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ON THE REAL MOMENT MAP

Alina Marian

1. Introduction

This paper presents an extension of a theorem, due to Ness ([5], Theorem 6.2),
to the case of real group actions. Ness considers a continuous representation of
a complex reductive group G on a complex finite-dimensional vector space V . If
k is the Lie algebra of a maximal compact subgroup K of G and g = k ⊕ ik is
the Lie algebra of G, then upon fixing a K-invariant Hermitian inner product
on V , a map m : CP(V ) −→ ik� is defined as follows: for β ∈ ik and v ∈ V rep-
resenting x ∈ CP(V ), 〈m(x), β〉 =def

(βv,v)

‖v‖2 . Fix an AdK-invariant inner product
on ik�, and let ‖m‖2 denote the squared norm of m, ‖m‖2 : CP(V ) −→ R,
‖m‖2(x) = ‖m(x)‖2. Ness’s result concerns the critical points of ‖m‖2, and it
states that 1. If x is a critical point of ‖m‖2, then ‖m‖2

∣∣
Gx

achieves a minimum
at x. 2. If nonempty, the critical set of ‖m‖2 contained in a G-orbit Gx consists
exactly of a K-orbit, and is in particular connected.

The present paper takes note of the fact that the same connectedness state-
ment about critical points in a G-orbit holds in the case of actions of real semisim-
ple Lie groups on real vector spaces.

The context of [5] is related to the situation of a compact group K’s action on a
symplectic manifold X, such that the action admits a moment map m : X −→ k�.
Indeed, if the map m : CP(V ) −→ ik� is given as before, then m̃ : CP(V ) −→ k�,
defined by m̃(x)(β) = m(x)(iβ), is a moment map with respect to the action
of K and the Kähler structure on CP(V ) induced by the Hermitian structure
on V . The result of [5], as it stands, bears on problems in geometric invariant
theory: trying to understand, with suitable modifications, the G-orbit space on
CP(V ) as an algebraic variety. Transposed in the context of real groups, Ness’s
statement has mostly representation-theoretic utility. It eases, for instance, the
geometric understanding of bijective relationships between certain types of or-
bits arising in the situation of real semisimple group actions. The geometric
interpretation is obtained by considering the stratification of a subvariety X of
P(V ) which is acted on by a real semisimple group, induced by the gradient flow
of the function ‖m‖2. Each stratum is associated with a connected component
of the critical set: it consists of the points of X whose grad ‖m‖2 trajectory
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has its limit points in that component of the critical set. The correspondence
then results by realizing the two different types of orbits – between which one
wishes to establish the correspondence – as strata of two distinct moment map
stratifications with the same critical set; orbits thus get associated to one an-
other via the connected components of the critical set. This idea is carried out in
the case of the Sekiguchi and Matsuki correspondences in [7] and [3] respectively.

The real setting is given by a real semisimple group G, with a Cartan decom-
position g = k⊕ p, acting on real projective space P(V ) by a representation of G
on V, and m : P(V ) −→ p� defined as before. The statement is that if nonempty,
the set of critical points of ‖m‖2 : P(V ) → R in a G-orbit consists of a unique K-
orbit. The argument follows structurally that given by Ness ([5], [6]) in the case
of a complex group action: all the intermediate statements are retained from [5]
in a simplified succession, as well as some of their proofs. The most important
intermediate step establishes the fact that ‖m‖2 assumes the same value at crit-
ical points in one G-orbit. Ness invokes two distinct statements which together
would imply it. One is the assertion that a certain function M : CP(V ) −→ R

introduced by Mumford ([4]) to characterize stability of vectors in V relative
to the action of G, is G-invariant. The second one is the convexity property
of m established by Guillemin and Sternberg ([1]). It is however easy to see
that the convexity property is not needed, and that in order to prove the re-
sult, the G-invariance of M alone suffices. The argument given here for the
real setting proceeds by showing the G-invariance of Mumford’s function for G
real semisimple, in a manner inspired by [6], and it relies entirely on basic facts
about the structure of real semisimple Lie groups. This is the original core of the
paper, and is presented in Section 3. Serving as background, Section 2 records
well-known facts, some of which are used in the subsequent part.

