
Mathematical Research Letters 8, 789–800 (2001)

OSCILLATORY INTEGRALS RELATED TO CARLESON’S
THEOREM

Elias M. Stein and Stephen Wainger

1. Introduction

The famous theorem of Carleson, in the n-dimensional form given it by Sjölin
[Sj] is the following maximal estimate:

Suppose K is an appropriate Calderón-Zygmund kernel in R
n, and let

Tλ(f)(x) =
∫

Rn

eiλ·y K(y) f(x − y) dy,(1.1)

where λ = (λ1, λ2, · · ·λn) ∈ R
n. Then the mapping f �→ sup

λ∈Rn

|Tλ(f)(x)| is

bounded on L2(Rn).

It is natural to want to put this result in a broader context. One formulation
that suggests itself is to replace the linear form λ · y occuring in the exponen-
tial above by a real polynomial Pλ(y) =

∑
1≤|α|≤d

λαyα of fixed degree d, and

now define the corresponding maximal operator by taking the sup over all the
coefficients λ = (λα), that is with each λα ranging over R.

What are the chances that such a wider result holds? There are a num-
ber of specific facts that suggests that this may be true. First is the situa-
tion which occurs when, in effect, the “stopping times” involved are themselves
polynomials in x. This means we consider operators of the form T (f)(x) =∫

Rn

eiP (x,y) K(y) f(x − y) dy, where P (x, y) is a real polynomial on R
n × R

n.

The L2 boundedness of these operators (with bounds that depend only on the
degree of P and not its coefficients) is known ([RS]), and these occur in the study
of singular integrals on nilpotent groups.

In another direction, the special case when n = 1, d = 2, and P (y) = λy2

(with no lower term) was proved in [St1]. the argument given there was based
in part on a good asymptotic formula for the Fourier transform of the kernel
eiλy2

/y; however, this approach would not seem susceptible to easy extension.
To attack the more general problem we need a different approach, and this is

what we want to present below.
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Our results will be of a general character, save for one significant reservation:
we shall consider all real polynomials Pλ(y) =

∑
2≤|α|≤d

λαyα in R
n, of degree ≤ d,

but with the restriction that they have no first-order terms.

With Tλ(f)(x) =
∫

Rn

eiPλ(y) K(y) f(x − y) dy , we shall prove that the map-

ping

f −→ sup
λ

|Tλ(f)(x)|

is bounded on L2(Rn).
As we have indicated, the proof of this result will not be based on the analysis

of the Fourier transform of eiPλ(y) K(y), but instead we will reduce matters to a
corresponding maximal oscillatory estimate which would seem to be of interest
in its own right. This maximal theorem can be stated as follows.

Let ϕ be a suitable “bump” function supported in the unit ball, and denote
eiPλ(y) ϕ(y) by Φλ(y). Write Φλ

a for Φλ
a(y) = a−n Φλ(y/a), when a > 0. Then

the maximal operator

f → sup
|λ|≥r, a>0

|(f ∗ Φλ
a)(x)| ,

has a norm (acting on L2) which decays like O(r−δ), for some δ > 0.
There is no direct analogue of this maximal estimate when Pλ(y) has first

order terms, (then there is no decay in r), and for this reason our results do
not include the Carleson-Sjölin theorem. It might be expected, however, that
further work, combining one of the known proofs of the Carleson-Sjölin theorem
with our arguments could yield the full result. We hope to return this matter
at a future time. In the meanwhile we have learned that M.T. Lacey, combining
ideas of his proof with Thiele for Carleson’s theorem [LT], with the arguments
in [St1], has obtained the desired result in the case when n = 1, d = 2. (See [L]).

2. Two van der Corput-like propositions in n-dimensions

The following are variants or refinements of known estimates. The particular
versions that follow are needed below, but do not seem to be stated explicitly in
the literature. Here

P (x) =
∑

1≤|α|≤d

λα xα

is a polynomial in R
n of degree ≤ d, with real coefficients and no constant term.

