of orbits, any *G*–invariant polynomial in *I* must vanish on all closures of all orbits; in other words, it must be identically zero. \Box

Definition 1.3. Let the notation be as in Lemma 1.2. For every $1 \leq i \leq n$, we may form the polynomial

$$
Y_i = x_1 y_1^i + x_2 y_2^i + \dots + x_d y_d^i.
$$

The Y_i 's are obviously G –invariant.

Proposition 1.4. Let the notation be as in Definition 1.3. The subring $R^G \subset$ *R*, of all *G*–invariant polynomials in *R*, is generated by the *Yi*'s.

Proof. It is easy to prove Proposition 1.4 as a consequence of the First Main Theorem of classical invariant theory. Instead, we will give an equally easy, self-contained proof.

The center $Z(G)$ of G, that is the set of non-zero scalar matrices, stabilises *I*. Therefore $Z(G)$ acts on R/I . It is very obvious that the $Z(G)$ –invariant polynomials in R/I are generated by the monomials $x_1y_1^i$, and Y_i is congruent mod *I* to $x_1y_1^i$.

Take any *G*–invariant polynomial $f \in R^G$. Then *f* gives a $Z(G)$ –invariant polynomial modulo *I*, and by the above paragraph, there exists a polynomial *P* in *n* variables so that *f* is congruent to $P(Y_1, \ldots, Y_n)$ mod *I*. But then

$$
f-P(Y_1,\ldots,Y_n)
$$

is a *G*–invariant element of *I*, and by Lemma 1.2 it must vanish.

Lemma 1.5. With the notation as above, the $Y_i \in \mathbb{R}^G$ are algebraically independent. Even better: any monomial in $\{x_j, y_j^i\}$ can occur in the expansion of at most one monomial $Y_1^{M_1} Y_2^{M_2} \cdots Y_n^{M_n}$.

Proof. By checking the degrees of the monomials in the vectors $(y_1^i, y_2^i, \ldots, y_d^i)$ for different *i*.

Definition 1.6. Suppose now that *k* is of characteristic $p > 0$. Put $X_j = \{x_j\}^p$. The ring $R = k[x_j, y_j^i]$ contains a subring $S = k[X_j, y_j^i]$. The ring *S* is not just

 \Box

a subring of *R*, it is also a *G*–submodule. In fact, *S* can be thought of as the ring of polynomial functions on the *G*–module $\pi_* W^* \oplus W^n$. Here, $\pi_* W^*$ is the Frobenius twist of W^* . The vector spaces W^* and $\pi_* W^*$ are identical. A matrix in $GL(d)$ acts on a vector in $\pi_* W^*$ by raising the entries of the matrix to the *p*th power, followed by the usual action on *W*∗.

The polynomials

$$
\overline{Y}_i = X_1 \{y_1^i\}^p + X_2 \{y_2^i\}^p + \dots + X_d \{y_d^i\}^p
$$

= $x_1^p \{y_1^i\}^p + x_2^p \{y_2^i\}^p + \dots + x_d^p \{y_d^i\}^p$
= Y_i^p

are clearly *G*–invariant elements of the ring *S*.

Proposition 1.7. Let the notation be as in Definition 1.6. The subring $S^G \subset S$, of all *G*–invariant elements of *S*, is generated by the \overline{Y}_i 's.

Proof. The ring $S = k[X_j, y_j^i]$ is a subring and *G*-submodule of $R = k[x_j, y_j^i]$. By Proposition 1.4 we know that R^G is generated by

$$
Y_i = x_1 y_1^i + x_2 y_2^i + \dots + x_d y_d^i.
$$

The ring S^G is nothing more than the intersection of R^G with *S*.

By Lemma 1.5, the elements $Y_1^{M_1} Y_2^{M_2} \cdots Y_n^{M_n} \in R^G$ have disjoint monomial expansions. A linear combination of $Y_1^{M_1} Y_2^{M_2} \cdots Y_n^{M_n}$'s will lie in *S* if and only if every term does. Suppose therefore that some $Y_1^{M_1} Y_2^{M_2} \cdots Y_n^{M_n}$ belongs to *S*.

In the expansion of the product, there is a term

$$
x_2^{M_1} {\{y_2^1\}}^{M_1} \prod_{i=2}^n x_1^{M_i} {\{y_1^i\}}^{M_i}
$$

and since this lies in S , it follows that p must divide M_1 . By symmetry, p must divide *Mⁱ* for every *i*. That is, our monomial is really a monomial in $Y_i^p = \overline{Y}_i$. \Box

Theorem 1.8. There exists a vector space *V* , and a reductive group *G* acting on *V*, so that the geometric invariant theory map $V \rightarrow V/(G$ is not separable.

Proof. Put $V = \pi_* W^* \oplus W^n$ as above, with $n > d = \dim(W)$. We assert that the map $V \longrightarrow V/\sqrt{G}$ is not separable. The map corresponds to the inclusion $S^G \subset S$. We know that S^G is the polynomial algebra $k[\overline{Y}_1, \ldots, \overline{Y}_n]$. The derivative of the inclusion $S^G \subset S$ takes $d\overline{Y}_i$ to

$$
{y_1^i}^p dX_1 + {y_2^i}^p dX_2 + \cdots + {y_d^i}^p dX_d
$$

which is in the linear span of $\{dX_1, dX_2, \ldots, dX_d\}$. The image is therefore contained in a *d*–dimensional vector subspace of the 1–forms on *V* . Since the dimension of $V/\!/ G$ is $n > d$, the map $\Omega^1_{V/\!/ G} \longrightarrow \Omega^1_V$ cannot be generically injective. \Box

Acknowledgement

The authors would like to thank the referee for several helpful expository improvements.

References

- [1] P. Bardsley and R. W. Richardson, *Etale slices and transformation groups in characteristic ´ p*, Proc. London Math. Soc. (3) **51** (1985), no. 2, 295–317.
- [2] D. Luna, *Slices ´etales*, Sur les groupes alg´ebriques, Soc. Math. France, Paris, 1973, 81–105. Bull. Soc. Math. France, Paris, Mémoire 33.
- [3] T. A. Springer, *Aktionen reduktiver Gruppen auf Varietäten*, Algebraische Transformationsgruppen und Invariantentheorie, 3–39, Birkhäuser, Basel, 1989.

Institute of Mathematics, The Hebrew University, Giv'at Ram, Jerusalem 91904, Israel.

E-mail address: benm@math.huji.ac.il

Center for Mathematics and its Applications, School of Mathematical Sciences, John Dedman Building, The Australian National University, Canberra, ACT 0200, Australia.

E-mail address: Amnon.Neeman@anu.edu.au