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THE MAP V −→ V//G NEED NOT BE SEPARABLE

Ben Martin and Amnon Neeman

Abstract. We construct a vector space V with a linear action of a reductive group

G such that the quotient map V −→ V//G (in the sense of geometric invariant

theory) fails to be separable. This gives a counterexample to an assertion of

Bardsley and Richardson.

0. Introduction

Let G be a reductive algebraic group, possibly nonconnected, and let X be an
irreducible affine G–variety. Suppose that the ground field k has characteristic
p > 0. In their paper on étale slices in characteristic p, Bardsley and Richardson
claim ([1], Section 2, 2.1.9(b)) that the canonical projection from X to the
quotient X//G is separable. We give a counterexample to show that this map
need not be separable, not even when X is a vector space V and G acts linearly.
Bardsley and Richardson extend Luna’s important Étale Slice Theorem [2] from
characteristic zero to characteristic p. At only one point (see [1], Section 4, 4.3)
do they use the separability of the quotient map. There the group G is finite
and their assertion is justified: for the function field k(X//G) is the whole of
the field of invariants k(X)G of the function field k(X), by [1], Section 4, 4.3.1,
and whenever a group Γ acts on a field K, the extension K/KΓ is separable [3],
IV.1, Lemma 1.5. The main results of [1], therefore, remain valid.

Separability questions come up when one tries to generalise or strengthen the
results of Bardsley and Richardson’s [1]. A major interest of the counterexample
presented here is that it indicates limits on any possible Luna slice theorem
in characteristic p > 0. The first author will explore this point further in a
forthcoming paper.

Throughout this article, k will be an algebraically closed field. We denote by
X//G the quotient of X by G in the sense of geometric invariant theory; see [1]
for details.
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1. The counterexample

Notation 1.1. Let W be a finite dimensional vector space over k, of dimension
d = dim(W ) ≥ 2. Let G = GL(W ) be the group of all linear automorphisms of
W . Let W ∗ be the dual of W , with the usual G–action. For any integer n > 0,
we let Wn stand for the direct sum W ⊕W ⊕· · ·⊕W of n copies of W . We first
wish to consider the G–module W ∗ ⊕ Wn.

This G–module is naturally an affine variety. Choose a basis (x1, x2, . . . , xd)
for W , and take the natural dual basis (y1, y2, . . . , yd) for W ∗. The polynomial
functions on W ∗ form the ring k[x1, . . . , xd], while the polynomial functions on
W form the ring k[y1, . . . , yd]. The difference is that the G–actions on these
rings are dual. The polynomial functions on W ∗⊕Wn form a ring R = k[xj , y

i
j ],

with 1 ≤ j ≤ d and 1 ≤ i ≤ n. Note that in yi
j the i is a superscript; yi

j stands
for the jth component of the ith vector. We are not raising anything to the ith

power. Our notation for raising to the pth power, in this article, will be {yi
j}p.

Lemma 1.2. With the notation as in Notation 1.1, let I ⊂ R = k[xj , y
i
j ] be the

ideal generated by all {xj , y
i
j | j ≥ 2}. Then any G–invariant element of R that

lies in the ideal I must vanish. In symbols, I ∩ RG = 0.

Proof. In the G–orbit of any point of W ∗ there is a point (λ, 0, · · · , 0). Therefore
in the G–orbit of any point of W ∗ ⊕ Wn there is a point whose coordinates are




λ

0
...
0


 ;




µ1
1

µ1
2
...

µ1
d


 ,




µ2
1

µ2
2
...

µ2
d


 , · · · ,




µn
1

µn
2
...

µn
d




Now the element of GL(W ) given by the diagonal matrix




1 0 · · · 0
0 t · · · 0
...

...
...

0 0 · · · t




takes the above to the point




λ

0
...
0


 ;




µ1
1

tµ1
2
...

tµ1
d


 ,




µ2
1

tµ2
2
...

tµ2
d


 , · · · ,




µn
1

tµn
2
...

tµn
d
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Taking the limit as t −→ 0, we have that the closure of any G–orbit must contain
a point of the form




λ

0
...
0


 ;




µ1
1

0
...
0


 ,




µ2
1

0
...
0


 , · · · ,




µn
1

0
...
0




Now any polynomial in the ideal I ⊂ R vanishes on the points above. Since
G–invariant polynomials are constant on closures of orbits, any G–invariant
polynomial in I must vanish on all closures of all orbits; in other words, it
must be identically zero.

