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CRITICAL EXPONENTS FOR TWO-DIMENSIONAL
PERCOLATION

Stanislav Smirnov and Wendelin Werner

Abstract. We show how to combine Kesten’s scaling relations, the determination
of critical exponents associated to the stochastic Loewner evolution process by
Lawler, Schramm, and Werner, and Smirnov’s proof of Cardy’s formula, in order
to determine the existence and value of critical exponents associated to percolation
on the triangular lattice.

1. Introduction

The goal of the present note is to review and clarify the consequences of recent
papers and preprints concerning the existence and values of critical exponents
for site percolation on the triangular lattice.

Suppose that p ∈ (0, 1) is fixed. Each vertex of the triangular lattice (or
equivalently each hexagon in the honeycomb lattice) is open (or colored blue)
with probability p and closed (or colored yellow) with probability 1 − p, inde-
pendently of each other. It is now well-known (and due to Kesten and Wierman,
see the textbooks [12, 10]) that when p ≤ 1/2, there is almost surely no infinite
cluster of open vertices, while if p > 1/2, there is a.s. a unique such infinite clus-
ter and the probability θ(p) that the origin belongs to this infinite cluster is then
positive. Arguments from theoretical physics predicted that when p approaches
the critical value 1/2 from above, θ(p) behaves roughly like (p − 1/2)5/36. This
number 5/36 is one of several critical exponents that are supposed to be inde-
pendent of the considered planar lattice and that are describing the behaviour
of percolation near its critical point p = pc (pc = 1/2 for this particular model).
Our goal in the present paper is to point out that this result, as well as other
related statements, is a consequence of the combination of various papers:

• In [13], Kesten has shown that in order to understand the behaviour of
percolation near its critical point (and in particular existence and values
of certain critical exponents), it is sufficient to study what happens at the
critical point i.e. here when p = pc = 1/2. In particular, many results
would follow from the existence and the values of the exponents describing
the decay when R goes to infinity of the probabilities (at p = 1/2) of the
events A1

R and A2
R that if we restrict the percolation to the disc of radius R,

there exist one (respectively two disjoint) blue clusters joining the vicinity
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of the origin (say that are at distance less than two of the origin) to the
circle of radius R.

• In [28], Schramm defined a family of random evolution processes based
on Loewner’s equation, and pointed out that one of them (the stochastic
Loewner evolution process with parameter 6, referred to as SLE6 in the
sequel) is the only possible conformally invariant scaling limit of discrete
critical percolation cluster interfaces. In a series of papers [15, 16, 17, 21],
Lawler, Schramm, and Werner have derived various properties of SLE6

(relation between radial and chordal processes, locality property etc), com-
puted critical exponents associated to SLE6, and then used these expo-
nents to determine the value of Brownian exponents (for instance, the
Hausdorff dimension of the planar Brownian frontier is a.s. 4/3).

• In [30, 31], Smirnov proved that indeed, critical site percolation on the
triangular lattice has a conformally invariant scaling limit when the mesh
of the lattice tends to zero, and in particular, that the discrete cluster
interfaces converge to this stochastic Loewner evolution process.

In the present paper, we will outline how one can combine all these results to
show that the critical exponents for discrete site percolation on the triangular
lattice are those predicted in the physics literature. All the results that we
prove in the present paper have been conjectured (on the basis of numerics
and heuristics) and predicted (using Coulomb Gas methods, Conformal Field
Theory, or Quantum Gravity) by physicists. See e.g., Den Nijs [8], Nienhuis et al.
[22, 23], Pearson [24], Cardy [5], Sapoval-Rosso-Gouyet [27], Grossman-Aharony
[11], Duplantier-Saleur [26], Cardy [6], Duplantier [9], Aizenman-Duplantier-
Aharony [2] and the references in these papers.

There exists a vast theoretical physics literature on this subject and we do
not claim that this list covers all important contributions to it.

Note the description of the scaling limit via SLE6 enables also to derive
some results that have not appeared in the physics literature. For instance, an
analogue of Cardy’s formula “in the bulk” [29], or a description of the so-called
backbone exponent [21].

