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HARMONIC MAPS AND THE TOPOLOGY OF
CONFORMALLY COMPACT EINSTEIN MANIFOLDS

Naichung C. Leung∗ and Tom Y. H. Wan∗∗

Abstract. We study the topology of a complete asymptotically hyperbolic Ein-
stein manifold of which its conformal boundary has positive Yamabe invariant.
We prove that all maps from such manifold into any nonpositively curved mani-
fold are homotopically trivial. Our proof is based on a Bochner type argument on
harmonic maps.

Introduction

While studying the AdS/CFT correspondence in physics, Witten and Yau
[15] proved that for any conformally compact Einstein manifold (Mn+1, g) with
Ric = −ng and a conformal infinity of positive scalar curvature, one has
Hn (M, Z) = 0. In particular, the conformal boundary of such manifold is con-
nected. This result has opened up a new and exciting direction in geometric
analysis. Since then, there have been several different proofs of the Witten-Yau
Theorem by Anderson [1], Cai and Galloway [2] and X. Wang [13, 14].

In terms of homotopy theory, the above result can be expressed as[
(M, ∂M), (S1, ∗)] = 1,

i.e., any continuous map from M to S
1 which maps the boundary into the marked

point is homotopic to the constant map. So it is natural, from the point of view
of harmonic maps, to ask whether the same is true if we replace S

1 by any
nonpositively curved manifold. We answered this question affirmatively. More
precisely, we have:

Theorem 1. Let (Mn+1, g), n ≥ 2, be a conformally compact Einstein manifold
of order C3,α with Ricg = −ng such that the conformal infinity of M has positive
Yamabe invariant. Suppose that N is a compact nonpositively curved manifold.
Then the homotopy classes [(M, ∂M), (N, ∗)] are trivial.

In case that Ric ≥ 0, the usual Bochner technique on harmonic maps is a
standard tool in proving similar types of theorems. When Ric = −ng, there is a
Matsushima formula, a version of Bochner type formula, which can be used to
obtain vanishing results under special situations. For example, Jost-Yau [5] and
Mok-Siu-Yeung [11] used this idea to obtain superrigidity results. In [13, 14], X.
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Wang showed that the lower bound on the smallest L2-eigenvalue can be used
to balance the negativity of the Ricci curvature in the Bochner argument and
hence, a new proof of the Witten-Yau Theorem via the result on the smallest
eigenvalue by J. Lee [7]. Moreover, he found the sharp lower bound on the
eigenvalue such that the method works. We want to remark that Lee’s result is
an estimate on the eigenvalue by the boundary geometry. Hence, this method is
in fact using the boundary geometry to absorb the Ricci curvature term. This
idea is also first introduced and used by Witten and Yau in [15]. Recently, P.
Li and J. Wang [8] were able to show that without assuming the manifold is
conformally compact, the conditions Ric ≥ −n and λ ≥ n − 1 are sufficient
to prove that the manifold has only one end of infinite volume or it is a wrap
product.

We extend X. Wang’s arguments to harmonic maps and generalize his result
in this paper. Suppose that

(
Mn+1, g

)
is a conformally compact manifold of

order Ck,α, i.e. there exists a smooth defining function t for ∂M on M̄ such that
ḡij = t2gij defines a metric on M̄ which is Ck,α up to the boundary. By a defining
function t, we mean t > 0 in M and t vanishes to first order on ∂M . If g satisfies
the Einstein equation Ric = −ng and is regular enough, then |∇t|ḡ = 1 on ∂M .
Since the sectional curvature is asymptotic to −|∇t|2ḡ on ∂M for conformally
compact metric [10], the Einstein metric g is asymptotically hyperbolic according
to Lee’s terminology (called “weakly asymptotically hyperbolic” by X. Wang).
By denoting the first L2-eigenvalue of M as λg, we can now state our main
results in which M is not necessarily Einstein.

Theorem 2. Suppose that (Mn+1, g), n ≥ 2, is an asymptotically hyperbolic
conformally compact manifold of order C1 such that

Ricg ≥ −ng and λg ≥ n − 1.