We denote |λ| =
∑

1≤|α|≤d

|λα|. We also assume that ϕ is a given C(1) function

defined in the unit ball, B = {x : |x| ≤ 1}, and let Ω be any convex subset of B.
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Proposition 2.1.∣∣∣∣∫
Ω

eiP (x) ϕ(x) dx

∣∣∣∣ ≤ c|λ|−1/d sup
x∈B

(|ϕ(x)| + |�ϕ(x)|) .

The constant c depends on the dimension n and the degree d, but not other-
wise on P, ϕ, or Ω.

The significance of the proposition for us is the uniform decay taken over all
polynomials of degree d, as a function of the total size of the coefficients. The
exact power −1/d, while optimal, is not essential.

Proposition 2.2. With the same notation as above

|{x ∈ B : |P (x)| ≤ ε}| ≤ c ε1/d |λ|−1/d , for every ε > 0 .

Again, c does not depend on the coefficient of P , but only on n and d.
Earlier results, related to these propositions, maybe found in [AKC], [RS],

and [CCW]. The proofs require several lemmas.

Lemma 2.1. Let Q(x) =
∑
|α|=k

λα xα be a homogeneous polynomial of degree k.

Then there is a unit vector ξ, so that

∣∣(ξ · ∂x)k Q(x)
∣∣ ≥ c|λ| , with |λ| =

∑
|α|=k

|λα|

Proof. We have ∑
|α|=k

∣∣∣∣( ∂

∂x

)α

Q(x)
∣∣∣∣ =

∑
|α|=k

α!|λα| ≥ c|λ| .

On the other hand, there are unit vector ξ1, . . . ξN , so that {(ξj · x)k}N
j=1 form

a basis of the homogeneous polynomials of degree k. (See e.g. [St2], p. 343).

Hence for appropriate cα
j ,

(
∂
∂x

)α
=

N∑
j=1

cα
j (ξj · ∂x)k, and we need only pick α so

that λα maximizes |λα|, and then pick ξ = ξj , so that (ξj · ∂x)k Q(x) achieves a
maximum as j varies, 1 ≤ j ≤ N .

Lemma 2.2. Suppose P (x) =
∑

1≤|α|≤d

λαxα is a given polynomial of degree

≤ d. Then there is a k, 1 ≤ k ≤ d, and a unit vector ξ, so that

|(ξ · ∂x)k P (x)| ≥ c|λ|, for all x ∈ B ,

where λ =
∑

1≤|α|≤d

|λα| .
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Proof. Let us write

λ(k) =
∑
|α|=k

|λα|,

so that |λ| =
d∑

k=1

λ(k). We shall find for some k, 1 ≤ k ≤ d, a “dominant” λ(k)

among λ(1), λ(2), . . . λ(d); it will have the following properties:

(i) λ(k) ≈ |λ|
(ii) ελ(k) ≥ λ(j), for all j > k.

Here ε is a (small) preassigned number.
We argue as follows. Fix ε > 0, and choose k so that ε−kλ(k) is a maximum

among ε−1λ(1), ε−2λ(2), . . . ε−kλ(k), . . . ε−dλ(d). Thus ελ(k) ≥ εk−j+1λ(j). As
a result, if j > k, then ελ(k) ≥ λ(j), (assuming ε ≤ 1), which verifies property
(ii). However, when j < k, λ(k) ≥ εk−jλ(j) ≥ εkλ(j). Altogether then λ(k) ≥

cε

k∑
j=1

λ(j), and therefore λ(k) ≈ |λ| =
k∑

j=1

λ(j), so property (i) is also proved.

Now with k chosen write

P (x) = P0(x) + Q(x) + P1(x),

where

P0(x) =
∑

1≤|α|<k

λαxα , Q(x) =
∑
|α|=k

λα xα ,

and

P1(x) =
∑

k<|α| ≤ d

λαxα .

We apply (ξ ·∂x)k to P , where ξ is the unit vector guaranteed by Lemma 2.1.
Thus
(ξ · ∂x)k P0 ≡ 0, and if |x| ≤ 1, |(ξ · ∂x)k P1(x)| ≤ c

∑
j>k

λ(j). The latter is

≤ c′ελ(k) by the fact that λ(k) was dominant. However, |(ξ · ∂x)k Q(x)| ≥ cλ(k)

by the lemma, and hence we see that our conclusion is proved if we take ε to be
sufficiently small, when we recall that λ(k) ≈ |λ|.