2. Kesten’s scaling relations

Let us now introduce some notation. Denote by N the cardinality of the
cluster C containing the origin. Recall that

θ(p) = Pp[N = ∞]

where Pp,Ep corresponds to site percolation on the triangular lattice with pa-
rameter p. Let

χ(p) = Ep[N 1N<∞].
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This corresponds to the average cardinality of finite clusters. Let

ξ(p) =

[
Ep[

∑
y∈C |y|21N<∞]

χ(p)

]1/2

.

This is the so-called correlation length corresponding to the “typical radius”
of a finite cluster. Other definitions of correlation length are possible, see e.g.,
[10, 13, 7]; for instance, define ξ∗(p) by the relation

P[0 is connected to x by a finite cluster] = exp{−x/ξ∗(p)+o(x)}when x → +∞.

If x tends to infinity along some fixed direction, existence of ξ∗ (dependent on
the chosen direction) easily follows. So to make the definition rigorous, one can
assume for instance that x ∈ R. On the other hand, the proof shows that the
asymptotic behaviour of ξ∗(p) in the neighbourhood of pc = 1/2 is independent
of the chosen direction (i.e., (iv) holds for all given directions).

Theorem 1 (Behaviour near the critical point).

• (i) When p → 1/2+,

θ(p) = (p − 1/2)5/36+o(1).

• (ii) When p → 1/2

χ(p) = (p − 1/2)−43/18+o(1).

• (iii) When p → 1/2,

ξ(p) = (p − 1/2)−4/3+o(1).

• (iv) When p → 1/2,

ξ∗(p) = (p − 1/2)−4/3+o(1).

It has been shown by Kesten in [13] (using also the remark following Lemma
8 in [13]; it can be shown that (iv) holds once (iii) holds, using the estimates in
[13], see also section 3 in [7]) that all these results hold provided that: When
p = 1/2 and R → ∞,

P[A1
R] = R−5/48+o(1)(1)

and

P[A2
R] = R−5/4+o(1).(2)

The relations between these two critical exponents and those appearing in
Theorem 1 are sometimes known as scaling relations.

Relation (1) is proved in [21], combining the computation of an exponent for
SLE6 with the results of [30, 31]. In the rest of this paper, we fix p = 1/2 and
we shall see how (2) and other closely related results (we will also briefly discuss
(1)) follow from the combination of [30, 31] with [15, 16, 17, 21]. Independently,
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Yu Zhang [33] has recently anounced a proof of (2) and of (iii) in the above
Theorem, probably using similar thoughts and arguments as those that we shall
present here.

3. Half-plane exponents

In this section, we are going to study the decay when R → ∞, of the proba-
bility of the events that there exist j disjoint blue paths that stay in the upper
half-plane, start at the vicinity of the origin, and reach distance R. Besides be-
ing of independent interest, this section serves as a model for the determination
of exponents in the plane.

To be more precise, consider critical percolation with fixed mesh equal to 1,
and consider the event Gj(r, R) that there exists j disjoint blue crossings of the
semi-annulus A+(r, R) := {z : r < |z| < R, 
(z) > 0}. By a blue crossing we
mean a (discrete) simple blue curve, i.e. a sequence of distinct blue hexagons
connecting the “semicircle” boundaries of A+(r, R), where consecutive hexagons
are adjacent.

Actually, we slightly modify the definition of A+(r, R) as follows: All hexagons
intersecting the circle of radius r will be in A+(r, R) while those which intersect
the circle of radius R are not in A+(r, R). A crossing of A+(r, R) is then a bluse
simple curve from |z| = r to a hexagon on the “outer boundary” of A+(r, R).

One could as well take a semi-hexagonal or a triangular shape instead of
the semi-circles to simplify the discrete approximation. Define aj(r, R) :=
P[Gj(r, R)].

Remark 2 (Changing the colors). The convention to study blue crossings is not
restrictive: it is standard (see e.g., [2, 15]) that for any given sequence of colours,
the probability that there exist left-right crossings of a topological rectangle (for
discrete critical percolation) of some prescribed colours in prescribed order is
in fact independent of this sequence of colours. It follows that this probability
is comparable (for long rectangles) to the probability of j crossings of arbitrary
colours. One can also check that the probabilities of at least j crossings, and of
exactly j crossings are comparable. The reason is that one can explore the cross-
ings from “below” one-by-one and flip all colours above some of them without
changing the probabilities of configurations.