Suppose that f : M → N is a smooth harmonic map of finite total energy from
M into a complete nonpositively curved manifold N . If λg > n − 1, then f is a
constant map. If λg = n − 1, then either f is a constant map or M = R × Σ
with the warped product metric g = dt2 + cosh2(t)h, where (Σ, h) is a compact
manifold with Rich ≥ −(n − 1).

After finishing the first draft of this paper, the second author was told by P.
Li that, using the method in [8], Theorem 2 remains true without assuming the
conformally compactness of the manifold M if the harmonic map is assumed to
be asymptotically constant at infinity.

Combining Theorem 2 with results of Li-Tam [9] and Liao-Tam [6] concerning
harmonic map heat flow, we can prove the corresponding topological result for
such a manifold easily. Finally, together with Lee’s result [7], we can generalize
the Witten-Yau Theorem as stated precisely in Theorem 1.

To prove Theorem 2, we proceed as in [13, 14] and consider the (n − 1)/2n-
power of the energy density. The technical part is to show that under our
assumption, this power of energy density still belongs to L1,2(M). Our method
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is to show that the energy decay is sufficiently fast, as precisely state in Lemma
1.1. This decay Lemma may be interesting in itself.

This paper is arranged as follows: In section 1, we first study the decay rate
of the energy for harmonic maps with finite total energy on each end and prove
a couple of lemmas which are needed in the proof of our theorems. We will prove
our main theorem in section 2, and apply it in section 3 to prove the desired and
other topological theorems.

1. Energy decay of harmonic maps with finite total energy

Let (Mn+1, g) be an asymptotically hyperbolic conformally compact mani-
fold of order C1. Its boundary components and the corresponding ends will be
denoted by Σi

0 = ∂M i and Ei respectively. Under our assumption, there ex-
ists a special defining function t in the following sense [4]: each end Ei can be
parametrized by (t, x) such that the metric can be written as

g = t−2
(
dt2 + h(t, x)

)
,

(i.e. ḡ = dt2 + h) where x ∈ Σi
0, t > 0 is small and h(t, ·) is a family of metric

defined on Σi
0.

For any 0 < t1 < t2 sufficiently small, we define

Ei
t1 = {p ∈ Ei : 0 < t(p) < t1},

Ai
t1,t2 = {p ∈ Ei : t1 < t(p) < t2},

Σi
t1 = {p ∈ Ei : t(p) = t1},

and

Mt1 = M \ ∪iE
i
t1 .

In order to simplify notations, we will omit the superscript i and write Et1 ,
At1,t2 , or Σt1 if we are working on a fixed end.

Lemma 1.1. Suppose that Mn+1, n ≥ 2, is a conformally compact manifold of
order C1 with Ric ≥ −n and N is a complete nonpositively curved manifold. Let
f : Et0 → N be a smooth harmonic map from an end Et0 ⊂ M into N of finite
total energy. Then ∫

Et

|∇f |2 = O (tn) as t → 0.

Proof. We may assume that t0 > 0 is sufficiently small so that Et0 is param-
etrized by (t, x), where x belongs to the corresponding boundary component Σ0

and t ∈ (0, t0).
By straightforward calculations and the harmonicity of f , one has the follow-

ing conservation law: for any smooth vector field X on Et0 ,∫
∂Aτ,t

1
2
|∇f |2〈X, n〉dσ =

∫
∂Aτ,t

〈df(X), df(n)〉dσ +
∫

Aτ,t

〈Sf ,∇X〉,
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where Sf = 1
2 |∇f |2g − f∗ds2

N is the stress-energy tensor of f . There is a distin-
guished vector field X = −t ∂

∂t on Et0 and the conservation law applied to this
X gives ∫

Στ

1
2
|∇f |2

〈
−τ

∂

∂t
,−τ

∂

∂t

〉
dστ +

∫
Σt

1
2
|∇f |2

〈
−t

∂

∂t
, t

∂

∂t

〉
dσt

=
∫

Aτ,t

〈Sf ,∇X〉 +
∫

Στ

〈
df

(
−τ

∂

∂t

)
, df

(
−τ

∂

∂t

)〉
dστ

+
∫

Σt

〈
df

(
−t

∂

∂t

)
, df

(
t
∂

∂t

)〉
dσt.