We now prove Proposition 2.1. We pick a coordinate system so that x1 lies
in the direction of the unit vector ξ given by Lemma 2.2, and x1, . . . xn are in
orthogonal directions. Then (ξ · ∂x)k = ∂k

∂xk
1
, and we can use the usual van der

Corput estimate in the x1 variable (see e.g [St2]) and then integrate the estimate
in x2, . . . xn.
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Proposition 2.2 is then reduced to a one-variable estimate (which we assume;
see [C] ) in the same way as in the proof of Proposition 2.1.

3. A maximal lemma

We shall also need the following easy variant of the standard maximal func-
tion.

For any set E ⊂ B2, with B2 = {x : |x| ≤ 2}, we denote by χE its character-
istic function, and (χE)a(x) = a−n χE(x/a), a > 0. We define

Mε(f)(x) = sup
a>0

|E|≤ε

|f | ∗ (χE)a (x) ,(3.1)

with the sup taken over all subsets E of B2 of measure ≤ ε, and all a > 0.∗

Proposition 3.1.

‖ Mε(f) ‖L2 ≤ c ε1/2 ‖ f ‖L2 .

The main point here is a (power) decrease in ε, as ε −→ 0. The proof is based
on the observation that

|{x : Mε(f)(x) > α}| ≤ (c/α)
∫
|f |≥2α/ε

|f | dx , all α > 0 .(3.2)

In fact, Mε(1) ≤ ε, and Mε(f) ≤ cM(f) where M is the standard maximal
function. Now if f is positive, f ≤ f1 + α/2ε, where f1 = f if f(x) > α/2ε,
f1 = 0 otherwise. Hence {x : Mε(f)(x)} > α} ⊂ {x : cM(f1) > α/2} and the

latter has measure ≤ c
α

∫
f1dx and (3.2) is proved. Therefore,

‖ Mε(f) ‖p
Lp ≤ cp

∫ ∞

0

αp−2

(∫
|f | ≥α/2ε

|f | dx

)
dα = c′p εp−1 ‖ f ‖p

Lp ,

and the case p = 2 is the assertion of Proposition 3.1.

4. The first main proposition

Let us set Φλ(x) = eiPλ(x) ϕ(x) where Pλ(x) =
∑

2≤|α|≤d

λα xα is a real poly-

nomial of degree d; here we assume that the linear terms vanish. The function
ϕ is a fixed C(1) function supported in the unit ball. For each a > 0, we set

Φλ
a(x) = a−n Φλ (x/a)

∗It is a slight technical advantage to state the results for Mε defined over the ball B2,
instead of the unit ball B.
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Theorem 1.

‖ sup
|λ| ≥ r

a>0

|(f ∗ Φλ
a)(x)| ‖L2 ≤ Ar−δ ‖ f ‖L2 , r ≥ 1 .(4.1)

Here δ is some fixed small positive number, and as before λ =
∑

2≤|α|≤d

|λα| .

Remarks. It is important to note that we do not allow first degree terms in
Pλ, for otherwise there would be no decay in r. For our applications it suffices
to know that δ > 0; the proof below gives δ = 1/6d, but this is most likely not
optimal.

We note that in proving the theorem it suffices first to establish it when the
sup in (4.1) is restricted to r ≤ |λ| ≤ 2r; because then adding the corresponding
estimates, when the range r ≤ |λ| is decomposed dyadically, gives a convergent
geometric series, in view of the asserted decay in r.

The proof of this more restricted conclusion uses the method of TT ∗, more
precisely an adaptation of a Kolmogorov-Seliverstov argument. To carry out
this argument we proceed as follows.

We denote by Φ̃λ the “dual” to Φλ, i.e. Φ̃λ(x) = Φ
λ
(−x) = e−iPλ(−x) ϕ̄(−x).