We prove the following result, which was predicted by physicists:

Theorem 3 (Half-plane exponents). For any j ≥ 1, and for all large enough r
(i.e. r > const(j)),

aj(r, R) = R−j(j+1)/6+o(1) when R → ∞.

We first show that the theorem is a direct consequence of the following two
facts, which will be discussed in the remainder of the section:

• Identification between SLE6 and continuum percolation implies that ex-
ponents for continuum percolation are equal to the exponents for SLE6,
computed in [15]. This can be written in terms of discrete percolation:
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lim
ρ→∞ aj(ρ, Rρ) = R−j(j+1)/6+o(1) when R → ∞.(3)

• Crossing probabilities enjoy the following (approximate) multiplicativity
property with some positive c = const(j), provided r′′ ≥ r′ ≥ r > j (cf.
[13, 14]):

aj(r, r′) aj(r′, r′′) ≥ aj(r, r′′) ≥ c aj(r, r′) aj(r′, r′′).(4)

In fact, as aj(r, R) is decreasing in R, to establish Theorem 3 it is sufficient
to show that for any fixed ε, there exists K > 1 such that for sufficiently large
n,

(Kn)−j(j+1)/6−ε ≤ aj(r, rKn) ≤ (Kn)−j(j+1)/6+ε.(5)

To prove (5), we use (3) and choose large enough K so that

c−1K−j(j+1)/6−ε/2 ≤ aj(ρ, ρK) ≤ K−j(j+1)/6+ε/2,

for sufficiently large ρ. Together with (4) this implies

const
n∏

m=1

K−j(j+1)/6−ε/2 ≤
n∏

m=1

caj(Km−1r, Kmr) ≤ aj(r, rKn) ≤

≤
n∏

m=1

aj(Km−1r, Kmr) ≤ const
n∏

m=1

K−j(j+1)/6+ε/2,

and (5) readily follows.
To prove Theorem 3 it remains to check (3) and (4).

3.1. Chordal processes.
Chordal exploration process. Suppose for a moment that Ω is a simply con-
nected set of hexagons, and that a and b are two distinct vertices (of the honey-
combe lattice) that are on its boundary. For convenience, we will often identify
an arbitrary domain Ω with its discrete hexagonal approximation. Colour all
hexagons on the boundary of Ω that are between a and b in counter-clockwise
order (resp. clockwise order) in blue (resp. yellow) and call this set of blue
hexagons ∂b (resp. ∂y). There exists a unique curve separating the blue cluster
attached to ∂b from the yellow cluster attached to ∂y. This is the exploration
process from a to b in Ω. Note that this curve is a simple curve that has blue
hexagons to its left and yellow hexagons to its right (if seen from a to b), and
that it can be defined dynamically, as an “exploration process” that turns right
when it meets a yellow hexagon and left when it meets a blue hexagon. In par-
ticular, for a fixed curve γ, the event that the exploration process is equal to γ
depends only on the state of the hexagons that are in the neighbourhood of γ.
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By Remark 2, aj(r, R) is also the probability of the event of j crossings of
alternate colors, which is can be described as discrete exploration process inside
the semiannulus A+(r, R) from the point r (i.e., the real point r in the complex
plane) to the point −R making j crossings before hitting the interval [−R,−r].
Note that for odd j this can also be described as the existence of (j − 1)/2
disjoint yellow clusters that cross the semi-annulus.

Chordal SLE6. One can view chordal SLE6 as follows (e.g., [15, 25]): For
any simply connected open set Ω ⊂ C, Ω 
= C and two distinguished points (or
ends) a and b on its boundary, it is a random continuous curve γ from a to b
in Ω. The law of this curve is conformally invariant by construction, this curve
has double-points but no “self-crossings,” and is of fractal dimension 7/4 almost
surely ([25, 3]).

Critical exponents associated to the SLE6 curve in a semi-annulus have been
computed in [15, 17]: Define the probability asle

j (r, R) that SLE6 from r to −R
in the semi-annulus A+(r, R) makes j crossings before its hitting time τ of the
interval [−R,−r]. Note also that because of the conformal invariance, asle

j (r, R)
depends on the ratio R/r only: asle

j (r, R) = asle
j (R/r).

