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THE MAP V — V//G NEED NOT BE SEPARABLE

BEN MARTIN AND AMNON NEEMAN

ABSTRACT. We construct a vector space V with a linear action of a reductive group
G such that the quotient map V' — V//G (in the sense of geometric invariant
theory) fails to be separable. This gives a counterexample to an assertion of
Bardsley and Richardson.

0. Introduction

Let G be a reductive algebraic group, possibly nonconnected, and let X be an
irreducible affine G—variety. Suppose that the ground field k has characteristic
p > 0. In their paper on étale slices in characteristic p, Bardsley and Richardson
claim ([1], Section 2, 2.1.9(b)) that the canonical projection from X to the
quotient X//G is separable. We give a counterexample to show that this map
need not be separable, not even when X is a vector space V' and G acts linearly.
Bardsley and Richardson extend Luna’s important Etale Slice Theorem [2] from
characteristic zero to characteristic p. At only one point (see [1], Section 4, 4.3)
do they use the separability of the quotient map. There the group G is finite
and their assertion is justified: for the function field k£(X//G) is the whole of
the field of invariants k(X)“ of the function field k(X), by [1], Section 4, 4.3.1,
and whenever a group I' acts on a field K, the extension K/K?' is separable [3],
IV.1, Lemma 1.5. The main results of [1], therefore, remain valid.

Separability questions come up when one tries to generalise or strengthen the
results of Bardsley and Richardson’s [1]. A major interest of the counterexample
presented here is that it indicates limits on any possible Luna slice theorem
in characteristic p > 0. The first author will explore this point further in a
forthcoming paper.

Throughout this article, k£ will be an algebraically closed field. We denote by
X//G the quotient of X by G in the sense of geometric invariant theory; see [1]
for details.
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1. The counterexample

Notation 1.1. Let W be a finite dimensional vector space over k, of dimension
d = dim(W) > 2. Let G = GL(W) be the group of all linear automorphisms of
W. Let W* be the dual of W, with the usual G—action. For any integer n > 0,
we let W" stand for the direct sum W oW @--- @ W of n copies of W. We first
wish to consider the G—module W* @ W™,

This G-module is naturally an affine variety. Choose a basis (z,z,,... ,z,)
for W, and take the natural dual basis (y,,¥s, ... ,y,) for W*. The polynomial
functions on W* form the ring k[z,, ... ,z,], while the polynomial functions on
W form the ring kly,...,y,]. The difference is that the G-actions on these
rings are dual. The polynomial functions on W* @& W™ form a ring R = k[z;, yﬁ],
with 1 < j < d and 1 <i < n. Note that in y;- the 7 is a superscript; y;- stands
for the j*" component of the i*" vector. We are not raising anything to the 7*"
power. Our notation for raising to the p'" power, in this article, will be {yé}p.

Lemma 1.2. With the notation as in Notation 1.1, let I C R = k[x;,y}] be the
ideal generated by all {x;,y5 | j > 2}. Then any G—invariant element of R that
lies in the ideal I must vanish. In symbols, I N RE = 0.

Proof. In the G—orbit of any point of W* there is a point (A, 0, --- ,0). Therefore
in the G-orbit of any point of W* @ W™ there is a point whose coordinates are

A I I my
0 | m T 15
0 1 1 1

Now the element of GL(W) given by the diagonal matrix

1 0 --- 0
0 t 0
0 0 t
takes the above to the point
A T It} I

0 | | tw ts tus

2 n

0 tg tug thu
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Taking the limit as ¢ — 0, we have that the closure of any G—orbit must contain
a point of the form

A I It T
0 0 0 0
0 0 0 0

Now any polynomial in the ideal I C R vanishes on the points above. Since
G-invariant polynomials are constant on closures of orbits, any G-invariant
polynomial in I must vanish on all closures of all orbits; in other words, it
must be identically zero. O

Definition 1.3. Let the notation be as in Lemma 1.2. For every 1 <i < n, we
may form the polynomial

Y; = ayyi + Tays + o+ Ty
The Y;’s are obviously G—invariant.