That is,

1
2

∫
Στ

|∇f |2dστ − 1
2

∫
Σt

|∇f |2dσt

=
∫

Στ

τ2

∣∣∣∣∂f

∂t

∣∣∣∣
2

dστ −
∫

Σt

t2
∣∣∣∣∂f

∂t

∣∣∣∣
2

dσt +
∫

Aτ,t

〈Sf ,∇X〉.(1.1)

For a fixed point p = (t, x) ∈ Et0 , one can choose a normal coordinates xi,
i = 1, . . . , n, of the metric h(t, ·) centered at p. Then e0 = t ∂

∂t , ei = t ∂
∂xi ,

i = 1, . . . , n, forms an orthonormal basis at p. By straightforward calculations,

∇e0X ≡ 0 and ∇eiX = ei − t

2
hjk ∂hki

∂t
ej .

Therefore, at p,

divX = n − t

2
Trh

(
h−1 ∂h

∂t

)
and

〈∇eiX, ej〉 = δij − t

2
∂hij

∂t

for i, j = 1, . . . , n. Hence at p,

〈Sf ,∇X〉 =
n∑

A,B=0

Sf (eA, eB) 〈∇eA
X, eB〉

=
1
2
|∇f |2divX −

n∑
A,B=0

〈df(eA), df(eB)〉 〈∇eA
X, eB〉

=
1
2
|∇f |2

[
n − t

2
Trh

(
h−1 ∂h

∂t

)]

−
n∑

i,j=0

〈df(ei), df(ej)〉
(

δij − t

2
∂hij

∂t

)

=
1
2
|∇f |2

[
n − t

2
Trh

(
h−1 ∂h

∂t

)]
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−
n∑

i=1

|df(ei)|2 +
t

2
〈df(ei), df(ej)〉∂hij

∂t
.(1.2)

By the assumption on g, we first observe that

|〈Sf ,∇X〉| ≤ C|∇f |2

and hence |〈Sf ,∇X〉| is integrable since f has finite total energy. So, we can let
τ in equation (1.1) tend to 0. As in [13, 14], we can also choose a sequence of
τ ’s tending to 0, such that∫

Στ

|∇f |2 → 0 as τ → 0.

So, we conclude that for all t ∈ (0, t0),∫
Et

〈Sf ,∇X〉 =
∫

Σt

t2
∣∣∣∣∂f

∂t

∣∣∣∣
2

dσt − 1
2

∫
Σt

|∇f |2dσt.(1.3)

Secondly, the assumption on g and (1.2) together imply that there exist t1 ∈
(0, t0) and C1 > 0, such that for any t ∈ (0, t1),

〈Sf ,∇X〉 ≥ n − C1t

2
|∇f |2 − (1 + C1t)

n∑
i=1

|df(ei)|2

=
n − C1t

2
t2

∣∣∣∣∂f

∂t

∣∣∣∣
2

+
n − 2 − 3C1t

2

n∑
i=1

|df(ei)|2.

To simplify notation, we write

|∇tf |2 = t2
∣∣∣∣∂f

∂t

∣∣∣∣
2

and |∇xf |2 =
n∑

i=1

|df(ei)|2.

Putting these into (1.3), we have

n − C1t

2

∫
Et

|∇tf |2 +
n − 2 − 3C1t

2

∫
Et

|∇xf |2

≤ 1
2

∫
Σt

t2|∇tf |2dσt − 1
2

∫
Σt

|∇xf |2dσt.(1.4)

If we further write

F (t) =
∫

Et

|∇tf |2 and G(t) =
∫

Et

|∇xf |2

and note that

tF ′(t) =
∫

Σt

|∇tf |2dσt and tG′(t) =
∫

Σt

|∇xf |2dσt,

then the above inequality becomes

(n − C1t)F + (n − 2 − 3C1t)G ≤ tF ′ − tG′.
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This immediately implies
d

dt

[
tn−2e−3C1t (F − G)

] ≥ (2n − 2 − 4C1t)tn−3e−3C1tF.

So if we set t2 = min{t1, 1/2C1}, then for all t ∈ (0, t2),

d

dt

[
tn−2e−3C1t (F − G)

] ≥ 0.