Let σ denote the time at which SLE6 performs its first crossing of the semi-
annulus. At this time, the SLE6 has still to perform j − 1 crossings between
the two circles in the connected component U of A+(r, R) \ γ[0, σ] before τ .
By conformal invariance and the strong Markov property of SLE6 at time σ,
it follows that given γ[0, σ], the conditional probability that SLE6 makes the j
crossings is asle

j−1(S) where S/π is the extremal distance between the two circles
in U . Hence,

asle
j (R/r) = E[1σ<τaj−1(S)].

Theorem 2.6 in [15] states that that for all non-negative λ,

E[1σ<τS−λ] � R−u(λ) when R → ∞,

where u(λ) = (6λ + 1 +
√

24λ + 1)/6, and � means that the ratio between both
quantities remain bounded and bounded away from zero. As u◦j(0) = j(j+1)/6,
it therefore follows by induction that for all j ≥ 1,

asle
j (R) � R−j(j+1)/6, when R → ∞.(6)

Exploration process and SLE6. In [30] it is shown among other things that
the discrete exploration process from a to b in the discretized approximation
of Ω converges in law towards SLE6, with respect to the Hausdorff topology
on simple curves, when the mesh of the lattice goes to zero. In fact [31], it
is also possible to derive a slightly stronger statement that loosely speaking the
convergence takes place uniformly with respect to the domain Ω and the location
of the endpoints a and b.

Hence it follows from [30], that when the mesh of the lattice goes to zero, the
probability that the discrete exploration process makes j crossings of a semi-
annulus converges to that for SLE6. Alternatively we can increase the domain
while preserving the mesh, and conclude that



CRITICAL EXPONENTS FOR TWO-DIMENSIONAL PERCOLATION 735

lim
ρ→∞ aj(ρr, ρR) = asle

j (r, R).(7)

Let us stress that this uses the following “a priori bounds” (cf. [21, 13, 14]):
For some fixed r and ε > 0 and for all sufficiently large R,

a3(r, R) ≤ R−1−ε,(8)

as well as an analogous result for 6 arms in the plane (see (11) in the next
section). These bounds for instance prevent the possibility that with positive
probability, a crossing of the rectangle appears in the scaling limit while it was
not present in the discrete case, or that two distinct crossings collapse into one
in the scaling limit (see [31] for more details).

Equations (6) and (7) clearly imply the desired (3).

3.2. Multiplicativity. The left inequality in the “approximate multiplica-
tivity” (4) is immediate since A+(r, r′) and A+(r′, r′′) are disjoint.

The right inequality is elementary using an argument involving the Russo-
Seymour-Welsh theory (referred to as RSW theory in the sequel). If 2r < r′ <
r′′/2, one can use the Harris-FKG (Fortuin-Kasteleyn-Ginibre) inequality and
the events that there exist j disjoint blue crossings of A+(r′/2, 2r′), and also
j disjoint blue crossings of the “long side” of the semi-annuli A+(r′/2, r′) (i.e.
that join the two real segments) and A+(r′, r′/2)). This argument relies on the
fact that all crossings have the same colour. As we shall see later, things are
more involved for plane exponents because of the fact that we will be considering
crossings of the two colours.

This is the only case needed in the proof, but remaining cases are also easy:
if e.g. r′ ≥ r′′/2 then by the reasoning above and standard RSW theory,

aj(r, r′′) ≥ aj(r, 2r′) ≥ c aj(r, r′) aj(r′, 2r′) ≥ c′ aj(r, r′) aj(r′, r′′).

4. Plane exponents

We now study the plane exponents, i.e. probabilities of crossings of annuli
instead of semi-annuli. There is a profound difference with the half-plane case,
when we had a “starting half-line,” which allowed to choose for a given configu-
ration a “canonical realization” of crossings (the lowest, the second from below,
and so on) and to change colours of crossings at will.