2. Preliminaries

Our setting will be the linear action of a real semisimple Lie group on a real
finite dimensional vector space. We shall regard it as an action on the corre-
sponding projectivized space P(V ). In this situation, upon choosing an inner
product on the vector space we introduce a map m that associates to each point
in the projectivized space the rate of the squared-norm variation of one of its
unit representatives, along the group. Specifically, let G be the group, and let
Φ : G −→ GL(V ) denote the continuous representation giving the action. The
Lie algebra g of G acts linearly also, by dΦe : g −→ gl(V ). Let g = k + p be
a Cartan decomposition of the algebra g and let ( , ) : V × V −→ R be an
inner product compatible with this Cartan decomposition i.e., such that when
X ∈ k, Y ∈ p, X, Y : V −→ V are respectively antisymmetric and symmetric
relative to ( , ). Define ψv : G −→ R by ψv(g) = ‖gv‖2 and m : P(V ) −→ g�

by m(x) = 1
2‖v‖2 (dψv)e, where v ∈ V is a representative of x ∈ P(V ). Let K be

the maximal compact subgroup of G with algebra k. The inner product on V
has been chosen to be K-invariant, thus (dψv)e is identically 0 on k. Also upon
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fixing an Ad(K)-invariant inner product on p, ( , )p : p × p −→ R, and thereby
identifying p and p�, m becomes a map from P(V ) to p, m : P(V ) −→ p.

Note that for β ∈ p,

(m(x), β)p =
1

2‖w‖2

d

dt

∣∣∣∣
t=0

‖ exp tβw‖2 =
(βw, w)
‖w‖2 ,(1)

where w is a representative of x.

In order to place the map m into perspective, we briefly abandon the situation
that strictly interests us, the linear action of a real semisimple group, and try
to do justice to a statement in the introduction – that m is a real version of the
moment map on complex projective space. This is not so much useful for the
subsequent presentation, but it is rather viewed as a cultural demarche. Thus
if instead of dealing with the case of a noncompact semisimple group acting
on real projective space, we were in the context of a compact group K acting
on complex projective space via a continuous representation, upon choosing K
and AdK invariant inner products on V and k respectively, we would have the
following

Proposition 1. The map m : CP(V ) −→ k defined by (m(x), β)k = 1
2πi

(βw,w)

‖w‖2 ,
β ∈ k and w over x, is the moment map associated with the natural symplectic
structure of complex projective space, coming from the Fubini-Study metric, and
with the action of the compact group K on CP(V ).

Proof. Recall that given a symplectic manifold (X, ω) and a smooth action of a
compact group K on X which preserves the symplectic form, a map m : X −→ k

is a moment map for the action if the following two conditions are satisfied:
1. m is equivariant relative to the adjoint action on k: ∀k ∈ K, ∀x ∈ X, m(kx) =
Ad k(m(x)).
2. For β ∈ k, denote by mβ(x) the value of m(x) in the direction of β,
mβ : X −→ R, mβ(x) = (m(x), β). Let x 
→ β̂x be the vector field on X

generated by β: β̂x = d
dt

∣∣
t=0

exp tβ x. Then mβ is a Hamiltonian function for
the vector field x 
→ β̂x i.e., for all ζ ∈ TxX, 〈dmβ(x), ζ〉 = ωx(ζ, β̂x).

It is clear that once a moment map exists, the condition 〈dmβ(x), ζ〉 =
ωx(ζ, β̂x) ensures that it is also unique up to an additive constant.

Now K-equivariance of m defined as in Proposition 1 is immediate:
(m(kx), β)k = 1

2πi
(k−1βkw,w)

‖w‖2 = 1
2πi

(Ad k−1(β) w,w)

‖w‖2

= (m(x), Ad k−1(β))k = (Ad k(m(x)), β)k.