We then claim:

Lemma 4.1. ∣∣∣(Φν
h ∗ Φ̃µ

1

)
(x)

∣∣∣ ≤ c
(
r−2δ χB2(x) + χEµ

(x)
)

(4.2)

when r ≤ |ν| ≤ 2r, r ≤ |µ| ≤ 2r, and 0 < h ≤ 1. Here Eµ is a subset of the ball
B2 = {|x| ≤ 2}, with |Eµ| ≤ r−4δ. While Eµ depends on µ, it is independent of
ν and h. The bound c is independent of ν, µ, r, and h.

Proof. We have(
Φν

h ∗ Φ̃µ
1

)
(x) = h−n

∫
Rn

ei(Pν(y/h)−Pµ(y−x))ϕ(y/h) ϕ(y − x) dy .

Given that ϕ is supported in the unit ball, and h ≤ 1, it is clear that the above
convolution is supported in |x| ≤ 2. We next make the change of variables
y −→ hy which shows that

(
Φν

h ∗ Φ̃µ
1

)
(x) =

∫
Rn

ei(Pν(y)−Pµ(hy−x) ϕ(y)ϕ(hy − x) dy .(4.3)

There are now two case: Case I, h small, 0 < h ≤ η, where we choose η below.
Case II, h not small, η < h ≤ 1.

For Case I, note that when |x| ≤ 2,

Pν(y) − Pµ(hy − x) =
∑

2≤|α|≤d

(να + O(h|µ|)) yα − Pµ(−x) .



OSCILLATORY INTEGRALS RELATED TO CARLESON’S THEOREM 795

while
∑

|να + O(h|µ|)| ≥
∑

|να| − cη |µ| ≥ c
∑

|να| ≥ cr, if η is sufficient

small, since r ≤ |ν| =
∑

|να| ≤ 2r, r ≤ |µ| ≤ 2r, and h ≤ η.

Also ϕ(y)ϕ(hy − x) is supported in the unit ball, and is uniformly in C(1).
Thus in this case we can apply Proposition 1 and see that (4.3) is majorized
by c r−1/d χB2(x) ≤ c r−2δ χB2(x). (At this stage first-degree terms in P could
have been allowed).

We now assume that η < h ≤ 1, with η now fixed, η > 0. We examine the
terms of degree 1 in y in the phase Pν(y) − Pµ(hy − x).

For this we recall that we assumed we had no first order terms in y in Pν(y),
so it follows that the first order term of the above are

−h
n∑

j=1

P (j)
µ (x) · yj , where

P (j)
µ (x) =

∑
α

αj µα xα−ej ,

and ej = (0, . . . 1, 0 . . . ) with 1 in the jth component.
It then follows from Proposition 1 that (4.3) is majorized by

c

 n∑
j=1

∣∣∣P (j)
µ (x)

∣∣∣
−1/d

.(4.4)

We now divide the ball B2 into two sets, Eµ and its complement. We define

Eµ = {x ∈ B2 :
n∑

j=1

|P (j)
µ (x)| ≤ ρ},

and ρ will be chosen in terms of r momentarily.
In the complement of the set x ∈ Eµ we get (in view of 4.4) cρ−1/d as a bound

for (4.3). So for those x we estimate (4.3) by cρ−1/dχB2(x). Note however that
by Proposition 2,

|Eµ| ≤ c

 ∑
j

∑
α

|α−ej |≥1

αj |µα|


−1/d

ρ1/d

and
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∑
j

∑
α

|α−ej |≥1

αj |µα| ≥
∑
α

|µα| ≥ r .

Thus for x ∈ Eµ we have as an estimate for (4.3), cχEµ(x), with |Eµ| ≤
c(ρ/r)1/d.

Now we only need take δ = 1/6d, ρ = c̄r1/3 with c̄ appropriately small. Then
|Eµ| ≤ r−4δ, and ρ−1/d = constant r−2δ so (4.2) is completely proved.

As an immediate consequence we have:

Corollary 4.1.∣∣∣(Φν
a1

∗ Φ̃µ
a2

)
(x)

∣∣∣ ≤ c r−2δ {a−n
1 χB2(x/a1) + a−n

2 χB2(x/a2)}

+ c{a−n
1 χEν(x/a1) + a−n

2 χEµ(x/a2)}
(4.5)

We still assume that r ≤ |ν| ≤ 2r, and r ≤ |µ| ≤ 2r, but now a1 and a2 are
any two positive numbers. Here both |Eν | and |Eµ| are ≤ r−4δ.