As f has finite total energy, limt→0 F (t) = limt→0 G(t) = 0, and hence

F (t) ≤ G(t) ∀ t ∈ (0, t2).

Put this back into (1.4), we first have

tF ′ ≥ (n − 4C1t)F for n = 2.

And then for n ≥ 3, one simply drops the term that involve G and conclude that

tF ′ ≥ (n − C1t)F ≥ (n − 4C1t)F.

Hence, in all cases,
d

dt

(
t−ne4C1tF (t)

) ≥ 0.

Integrating this inequality from t to t2, we see that there is a constant C > 0
such that

F (t) ≤ Ctn ∀ t ∈ (0, t2).

Together with G ≤ F , we have∫
Et

|∇f |2 ≤ 2Ctn

and the proof of the lemma is completed.

Lemma 1.2. Let f be a smooth harmonic map from an (n + 1)-dimensional
manifold, then

|∇2f |2 ≥
(

1 +
1
n

)
|∇|∇f ||2.

Proof. With respect to normal coordinates, we have
∑

i fα
ii = 0 at the center.

Then for each α, one can show, as in the gradient estimate in [12], that

|∇2fα|2 ≥
(

1 +
1
n

)
|∇|∇fα||2.

Therefore,

|∇|∇f ||2 =

∣∣∣∣∣∣∇
√∑

α

|∇fα|2
∣∣∣∣∣∣
2

=

∣∣∣∣∣
∑

α |∇fα|∇|∇fα|√∑
α |∇fα|2

∣∣∣∣∣
2
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≤
∑
α

|∇|∇fα||2

≤
(

1 +
1
n

)−1 ∑
α

∣∣∇2fα
∣∣2

=
(

1 +
1
n

)−1 ∣∣∇2f
∣∣2 .

Lemma 1.3. Let M , N be as in Lemma 1.1 and f : M → N be a smooth
harmonic map with finite total energy, then∫

M

|∇|∇f ||2 < +∞.

Proof. We only need to show this on one of the end Et1 . Let η be a smooth
cutoff function such that 0 ≤ η ≤ 1, η(β) ≡ 1 for β ∈ (0, 1], suppη ⊂ [0, 2), and
|η′| ≤ C for some absolute constant C > 0. Then for any r > 0, consider the
function on Et1 defined by

φ(x, t) = η

(
1
r

∣∣∣∣log
t1
t

∣∣∣∣
)

.

Then 0 ≤ φ ≤ 1, φ(·, t) ≡ 1 for all t ∈ [e−rt1, t1], φ(·, t) ≡ 0 for all t ∈ (0, e−2rt1],

and |∇φ|2 = t2
(

∂φ

∂t

)2

≤ C2

r2
. Then, multiplying φ2 by the Bochner formula of

f and integrating, one obtains
1
2

∫
Et1

φ2∆|∇f |2 ≥
∫

Et1

φ2|∇2f |2 − n

∫
Et1

φ2|∇f |2.

By Lemma 1.2, we have(
1 +

1
n

) ∫
Et1

φ2 |∇|∇f ||2 ≤ n

∫
Et1

φ2|∇f |2 − 2
∫

Et1

φ|∇f |∇φ · ∇|∇f |

+
t1
2

∫
Σt1

∣∣∣∣ ∂

∂t
|∇f |2

∣∣∣∣
≤ n

∫
Et1

φ2|∇f |2 +
∫

Et1

φ2 |∇|∇f ||2

+
∫

Et1

|∇φ|2|∇f |2 +
t1
2

∫
Σt1

∣∣∣∣ ∂

∂t
|∇f |2

∣∣∣∣ .

This implies

1
n

∫
Ae−rt1,t1

|∇|∇f ||2 ≤
(

n +
C2

r2

) ∫
Et1

|∇f |2 +
t1
2

∫
Σt1

∣∣∣∣ ∂

∂t
|∇f |2

∣∣∣∣ .

Letting r → ∞, we conclude that
∫

Et1
|∇|∇f ||2 < +∞ which completes the

proof of the lemma.
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2. Vanishing Theorem of Harmonic Maps

We will prove Theorem 2 in this section. As we mentioned in the introduction,
we proceed as in [13, 14] and consider the (n−1)/2n-power of the energy density.
The technical part is to show that, under our assumption, this power of the
energy density still belongs to L1,2(M).