To show the second moment map property of m, recall that the Fubini-Study
metric is a Hermitian metric on TCP(V ) defined as follows. Let ( , ) be a Her-
mitian inner product on V preserving K. Let Π : V − {0} −→ CP(V ) be the
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standard projection. For ζ1, ζ2 ∈ TxCP(V ) and ξ1, ξ2 ∈ TwV, w over x, such that
Π�(ξi) = ζi, 1 ≤ i ≤ 2, one sets (ζ1, ζ2)FS = (ξ1,ξ2)(w,w)−(ξ1,w)(w,ξ2)

(w,w)2
. It is imme-

diate that Π is a submersion and that for every w in V , ker (Π�)w = Span {w}.
Using the inner product on V , for w over x we can thus identify TxCP(V ) with
the orthogonal complement of w in V, TxCP(V ) � Span {w}⊥. The Hermitian
metric simplifies then to (ζ1, ζ2)FS = (ζ1,ζ2)

(w,w) . The symplectic structure is pro-
vided by its imaginary part, ω(ζ1, ζ2) = − 1

π Im (ζ1, ζ2)FS .

For β ∈ k, the vector field x 
→ β̂x is given by β̂x = d
dt

∣∣
t=0

exp tβ x =
Π�(βw), where βw = d

dt

∣∣
t=0

exp tβ w = βw. Under the identification TxCP(V ) �
Span {w}⊥, β̂x = Π�(βw) thus corresponds to the vector βw − (βw,w)

(w,w) w and

for ζ in Span {w}⊥, ω(ζ, β̂x) = − 1
π Im (ζ, βw − (βw,w)

(w,w) w)FS = − 1
π Im (ζ,βw)

(w,w) =
1
π Im (βw,ζ)

(w,w) .

On the other hand, since mβ(x) = 1
2πi

(βw,w)
(w,w) , we have, for ζ ∈ Span {w}⊥,

〈dmβ(x), ζ〉 =
1

2πi
d
dt

∣∣
t=0

(β(w+tζ),w+tζ)
(w+tζ,w+tζ) = 1

2πi
(βw,ζ)+(βζ,w)

(w,w) . As β : V −→ V is antisymmetric,

the last quantity equals 1
π

Im (βw,ζ)
(w,w) , hence 〈dmβ(x), ζ〉 = ω(ζ, β̂x), as desired.

Let us now go back to the situation of interest to us, real actions of semisimple
noncompact groups, as set up in the first paragraph of this section. For β in
p, in this case also denote by mβ(x) the component of m(x) in the direction
of β. For w ∈ V over x, the same realization of TxP(V ) as Span {w}⊥ ⊂ V is
convenient. The Fubini-Study metric provides P(V ) with a Riemannian (instead
of a Hermitian) structure. As in eq.(1), mβ(x) = (m(x), β)p = (βw,w)

(w,w) , thus

〈dmβ(x), ζ〉 = d
dt

∣∣
t=0

(β(w+tζ),w+tζ)
(w+tζ,w+tζ) = (βw,ζ)+(βζ,w)

(w,w) . β ∈ p is symmetric with
respect to ( , ), the real inner product on V , so

〈dmβ(x), ζ〉 =
2(βw, ζ)
(w, w)

= 2(β̂x, ζ)FS .(2)

We have obtained the following

Lemma 1. The gradient of mβ with respect to the Fubini-Study metric is
(gradmβ)x = 2β̂x. In particular, (gradmβ)x = 0 if and only if β̂x = 0 if and
only if d

dt

∣∣
t=0

exp tβ x = 0 if and only if x is fixed by exp tβ.