In contrast, when one studies j crossings of an annulus of the same colour,
then there is no canonical way to choose their realization. There was a prediction
by theoretical physicists in the case j = 1 (this is the “one-arm exponent” that
we will discuss later), but not for j ≥ 2. However, conformal invariance and
SLE6 can be used (see [21]) to describe the “backbone exponent” i.e. the case
j = 2, which is responsible for the dimension of the “backbone” – the sites of
percolation cluster connected to the boundary of the domain by two disjoint
blue curves – as the leading eigenvalue of a certain differential operator.
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It turns out (as observed by [2]) that the probabilities and the exponents
for j blue crossings are different from those for j crossings which are not all of
the same colour, and for the latter case there are physical predictions, which
we are going to establish. The reason is that one can take two neighboring
crossings of different colours, choose their closest (to each other) realizations,
and then use their hull as a starting point, choosing “canonical” realizations of
other crossings and changing their colours if needed. Similarly to the half-plane
case, one concludes that exponents are the same for j crossings of any prescribed
colours in any prescribed order, as long as colours are not all the same.

To be more precise, consider critical percolation with fixed mesh equal to
1, and consider the event Hj(r, R) that there exists j disjoint crossings of the
annulus A(r, R) := {z : r < |z| < R} (in fact we modify A(r, R) as A+(r, R) in
the previous section), not all of the same colour. Define bj(r, R) := P[Hj(r, R)].
One can also prescribe colours of the crossings and their order, which will change
bj up to a multiplicative constant (we will justify this rigorously later), preserving
the theorem below. The goal of this section is to establish the following result,
which was predicted by physicists:

Theorem 4 (Plane exponents). For any j ≥ 2, and for all large enough r (i.e.
r > const (j)),

bj(r, R) = R−(j2−1)/12+o(1) when R → ∞.

The statement above includes (2) as a particular case: for even j = 2k, we
can take crossings of alternate colours, and that corresponds to the existence of
k disjoint clusters that cross the annulus. In particular, P(A2

R) = b4(2, R) =
R−5/4+o(1).

Exactly as its half-plane counterpart, the theorem follows from the two ob-
servations which will be discussed below:

• Identification between SLE6 and continuum percolation implies that ex-
ponents for continuum percolation are equal to the exponents for SLE6,
computed in [16]. This can be written in terms of the crossings probabili-
ties for the exploration process in the annulus (to be defined below):

lim
ρ→∞ bep

j (ρ, Rρ) = R−(j2−1)/12+o(1) when R → ∞.(9)

• There is an unbounded set R ⊂ (0,∞) and a positive c (depending on
j only) such that crossing probabilities enjoy the following approximate
multiplicativity property for any R ∈ R and all n ≥ 1

const(R) c−n
n∏

l=1

bep
j (2Rl, Rl+1) ≥ bj(R, Rn+1)(10)

≥ const(R) cn
n∏

l=1

bep
j (2Rl, 2Rl+1).
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A more general inequality, analogous to (4) is valid, but for simplicity we
prove the above version only, which is sufficient to establish the theorem.

4.1. Processes in an annulus.
Exploration process and SLE6 in the universal cover. Suppose that an
annulus A = A(r, R) is given, and denote by Ã = Ã(r, R) its universal cover,
with inherited lattice structure. Fix a point x on the outer circle of A, let x̃
be one of its lifts to Ã, and y be a “counterclockwise point at infinity on the
boundary of Ã.”

Perform chordal exploration process and SLE6 from x̃ to y in the domain Ã.
We define a disconnection time T , which is the first time when the projection of
the trajectory to the annulus A disconnects the inner circle from the outer one.

As discussed, the law of the chordal exploration process converges (as mesh
goes to zero) to that of SLE6. If two trajectories of the exploration process
are δ-close in the Hausdorff metric, but have drastically different disconnection
times, then “six arms” must occur for one of them. The following “a priori
bound” (cf. [1, 14])

b6(r, R) ≤ const (r/R)−2−ε,(11)

imply that they occur somewhere “at scale δ” with probability o(1), δ → 0.
Therefore the law of the chordal exploration process stopped at the disconnec-
tion time converges (as mesh goes to zero) to that of SLE6 stopped at the
disconnection time.