Proof of Theorem 2. Let us consider the function

ζ = |∇f |β .

We first prove that for β > 1/2, ζ ∈ L2(M).
For each fixed end Et1 , we set tk = 2−k+1t1 and consider the integral of ζ2

on the annulus Atk+1,tk
. Then the Hölder inequality implies that∫

Atk+1,tk

ζ2 =
∫

Atk+1,tk

|∇f |2βdvg

≤
(∫

Atk+1,tk

|∇f |2dvg

)β (∫
Atk+1,tk

dvg

)1−β

≤
(∫

Atk+1,tk

|∇f |2dvg

)β (
sup

0<t<t1

volh(Σt)
∫ tk

tk+1

dt

tn+1

)1−β

≤
(

sup0<t<t1 volh(Σt)
n

)1−β
(∫

Atk+1,tk

|∇f |2
)β

· t−n(1−β)
k+1 .

By Lemma 1.1,∫
Atk+1,tk

ζ2 ≤ C

(
sup0<t<t1 volh(Σt)

n

)1−β

tnβ
k · t−n(1−β)

k+1

≤ C1

(
sup0<t<t1 volh(Σt)

n

)1−β (
2−γ

)k
,

for some constants C and C1 > 0 independent of k and β, and

γ = nβ − n(1 − β) = n(2β − 1) > 0.

Hence for all K > 0,∫
AtK+1,t1

ζ2 ≤ C1

(
sup0<t<t1 volh(Σt)

n

)1−β 1
1 − 2−γ

.

Since the upper bound is independent of K, we have proved that∫
Et1

ζ2 ≤ C1

(
sup0<t<t1 volh(Σt)

n

)1−β 1
1 − 2−γ

.(2.1)

As the end Et1 is arbitrary, this proves that ζ ∈ L2(M).
Now we consider a differential inequality of ζ which is a direct consequence of

the Bochner formula of f and Lemma 1.2. To simplify notation, we use KN ≤ 0
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to denote the curvature term of N in the Bochner formula, which is in the order
of |∇f |4. In this notation, the inequality becomes

∆ζ2 ≥ 2
β

(
1
n

+ 2β − 1
)
|∇ζ|2 − 2nβζ2 − ζ−

2(1−β)
β KN .

With this inequality and ζ ∈ L2(M), we conclude as in the proof of Lemma 1.3
that |∇ζ|2 is also integrable. Hence ζ ∈ L1,2(M).

Integrating “by parts” the above inequality on Mt, one obtains

−
∫
∪iΣi

t

t
∂

∂t
ζ2dσt ≥ 2

β

(
1
n

+ 2β − 1
) ∫

Mt

|∇ζ|2 − 2nβ

∫
Mt

ζ2

−
∫

Mt

ζ−
2(1−β)

β KN .

The left hand side can be estimated as follows:∣∣∣∣∣
∫
∪iΣi

t

t
∂

∂t
ζ2dσt

∣∣∣∣∣ ≤ 2
∫
∪iΣi

t

ζ2dσt + 2
∫
∪iΣi

t

|∇ζ|2dσt.

Therefore, since ζ ∈ L1,2(M), one can choose a sequence of t’s tending to 0, as
in [13, 14], such that ∣∣∣∣∣

∫
∪iΣi

t

t
∂

∂t
ζ2dσt

∣∣∣∣∣ → 0.

As a consequence,

−
∫

M

ζ−
2(1−β)

β KN +
2
β

(
1
n

+ 2β − 1
) ∫

M

|∇ζ|2 ≤ 2nβ

∫
M

ζ2.(2.2)

If f is not a constant map, then ζ �≡ 0 and hence

λg ≤ nβ2

1
n + 2β − 1

.

Since (n − 1)/n > 1/2 for n ≥ 3, by letting β = (n − 1)/n in this case, we have

λg ≤ n − 1.

Therefore, if λg > n − 1, then f must be a constant map. If λg = n − 1, then
inequality (2.2) implies that N is flat. Then the result follows from X. Wang’s
result [13, 14].

If n = 2, Cheng’s result [3] implies that λg = n − 1 = 1. Hence∫
M

|∇ζ|2 ≥
∫

M

ζ2.