The function that we shall be working with is the squared norm of the real
moment map m, ‖m‖2 : P(V ) −→ R, ‖m‖2(x) = ‖m(x)‖2

p. We are interested in
the critical set of this function, which the following lemma helps to characterize.
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Lemma 2. Let grad ‖m‖2 denote the gradient of ‖m‖2 with respect to the Fubini-
Study metric. Then (grad ‖m‖2)x = 4m̂(x)x. Therefore x is a critical point of
‖m‖2 if and only if the vector field m̂(x) ⊂ TP(V ) induced by m(x) ∈ p vanishes
at x, if and only if exp tm(x) fixes x.

Proof Let β1, . . . , βn be an orthonormal basis of p. Then m(x) =
∑

i mβi
(x)βi

and ‖m‖2 =
∑

i m2
βi

. Hence 〈d‖m‖2, ζ〉 = 2
∑

i mβi〈dmβi , ζ〉
= 2

∑
i mβi

(gradmβi
, ζ)FS = 4

∑
i mβi

(βiw,ζ)
(w,w) = 4 (m(x)w,ζ)

(w,w) = 4(m̂(x)x, ζ)FS .

3. The Real Version of Ness’s Theorem

Recall our setting. G is a real semisimple Lie group with the Cartan-
decomposed algebra g = k⊕ p. m : P(V ) −→ p is defined as before, (m(x), β)p =
(βv,v)
(v,v) . From now on we shall drop the subscript p and shall write (m(x), β) for

(m(x), β)p. We wish to prove

Theorem 1. 1) If x is a critical point of ‖m‖2, then ‖m‖2
∣∣
Gx

achieves a min-
imum at x.
2)If nonempty, the critical set of ‖m‖2 contained in a G-orbit consists of a unique
K-orbit.

Proof. Part 2 is harder to show than Part 1. The main step in the proof of 2 is
showing that for x and y critical points in the same G-orbit, ‖m‖2(x) = ‖m‖2(y).
Part 1 will be proved on the way toward this result.

To start, let us consider the (easier to deal with) case when x is a critical
point of ‖m‖2 such that m(x) = 0. It is easy to argue directly (and we shall do
it) that m vanishes in this case on the entire critical subset of ‖m‖2 contained
in the orbit O = Gx of x. This would establish in the zero-value situation the
claim that ‖m‖2 assumes the same value at critical points in the same G-orbit.
Note that the first part of the theorem is true in this case since ‖m‖2 is by
definition nonnegative. Suppose therefore that y ∈ O is such that y is critical
but m(y) �= 0. Let a be a maximal abelian subspace of p such that m(y) ∈ a.
Since x and y are in the same G-orbit, there exists g ∈ G such that x = gy. If A
is the analytic subgroup of G corresponding to the subalgebra a of g, the global
Cartan decomposition of G with respect to a reads G = KAK. In particular,
there exist k1, k2 ∈ K and Z ∈ a such that g = k1 exp Zk2 i.e, x = k1 exp Zk2y.
Since m(kx) = Ad(k)m(x), x is fixed by m(x) if and only if kx is fixed by m(kx)
i.e., x is a critical point of ‖m‖2 together with its entire K-orbit. We may
therefore assume that k1 = k2 = 1. Consider the function g : R −→ R, given by
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g(t) = mm(y)(exp tZy). If w is a representative of y, then according to eq.(1),

(3) g(t) =
1

2‖ exp tZw‖2

d

ds

∣∣∣∣
s=0

‖ exp sm(y) exp tZw‖2

=
1

2‖ exp tZw‖2

d

ds

∣∣∣∣
s=0

‖ exp tZ exp sm(y)w‖2.

Since y is a critical point of ‖m‖2, it is fixed by exp tm(y), therefore w is an
eigenvector of m(y) with some real eigenvalue a. a = (m(y)w,w)

(w,w) = mm(y)(y) =
‖m(y)‖2. Eq.(3) implies now that g(t) = a = ‖m‖2(y). Also for future reference
we record what we have just established.