As before, we infer that the probability bep
j (r, R) that the exploration process

makes j − 1 crossings between the inner and outer boundaries of Ã before time
T converges to the similar probability bsle

j (r, R) for SLE6 as the mesh of the
lattice goes to zero. Increasing the domain while preserving the mesh instead,
we conclude that

lim
ρ→∞ bep

j (ρr, ρR) = bsle
j (r, R).(12)

Projecting from the universal cover to the annulus. The mentioned
chordal processes in Ã up to the disconnection time T can be projected to the
annulus A. Locally their definitions coincide with the processes in the annulus
described below (which are well-defined up to the disconnection time). So by the
restriction property (laws of the exploration process and SLE6 depend only on
the neighbourhoods of their traces) we conclude that the projections of chordal
processes in Ã coincide with the following processes in A up to the disconnection
time T :

• Exploration process in an annulus follows the same “blue to the right-
yellow to the left” rule as the chordal exploration process, except that
we colour the hexagons of the inner circle in yellow, and that when the
exploration process hits the outer circle and the continuous determination
of the argument of the exploration process is larger (resp. smaller) than
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that the starting point of the exploration, the boundary point that it hits
on the outer circle is blue (resp. yellow).

• SLE6 in an annulus goes as radial SLE6 (see [16]) from x to the center of
the annulus up to the first hitting ρ of the inner boundary. Afterwards it
continues like chordal SLE6 in the remaining domain, until the disconnec-
tion time.

Particularly, we conclude that probabilities bep
j and bsle

j are the same for chordal
processes in Ã and their “annular” counterparts in A. Note that scaling implies
that just as in the chordal case, bsle

j (r, R) =: bsle
j (R/r).

Exponents for SLE6. The computation of exponents for radial and chordal
SLE6 in [15, 16] yields that for j ≥ 2

bsle
j (R) = R−(j2−1)/12+o(1), when R → ∞.(13)

Indeed, if σ now denotes the first hitting time of the inner circle by the SLE6

in the annulus A(1, R), and S/π the extremal distance between the two circles
in A(1, R) \ γ[0, σ], then conformal invariance and the strong Markov property
show that

bsle
j (R) = E[1σ<T asle

j−2(S)].
It is shown in [15], Theorem 3.1 that for λ ≥ 1 and λ = 0 (see [3] for this case),

E[1σ<T S−λ] � R−ν(λ) when R → ∞,(14)

where ν(λ) = (4λ + 1 +
√

1 + 24λ)/8. (13) for j 
= 3 then follows by plugging in
(6). So far, a direct proof of (14) for λ = 1/3 is missing in the literature (the proof
for λ ≥ 1 in [16] uses the computation of a “derivative exponent” and a convexity
argument. The latter does not work directly for λ ∈ (0, 1)). Equation (13) for
j = 3 can however be derived via other rather convoluted means (for instance a
universality argument and analyticity of intersection exponents [18, 19]).

Remark 5. The fact that bsle
2 (R) = R−1/4+o(1) is related to the fact that the

Hausdorff dimension of the SLE6 curve is 2− 1/4 = 7/4 (see [25, 3]). The fact
that bsle

3 (R) = R−2/3+o(1) is related to the fact that the dimension of the outer
frontiers of SLE6 and of planar Brownian motion is 2−2/3 = 4/3 (see [19]) and
that the fact that bsle

4 (R) = R−5/4+o(1) is related to the fact that the Hausdorff
dimension of the set of (local) cut points of SLE6 is 2 − 5/4 = 3/4 ([16]), e.g.
using the simple identification between Brownian hulls and SLE6 hulls [32].

Combining (12) and (13) we arrive at (9).

Remark 6. Before proceeding, we want to remark that events corresponding
to bep

j can be easily described in terms of percolation crossings. Namely at the
time T , when exploration process started from the point a first hits the inner
circle, its hull K is bounded by two crossings of the annulus: the clockwise-
most blue crossing and the counterclockwise-most yellow crossing, containing a
between them. After that the exploration process continues as the chordal process
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in A \ K, creating (j − 2) more crossings of alternate colours. Just as in the
halfplane case we can change the colours of all crossings except the first two,
so we conclude that bep

j gives (up to a multiplicative constant) the probability of
having (j − 2) crossings of some prescribed (any) colours outside the hull of two
crossings of opposite colours containing a between them.