Proof. Consider the case a2 ≥ a1. Then by rescaling by a−1
2 we may reduce

matters to the case a2 = 1, a1/a2 = h ≤ 1, which we had considered previously,
but where the terms depending on a1 and ν in the right-side are not present.
The situation is symmetric in a1 and a2 and thus the same inequality hold when
a1 ≥ a2.

We now pass to the proof of Theorem 1. We pick x → λ(x) = {λα(x)}, and
x −→ a(x) arbitrary “stopping times,” i.e. finite-valued measurable functions,
with each λα(x) being real, and a(x) positive. We assume also that r ≤ |λ(x)| ≤
2r, for every x. Denote by T the linear operator f → T (f) given by

T (f)(x) =
∫

Rn

f(x − y) Φλ(x)
a(x) (y) dy.

It suffices to prove that

‖ T ‖L2→L2 ≤ c r−δ,

with the bound independent of the choice of the functions λ(x) and a(x).
Now ‖ T ‖= ‖ TT ∗ ‖1/2, and TT ∗ is an operator with kernel K(x, y)

(TT ∗f)(x) =
∫

K(x, y) f(y) dy , where

K(x, y) =
(
Φν

a1
∗ Φ̃µ

a2

)
(x − y),

with
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ν = λ(x) , µ = λ(y)

a1 = a(x) , a2 = a(y) .

Then by (4.5) it follows that

∣∣∣∣∫ K(x, y) f(y) ḡ(x) dx dy

∣∣∣∣ ≤

c r−2δ

(∫
Rn

M(f)(x)|g(x)| dx +
∫

Rn

M(g)(y)|f(y)| dy

)
+

c

(∫
Rn

Mε(f)(x)|g(x)| dx +
∫

Rn

Mε(g)(y)|f(y)| dy

)
.

Here M is the standard n-dimensional maximal function, and Mε is the maximal
function appearing in Section 3, with ε = r−4δ. Thus by the usual L2 estimates
for M and the estimates given in Section 3 for Mε we have

|(TT ∗f, g) | ≤ c r−2δ ‖ f ‖L2 ‖ g ‖L2

As a result ‖ TT ∗ ‖≤ c r−2δ, and ‖ T ‖≤ c′ r−δ, and the theorem is proved.

For the application below we need a slight restatement of the theorem which
we state in two stages. We replace the isotropic norm |λ| =

∑ |λα| by the
non-isotropic norm N(λ) =

∑ |λα|1/|α|. Note that since N(λ) ≤ c|λ|, when
N(λ) ≥ 1, then as a consequence of (4.1) we have

‖ sup
N(λ)≥r

a>0

|(f ∗ Φλ
a)(x) ‖L2 ≤ Ar−δ ‖ f ‖L2 , r ≥ 1(4.6)

An immediate implication of (4.6) is

‖ sup
N(λ)≥1

a>0

N(λ)δ1 | (f ∗ Φλ
a) (x)| ‖L2 ≤ A ‖ f ‖L2(4.7)

whenever δ1 < δ. Indeed,

sup
N(λ)≥1

a>0

N(λ)δ1 |(f ∗ Φλ
a (x)|

≤
∞∑

j=0

2jδ1 sup
N(λ)≥2

j

|(f ∗ Φλ
a)(x)| ,

and so (4.7) follows from (4.6) whenever δ1 < δ, since each term in the sum has
norm ≤ c2j(δ1−δ) ‖ f ‖L2
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5. The second main proposition

Let K be a Calderón-Zygmund kernel in R
n. For our purposes we shall assume

that K satisfies the following properties.

(a) K is a tempered distribution which agrees with a C(1) function K(x), for
x �= 0

(b) K∧, the Fourier transform of K, is an L∞ function
(c) |∂α

x K(x)| ≤ A|x|−n+|α|, for 0 ≤ |α| ≤ 1.