If y is a critical point of ‖m‖2 andZ ∈ p commutes with m(y), then the function
g : R −→ R, g(t) = mm(y)(exp tZy) is constant, and g(t) = ‖m‖2(y).(4)

In particular, we have that g(0) = g(1) i.e., mm(y)(x) = mm(y)(y). If m(y) �= 0
it follows that mm(y)(x) �= 0, hence m(x) �= 0, a contradiction.

We shall now restrict ourselves to the situation of a critical point x such that
m(x) �= 0, and shall prove in this case also that for all critical points y ∈ Gx,
‖m‖2(y) = ‖m‖2(x).

To begin, define µ : V × p −→ R, by letting µ(v, β) be the smallest eigen-
value of β such that the projection of v onto the corresponding eigenspace is
nonzero. Note that for g ∈ G, µ(gv, Adg(β)) = µ(v, β). (Indeed, this amounts
to saying that v is an eigenvector of expβ with eigenvalue a if and only if gv is
an eigenvector of g expβg−1 with eigenvalue a.) Define

M : P(V ) −→ R, by M(x) = sup
β∈p−{0}

µ(v, β)
‖β‖ , where v represents x.

Lemma 3. Assume that m(x) �= 0. Then the following are equivalent:
(i) x is a critical point of ‖m‖2 : P(V ) −→ R.
(ii) M(x) = ‖m(x)‖ > 0.

Proof. Let v ∈ V represent x, and let v =
∑

i vi be a decomposition of v accord-
ing to eigenspaces for β ∈ p: βv =

∑
i aivi. The ais are distinct eigenvalues of β

and the vis are assumed to have unit norm. Then

mβ(x) =
1

‖v‖2

n∑

i=1

ai‖vi‖2 ≥ smallest ai, so µ(v, β) ≤ mβ(x).(5)

For arbitrary β in p, (m(x),β)
‖β‖ ≤ ‖m(x)‖, hence mβ(x)

‖β‖ ≤ ‖m‖(x). But by eq. (5),

for arbitrary β ∈ p, µ(v, β) ≤ mβ(x). Thus for all β ∈ p, µ(x,β)
‖β‖ ≤ ‖m‖(x),
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therefore

M(x) ≤ ‖m‖(x).(6)

Equality holds in eq. (5) if and only if v over x is in an eigenspace of β, if and
only if dmβ(x) = 0. Hence dmm(x) = 0 if and only if µ(v, m(x)) = mm(x)(x) =
‖m(x)‖2 if and only if µ(v,m(x))

‖m(x)‖ = ‖m‖(x). In conjunction with eq. (6), since

by definition M(x) ≥ µ(v,m(x))
‖m(x)‖ , this shows that the condition M(x) = ‖m‖(x) is

equivalent to v over x being an eigenvector of m(x), and proves Lemma 3.

For the purposes of the following lemma, we consider M : V −→ R. Recall
that M(v) = supβ∈p−{0}

µ(v,β)
‖β‖ .

Lemma 4. 1. For every v in V there exists β ∈ p such that M(v) = µ(v,β)
‖β‖ .

2. M assumes finitely many values.
3. M is constant on G-orbits.

Proof. Let a be a maximal abelian subspace of p. There is a finite set Λ ⊂ a�

and a decomposition of V , V = ⊕λ∈ΛVλ such that the spaces Vλ are orthog-
onal and v ∈ Vλ if and only if ∀β ∈ a, βv = λ(β)v. Consider the functions
µv : a −→ R, µv(β) = µ(v, β). For a fixed v, there is a unique decomposition
v =

∑k
i=1 vλi , vλi ∈ Vλi . Then µv(β) = min1≤i≤k{λ1(β), . . . , λk(β)}. Since

there are finitely many patterns of decomposition of v according to the weight
spaces Vλ, as v ranges through V , there are finitely many functions µv. Also,
µv : a −→ R is continuous as the pointwise minimum of continuous functions.
Therefore the function Ma

v : a −→ R, Ma
v (β) = µ(v,β)

‖β‖ attains its maximum. For

each v the function Ma : V −→ R, Ma(v) = supβ∈a−{0}
µ(v,β)
‖β‖ is actually given

by µ(v,H)
‖H‖ for some H in a. Moreover, as there are only finitely many functions

µv : a −→ R as v ranges through V , Ma assumes finitely many values.