Proposition 1.4. Let the notation be as in Definition 1.3. The subring R® C
R, of all G—invariant polynomials in R, is generated by the Y;’s.

Proof. 1t is easy to prove Proposition 1.4 as a consequence of the First Main
Theorem of classical invariant theory. Instead, we will give an equally easy,
self-contained proof.

The center Z(G) of G, that is the set of non-zero scalar matrices, stabilises
I. Therefore Z(G) acts on R/I. It is very obvious that the Z(G)-invariant
polynomials in R/I are generated by the monomials x,%%, and Y; is congruent
mod I to zyy!.

Take any G-invariant polynomial f € R®. Then f gives a Z(G)-invariant
polynomial modulo I, and by the above paragraph, there exists a polynomial P
in n variables so that f is congruent to P(Y1,...,Y,) mod I. But then

f—PY1,...,Y,)
is a G—invariant element of I, and by Lemma 1.2 it must vanish. O

Lemma 1.5. With the notation as above, the Y; € R® are algebraically inde-
pendent. FEven better: any monomial in {l‘],y;} can occur in the expansion of

at most one monomial YlM1 Y2M2 Y M

Proof. By checking the degrees of the monomials in the vectors (yi,ys, ... ,y})
for different 1. O

Definition 1.6. Suppose now that k is of characteristicp > 0. Put X; = {xj}p.
The ring R = k[z;, y;] contains a subring S = k[X, y;] The ring S is not just
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a subring of R, it is also a G—submodule. In fact, S can be thought of as the
ring of polynomial functions on the G—-module w,W* & W". Here, m,.W™* is the
Frobenius twist of W*. The vector spaces W* and m,W* are identical. A matrix
in GL(d) acts on a vector in m,W* by raising the entries of the matriz to the
p™ power, followed by the usual action on W*.

The polynomials

Vi = X {ui}" + X{u) + -+ X{ul)
= 2f{yi)" +ah{ys) + o+ af{va)

(2

are clearly G—invariant elements of the ring S.

Proposition 1.7. Let the notation be as in Definition 1.6. The subring S¢ C S,
of all G—invariant elements of S, is generated by the Y;’s.

Proof. The ring S = k[X j,y;-} is a subring and G-submodule of R = k:[xj,y]‘]
By Proposition 1.4 we know that R is generated by
Yi =@yt + 2oys + -+ Tqyg-
The ring S¢ is nothing more than the intersection of R® with S.
By Lemma 1.5, the elements Y*' V2 ...V M» ¢ RG have disjoint monomial
expansions. A linear combination of Y'Y, ... Y Mn’s will lie in S if and only

if every term does. Suppose therefore that some YIM1 YQM2 .- Y, Mn belongs to S.
In the expansion of the product, there is a term

n
M M M; ¢, i\ M
1?21{1/5} 1l_le {y1}
i=2

and since this lies in 5, it follows that p must divide M;. By symmetry, p
must divide M; for every ¢. That is, our monomial is really a monomial in
YP =Y. O

Theorem 1.8. There exists a vector space V, and a reductive group G acting
on V', so that the geometric invariant theory map V.— V//G is not separable.

Proof. Put V.=, W* @ W™ as above, with n > d = dim(W). We assert that
the map V' — V//G is not separable. The map corresponds to the inclusion
S¢ c S. We know that S¢ is the polynomial algebra k[Y,...,Y,]. The
derivative of the inclusion S¢ C S takes dY; to

{1} dX, + {y3) dXy + - + {yi} dX,
which is in the linear span of {dX;,dX,,...,dX,}. The image is therefore
contained in a d—dimensional vector subspace of the 1-forms on V. Since the
dimension of V//G is n > d, the map Q%///G — Q}, cannot be generically
injective. O
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