Putting this into (2.2), one obtains, by taking β = 1
2 + δ with any δ > 0,

−
∫

M

ζ−
2(1−β)

β KN ≤ 8δ2

1 + 2δ

∫
M

ζ2.
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To estimate
∫

M
ζ2, we fix a sufficiently small t1 > 0 and note that∫

M

ζ2 =
∫

Mt1

ζ2 +
∫
∪iE

(i)
t1

ζ2.

By sub-mean value property, |∇f |2 is uniformly bounded and, hence, there is
constant C > 0 such that∫

Mt1

ζ2 =
∫

Mt1

|∇f |1+2δ ≤ C

for sufficiently small δ > 0. For the second term, we apply (2.1) to each E
(i)
t1

and get ∫
∪iE

(i)
t1

ζ2 ≤ C1V
1
2−δ 1

1 − 2−4δ
,

where V = supi

(
sup0<t<t1 volh(Σ(i)

t )/2
)
. Since 1/(1 − 2−4δ) → +∞ as δ → 0,

we have

−
∫

M

ζ−
2(1−β)

β KN ≤ C2V
1
2−δ 1

1 − 2−2δ
· 8δ2

1 + 2δ
,

for some C2 > 0. Since the upper bound tends to 0 as δ → 0, we conclude again
that N is flat and the result follows as above. This completes the proof of the
Theorem 2.

3. Application to asymptotically hyperbolic Einstein manifolds

As an application of our vanishing theorem, we first prove the following topo-
logical theorem.

Theorem 3.1. Suppose that (Mn+1, g), n ≥ 2, is an asymptotically hyperbolic
conformally compact manifold of order C1 such that

Ricg ≥ −ng and λg ≥ n − 1

Then for any nonpositively curved compact manifold N , the homotopy classes in
[(M, ∂M), (N, ∗)] are trivial or M slpits as R×Σ for some compact manifold Σ.

Proof. Since M is conformally compact, (M, ∂M) is homotopy equivalent to
(M \ (∪Ei

t),∪Σi
t) for sufficiently small t. Therefore, in each class, we can find

a smooth representative g : M → N which maps each end Ei
t into the marked

point ∗. Thus g has bounded energy density and bounded image. Hence by [9],
the harmonic map heat flow has a unique solution. Also the square norm of the
tension field of g is in Lp for p > 1 and tends to 0 near the boundary. The results
in [9] imply that the heat flow converges to a harmonic map f with the same
boundary data as g. So, f is also a representative of the class [g]. (In particular,
f is asymptotically constant on each end.) On the other hand, using the result
in [6], g has finite total energy, and the uniqueness implies that f also has finite
total energy. Therefore, Theorem 2 immediately implies that either M splits or
f must be a constant and hence the homotopy class is trivial.
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The above theorem includes the following results of [13, 14].

Corollary 3.2. Let (M, g) as in theorem 3.1, then Hn(M, Z) = 0 and in par-
ticular the conformal infinity is connected.

As we mentioned in the introduction, all of the above application and study
are motivated by the results of [15]. We are now ready to prove the promised
generalization (Theorem 1) which is an immediate consequence of Theorem 3.1

Proof of theorem 1. By Lee’s theorem [7], M has eigenvalue λ = n2/4 which is
strictly greater than n−1 if n ≥ 3. Therefore, by Theorem 3.1, the claim follows.
If n = 2, Theorem 3.1 implies that either the claim is true or the manifold splits.
As the boundary is assumed to have positive Yamabe invariant, the warped
product metric cannot be negative Einstien. Hence the theorem is also true for
this case.

Corollary 3.3. Let (Mn+1, g), n ≥ 2, be a conformally compact Einstein man-
ifold with Ricg = −ng. Suppose that the conformal infinity of M has positive
Yamabe invariant, then Hn(M, Z) = 0 and, in particular, the conformal infinity
is connected.

Proof. This follows immediately from Theorem 1 and basic results in algebraic
topology.

Finally, we apply Theorem 1 to prove a nonexistence theorem for Einstein
manifolds in the situation of AdS/CFT correspondence.