The maximal abelian subspaces of p are conjugate under Ad K, and given
such a subspace a ⊂ p, p =

⋃
k∈K Ad(k)(a). Therefore

M(v) = sup
β∈p

µ(v, β)
‖β‖ = sup

k∈K
sup
β∈a

µ(v, Ad(k)β)
‖Ad(k)β‖

= sup
k∈K

sup
β∈a

µ(kv, β)
‖β‖ = sup

k∈K
Ma(kv) = max

k∈K
Ma(kv)

=
µ(kv, β)
‖β‖ , for some k ∈ K, β ∈ a

=
µ(v, α)
‖α‖ , for α = Adk−1(β) ∈ p.
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This proves Part 1 of the lemma, and also Part 2, since for each v, M(v) is
chosen from a subset of a fixed finite set of values.

For Part 3, it is enough to show that for all v in V and g in G, M(v) ≥ M(gv).
Fix a maximal abelian subspace a ⊂ p. Then, notations being as in the proof of
Part 1,

M(v) = max
k∈K

Ma(kv).

In order to prove that M(v) ≥ M(gv) holds in general, it is enough to show
that for all v ∈ V , g ∈ G, there exists k ∈ K such that Ma(kv) ≥ Ma(gv).
Fix arbitrary v and g. Let H ∈ Sdim a−1 ⊂ a be such that Ma(gv) = Ma

gv(H)
i.e., H is the maximum of µgv restricted to the unit sphere in a. We want to
define a convenient ordered orthonormal basis for V . We define first an order on
the set of weights Λ, then we choose orthonormal bases for each of the weight
spaces Vλ and put them together to form an ordered orthonormal basis for V
in the following way: if λ1, λ2 ∈ Λ, λ1 ≤ λ2, then the vectors in the basis
for Vλ1 precede those in the basis for Vλ2 in the ordered basis for V . (The
order of the vectors that form a basis for one weight space is irrelevant and
can be chosen arbitrarily.) Now the order on weights is established as follows.
Let Λ0 = {λ ∈ Λ such that the orthogonal projection of gv on Vλ is 0} and let
Λ1 = Λ \ Λ0. Choose an arbitrary order on Λ0 and declare the elements of Λ0

to be less than those of Λ1. Order the elements of Λ1 according to the order of
their evaluation at H defined above, i.e., for λ, λ̃ ∈ Λ, λ ≤ λ̃ if λ(H) ≤ λ̃(H).
Let gv =

∑
i≥i0

aivi, where {v1, . . . , vn} is the ordered basis of V just obtained
and ai �= 0. Also, for future convenience, let λ̃ be the weight such that vi0 ∈ Vλ̃

that is, λ̃ is the smallest element of Λ1. According to an Iwasawa decomposition
of the image G̃ of G in GL(n, R), it is possible to write g = nak for some
n, a, k ∈ G̃ such that n is lower triangular with 1s on the diagonal, a is diagonal
with positive diagonal entries and k is orthogonal. Then kv = a−1n−1gv. Since n
is lower triangular and a is diagonal, it is clear that kv has a nonzero projection
onto vi0 and no nontrivial projections onto the vectors that precede it in the
ordered basis of V . Thus

Ma
kv(H) = λ̃(H) = Ma

gv(H) = Ma(gv),

hence
Ma(kv) = sup

X∈Sdim a−1⊂a

Ma
kv(X) ≥ Ma

kv(H) ≥ Ma(gv).

This establishes Part 3 of Lemma 4.