Write as before Pλ(x) for the real polynomial of degree d with coefficients λ =
(λα), i.e. Pλ(x) =

∑
2≤|α|≤d

λαxα; here again we assume that no first-degree terms

are present. Considering the distribution which arises as the product of the
function eiPλ with K, we can define the operator

Tλ(f)(x) =
∫

Rn

eiPλ(y) K(y) f(x − y) dy

(at least for test functions f). We then have,

Theorem 2.

‖ sup
λ

|Tλ(f)(x)| ‖≤ A ‖ f ‖L2 .

The sup is taken over all the real coefficients of Pλ.

To prove the theorem we decompose the kernel K as

K =
∞∑

j=−∞
2−nj ϕ(j) (2−j · x)(5.1)

where the ϕ(j) are each C(1) functions supported in 1/4 < |x| ≤ 1; they satisfy

|∂α
x ϕ(j)| ≤ A, 0 ≤ |α| ≤ 1, uniformly in j; and

∫
Rn

ϕ(j)(x)dx = 0, all j. (For

this decomposition see e.g. [St2], Chapter 13)
Now for each λ, write Kλ = K+

λ + K−
λ , where K−

λ is the sum in (5.1) of all
terms where 2j < 1/N(λ), and K+

λ is the sum of the term when 2j ≥ 1/N(λ).
We also write Tλ = T+

λ + T−
λ , with

T±
λ (f)(x) =

∫
eiPλ(y) K±

λ (y) f(x − y) dy .

We estimate sup
λ

|T+
λ (f)| and sup

λ
|T−

λ (f)| separately. The majorization of T−
λ

is easily handled by standard estimates.
Notice that K−

λ (x) is supported where |x| ≤ 1/N(λ), (and agrees with K(x)
when |x| ≤ 1/4N(λ)). Thus on the support of K−

λ (x) we have
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|eiPλ(x) − 1| ≤ c
∑

2≤|α|≤d

|λα| |xα| ≤ c′
∑

2≤|α|≤d

N(λ)|α| |x||α| ≤ c N(λ)|x| ,

since N(λ)|x| ≤ 1, and |λα| ≤ N(λ)|α|. Hence,

T−
λ (f)(x) =

∫
K−

λ (y) f(x − y) dy + O(N(λ)
∫
|y| ≤ 1/N(λ)

|f(x − y)| |y|−n+1 dy) .

Next, we observe that the sup in λ of the first term on the right-side is dominated
by the truncated-singular-integral maximal function, and the second term by the
standard maximal function. Therefore we obtain

‖ sup
λ

|T−
λ (f)(x)| ‖L2 ≤ A ‖ f ‖L2 .

Turning to T+
λ we have

T+
λ (f)(x) =

∑
2

j
>1/N(λ)

∫
eiPλ(y) 2−nj ϕ(j)(2−jy) f(x − y) dy .(5.2)

We introduce the notation 2j ◦λ to denote 2j ◦λ = (2j|α| λα) when λ = (λα).
Then clearly Pλ(y) = P2j◦λ (2−j · y), and thus eiPλ(y) 2−nj ϕ(j) (2−j · y) can be
written as

eiP2j◦λ(2−jy) 2−nj ϕ(j) (2−j · y) = (j)Φ2j◦λ
2j ,

with (j)Φµ(x) = eiPµ(x) ϕ(j)(x). We now apply Theorem 1 (that is inequality
(4.7)) to each of these terms in (5.2) and we see that ‖ sup

λ
|T+

λ (f)(x) | ‖L2 is

dominated by

c
∑

2
j
>1/N(λ)

N(2j ◦ λ)−δ1 ‖ f ‖L2 .

However,
∑

2
j
>1/N(λ)

N(2j ◦ λ)−δ1 = N(λ)−δ1
∑

2
j
>1/N(λ)

2−jδ1 ≤ c < ∞, because

N(2j ◦λ) = 2jN(λ), and δ1 > 0. With this our desired estimate for sup
λ

|Tλ(f)|
is achieved.

Remark. A simple consequence of the above arguments is that the maximal
operator in Theorem 2 is also bounded on Lp, 1 < p < ∞.
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