Theorem 3.4. Suppose that Nn+1, n ≥ 2, is a compact manifold which support
a nonpositively curved metric. Then for any embedded disc D ⊂ N , the manifold
M = N \D has no asymptotically hyperbolic conformally compact metric of order
C1 satisfying Ric ≥ −n and λ ≥ n − 1.

Proof. It is obvious that [(M, ∂M), (N, ∗)] is nontrivial for any point ∗ ∈ D and
M does not split. Therefore, the existence of such metric contradicts Theorem 1.

Theorem 3.5. Suppose that Nn+1, n ≥ 2, is a compact manifold which sup-
ports a nonpositively curved metric. Then for any embedded disc D ⊂ N , the
manifold M = N \D has no conformally compact Einstein metric of order C3,α

satisfying Ric = −n.

Proof. Since ∂M = ∂D has positive Yamabe invariant, if there exists a confor-
mally compact Einstein metric of order C3,α with Ric = −n, then Lee’s theorem
[7] implies that λ = n2/4, which is greater than n − 1 for n ≥ 3. This is impos-
sible, by Theorem 3.4. If n = 2, then the manifold splits with the given form of
warped product metric. The negativity of this Einstein metric contradicts the
fact that the ∂M has positive Yamabe invariant.



812 NAICHUNG C. LEUNG AND TOM Y. H. WAN

Acknowledgment

The first author would like to thank J. P. Wang for useful discussions. The
second author would like to thank P. Li, R. Schoen and L.-F. Tam for helpful
discussions, X. Wang for sending us his papers and thesis, and also T. Au, K. S.
Chou, J. Wolfson and D. Pollack for their interest in the problem. This joint
work was started during the first author’s visit to the Institute of Mathematical
Science of the Chinese University of Hong Kong, and we would like to thank the
institute for giving us this chance to work together.

References

[1] M. Anderson, Boundary regularity, uniqueness and non-uniqueness for AH Einstein met-
rics on 4-manifolds, math.DG/0104171.

[2] M. Cai & G.J. Galloway, Boundaries of zero scalar curvature in the AdS/CFT correspon-
dence, hep-th/0003046.

[3] S. Y. Cheng, Eigenvalue comparison theorems and its geometric applications, Math. Z.
143 (1975), no. 3, 289–297.

[4] C. R. Graham & J. M. Lee, Einstein metrics with prescribed conformal infinity on the
ball, Adv. Math. 87 (1991), no. 2, 196–225.

[5] J. Jost & S.-T. Yau, Harmonic maps and superrigidity. Tsing Hua lectures on geometry
& analysis (Hsinchu, 1990–1991), 213–246, Internat. Press, Cambridge, MA, 1997.

[6] G. G. Liao & L.-F. Tam, On the heat equation for harmonic maps from non-compact
manifolds, Pacific J. Math. 153 (1992), no. 1, 129–145.

[7] J. M. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal.
Geom. 3, no. 2 (1995), 253–271.

[8] P. Li & J. Wang, Complete manifolds with positive spectrum, preprint (2001).
[9] P. Li & L.-F. Tam, The heat equation and harmonic maps of complete manifolds, Invent.

Math. 105, (1991) 1-46.
[10] R. R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential

Geom. 28 (1988), no. 2, 309–339.
[11] N. Mok, Y.T. Siu & S.-K. Yeung, Geometric superrigidity, Invent. Math. 113 (1993),

no. 1, 57–83.
[12] R. Schoen & S.-T. Yau, Lectures on Differential Geometry, Conference Proceedings and

Lecture Notes in Geometry and Topology, I. International Press, Cambridge, MA, 1994.
[13] X. Wang, On the geometry of conformally compact Einstein manifolds, PhD. thesis,

Stanford University, 2001.
[14] X. Wang, On conformally compact Einstein manifolds, preprint 2001.
[15] E. Witten & S.-T. Yau Connectedness of the boundary in the ADS/CFT correspondence,

Adv. Theor. Math. Phys. 3 (1999), no. 6, 1635-1655 (2000); hep-th/9910245.

School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA.
E-mail address: leung@math.umn.edu

Department of Mathematics, The Chinese University of Hong Kong, Shatin, N.T.,
Hong Kong.

E-mail address: tomwan@math.cuhk.edu.hk