The first part of the theorem follows very quickly now. If x is a critical point
of ‖m‖2, m(x) �= 0, then by Lemma 3, ‖m(x)‖ = M(x). According to eq. (6)
in the proof of the same lemma, ‖m(y)‖ ≥ M(y) for arbitrary y. Hence for
arbitrary g, ‖m(gx)‖ ≥ M(gx) = M(x) = ‖m(x)‖ i.e., x is a minimum of
‖m‖2

∣∣
Gx

. Moreover, if y is another critical point of ‖m‖2 in the same G-orbit,
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y = gx for some g ∈ G, then

‖m(y)‖ = M(y) = M(gx) = M(x) = ‖m(x)‖,
which will be very important in establishing the second part of the theorem.
The last ingredient needed before proceeding to do this is the following

Lemma 5. Let α be in p, α �= 0, and x ∈ P(V ) such that x is not fixed by α.
Then f : R −→ R, f(t) = mα(exp(tα)x) is a strictly increasing function.

Proof. We show that the derivative of f is positive. Let v ∈ V represent x and
let v =

∑
i vi be a decomposition of v according to eigenspaces of α, αvi = aivi.

Then exp(tα)v =
∑

i etaivi, so

f(t) = mα(exp(tα)x) =
∑

aie
2tai‖vi‖2

∑
e2tai‖vi‖2 ,

hence

f ′(t) =
2

∑
i<j(ai − aj)2e2t(ai+aj)‖vi‖2‖vj‖2

(
∑

e2tai‖vi‖2)2
.

Since v is not an eigenvector of α, at least two distinct eigenvalues ai of α ap-
pear in the above expression of f ′(t), hence f ′(t), clearly nonnegative, also never
vanishes.

Let us now prove Part 2 of the theorem. Let x and y be critical points of
‖m‖2 such that y = gx for some g ∈ G and ‖m‖2(x) �= 0. Then, as noted above,
Lemmas 3 and 4 imply that ‖m‖2(x) = ‖m‖2(y). Let a ⊂ p be a maximal abelian
subspace containing m(x). Let A be the analytic subgroup of G corresponding to
a. We use a global Cartan decomposition to write G = KAK. In particular, it is
possible to write g = k1 expβk2, for k1, k2 ∈ K and β ∈ a. Thus y = k1 exp βk2x.
As noted before, due to the K-equivariance of m, x is a critical point of ‖m‖2

together with its entire K-orbit, therefore it can be assumed without loss of gen-
erality that y = expβx. Moreover, since m(x) fixes x and commutes with β, it
can be assumed, also without loss of generality, that m(x) and β are orthogonal.
We want to show: if expβ �= 1, then ‖m‖2(y) > ‖m‖2(x), a contradiction.

Eq. (4) has established the constancy of g(t) = mm(x)(exp tβx). In particular
it implies that mm(x)(y) = mm(x)(expβx) = mm(x)(x) = ‖m‖2(x). Since m(x)
and β are orthogonal,

‖m‖2(y) ≥ (m(y), m(x))2

‖m(x)‖2
+

(m(y), β)2

‖β‖2
= ‖m‖2(x) +

mβ(expβx)2

‖β‖2
.(7)

By Lemma 5, if β �= 0, the function f(t) = mβ(exp tβx) is strictly increasing.
f(0) = mβ(x) = 0, since m(x) and β are orthogonal, and f(1) = mβ(expβx).
We conclude that ‖m‖2(y) > ‖m‖2(x), a contradiction. Therefore β = 0 i.e., x
and y are in the same K-orbit.



788 ALINA MARIAN

Acknowledgement

I am grateful to Professor Wilfried Schmid for guiding me through this prob-
lem, as well as for his numerous encouragements and generous concern.

References

[1] V. Guillemin and S. Sternberg, Convexity properties of the moment mapping, Invent. Math.
67 (1982), no. 3, 491–513.

[2] T.H. Koornwinder (ed.), The Structure of Real Semisimple Lie Groups, Matematisch Cen-
trum, Amsterdam 1982.
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