Definition 1.3. Let the notation be as in Lemma 1.2. For every 1 ≤ i ≤ n, we
may form the polynomial

Yi = x1y
i
1 + x2y

i
2 + · · · + xdy

i
d.

The Yi’s are obviously G–invariant.

Proposition 1.4. Let the notation be as in Definition 1.3. The subring RG ⊂
R, of all G–invariant polynomials in R, is generated by the Yi’s.

Proof. It is easy to prove Proposition 1.4 as a consequence of the First Main
Theorem of classical invariant theory. Instead, we will give an equally easy,
self-contained proof.

The center Z(G) of G, that is the set of non-zero scalar matrices, stabilises
I. Therefore Z(G) acts on R/I. It is very obvious that the Z(G)–invariant
polynomials in R/I are generated by the monomials x1y

i
1, and Yi is congruent

mod I to x1y
i
1.

Take any G–invariant polynomial f ∈ RG. Then f gives a Z(G)–invariant
polynomial modulo I, and by the above paragraph, there exists a polynomial P

in n variables so that f is congruent to P (Y1, . . . , Yn) mod I. But then

f − P (Y1, . . . , Yn)

is a G–invariant element of I, and by Lemma 1.2 it must vanish.

Lemma 1.5. With the notation as above, the Yi ∈ RG are algebraically inde-
pendent. Even better: any monomial in {xj , y

i
j} can occur in the expansion of

at most one monomial Y M1
1 Y M2

2 · · ·Y Mn
n .

Proof. By checking the degrees of the monomials in the vectors (yi
1, y

i
2, . . . , yi

d)
for different i.

Definition 1.6. Suppose now that k is of characteristic p > 0. Put Xj = {xj}p.
The ring R = k[xj , y

i
j ] contains a subring S = k[Xj , y

i
j ]. The ring S is not just
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a subring of R, it is also a G–submodule. In fact, S can be thought of as the
ring of polynomial functions on the G–module π∗W ∗ ⊕ Wn. Here, π∗W ∗ is the
Frobenius twist of W ∗. The vector spaces W ∗ and π∗W ∗ are identical. A matrix
in GL(d) acts on a vector in π∗W ∗ by raising the entries of the matrix to the
pth power, followed by the usual action on W ∗.

The polynomials

Y i = X1{yi
1}

p
+ X2{yi

2}
p

+ · · · + Xd{yi
d}

p

= xp
1{yi

1}
p

+ xp
2{yi

2}
p

+ · · · + xp
d{yi

d}
p

= Y p
i

are clearly G–invariant elements of the ring S.

Proposition 1.7. Let the notation be as in Definition 1.6. The subring SG ⊂ S,
of all G–invariant elements of S, is generated by the Y i’s.

Proof. The ring S = k[Xj , y
i
j ] is a subring and G–submodule of R = k[xj , y

i
j ].

By Proposition 1.4 we know that RG is generated by

Yi = x1y
i
1 + x2y

i
2 + · · · + xdy

i
d.

The ring SG is nothing more than the intersection of RG with S.
By Lemma 1.5, the elements Y M1

1 Y M2
2 · · ·Y Mn

n ∈ RG have disjoint monomial
expansions. A linear combination of Y M1

1 Y M2
2 · · ·Y Mn

n ’s will lie in S if and only
if every term does. Suppose therefore that some Y M1

1 Y M2
2 · · ·Y Mn

n belongs to S.
In the expansion of the product, there is a term

xM1
2 {y1

2}M1
n∏

i=2

xMi
1 {yi

1}
Mi

and since this lies in S, it follows that p must divide M1. By symmetry, p

must divide Mi for every i. That is, our monomial is really a monomial in
Y p

i = Y i.

Theorem 1.8. There exists a vector space V , and a reductive group G acting
on V , so that the geometric invariant theory map V −→ V//G is not separable.

Proof. Put V = π∗W ∗ ⊕ Wn as above, with n > d = dim(W ). We assert that
the map V −→ V//G is not separable. The map corresponds to the inclusion
SG ⊂ S. We know that SG is the polynomial algebra k[Y 1, . . . , Y n]. The
derivative of the inclusion SG ⊂ S takes dY i to

{yi
1}

p
dX1 + {yi

2}
p
dX2 + · · · + {yi

d}
p
dXd

which is in the linear span of {dX1, dX2, . . . , dXd}. The image is therefore
contained in a d–dimensional vector subspace of the 1–forms on V . Since the
dimension of V//G is n > d, the map Ω1

V//G −→ Ω1
V cannot be generically

injective.
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