So, the description of bep
j adds an additional requirement (a prescribed starting

point separating two crossings of opposite colour) as compared to bj, and we
conclude that

bep
j (r, R) ≤ bj(r, R).(15)

Unlike the half-plane case, the reverse inequality is valid up to a multiplicative
constant only. This is trivial when j = 2k is even (one just has to take alter-
nating colours as prescribed order and then the starting point of the exploration
process is anyway between two crossings of different colours) which corresponds
to the probability of k disjoint blue clusters. But an additional argument, in the
spirit of the discussion below, is needed for odd number of crossings.

4.2. Multiplicativity. Because of the two different colours, the simple argu-
ment based on the FKG inequality and the RSW theory can not be immediately
applied. Nevertheless, some more elaborate approaches suitable for similar prob-
lems were developed by Kesten and others. Needed results for 4 and 5 crossings
can be found in [13] and [14] correspondingly, but there seems to be no readily
available reference for an arbitrary number of arms, so we present a proof below.
Such arguments are also very close to Lawler’s separation Lemmas for Brownian
intersection probabilities, see e.g., [20].

It follows from [31], that bj(ρr, ρR) has a scaling limit, which is conformally
invariant, and so depends on the ratio R/r only:

b′j(R/r) = lim
ρ→∞ bj(ρr, ρR).(16)

By standard RSW theory, bj(r, R) is bounded from below by a power of R/r,
hence

b′j(R) ≥ const R−ζ ,

for some ζ > 0. Therefore we can conclude that there exist a positive constant
K and an unbounded set R of radii R such that

b′j(R/8) ≤ Kb′j(R/2).(17)

We now define a notion of δ-good configurations, when landing points of
crossing are “well separated”. We say that a configuration is δ-good in the
annulus A(r, r′) (we assume that r′ ≥ 4r) if there exist j disjoint crossings not
all of the same colours, and there is no ball of radius δr (resp. δr′) centered on
the inner (resp. outer) circle and intersecting at least three of the crossings. We
call bgood

j (r, r′) = bgood
j (r, r′, δ) the probability of this event. Note that the event
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corresponding to bj(r, r′)−bgood
j (r, r′, δ) is contained in the event that there exist

j crossings of the annulus A(2r, r′/2) and that three crossings of A(r, 2r) (or of
A(r′/2, r′)) come δr-close (resp. δr′ close) near the inner circle (resp. outer
circle) of the annulus. From (8) it follows that the probabilities of these last
events go to zero when δ → 0, (uniformly with respect to r and r′) so we can
fix δ := const(K), so that these probabilities are smaller that 1/(8K) and hence
for all r′/r ≥ 4,

bgood
j (r, r′, δ) ≥ bj(r, r′) − 1

4K
bj(2r, r′/2).(18)

Fix R ∈ R. It follows from (16) and (17) that there exist lR := const(R) such
that for l ≥ lR

bj

(
4Rl, Rl+1/2

) ≤ 2K bj

(
2Rl, Rl+1

)
.(19)

Combining (18) and (19) we conclude that for l ≥ lR

bgood
j (2Rl, Rl+1) ≥

(
1 − 1

4K
2K

)
bj(2Rl, Rl+1) =

1
2

bj(2Rl, Rl+1).(20)

Standard (but delicate) techniques based on RSW theory (cf. [13]) show
that there exists a constant Q = const(δ) ≥ 1 (note that Q depends on δ =
const(K) = const(j)), such that

bgood
j (r, r′) bgood

j (2r′, r′′) ≤ Q bgood
j (r, r′′).(21)

Similarly, the exists a constant Q′ ≥ 1 such that

bgood
j (r, r′/2) ≤ Q′ bep

j (r, r′).(22)

We are now ready to conclude, writing for the left half of (10)

bj(R, Rn+1) ≤
n∏

l=lK

bj(2Rl, Rl+1)
(20)

≤ 2n
n∏

l=lK

bgood
j (2Rl, Rl+1)

(22)

≤ C(R)(2Q′)n
n∏

l=1

bep
j (2Rl, 2Rl+1)

(in the first inequality we used that the event corresponding to bj(R, Rn+1) re-
quires simultaneous occurrence of independent events corresponding to
bj(2Rl, Rl+1) with l = lK , . . . , n). For the right half of (10) we write

bj(R, Rn+1) ≥ bgood
j (R, Rn+1)

(21)

≥ C(R)Q−n
n∏

l=lK

bgood
j (2Rl, Rl+1)

(20,15)

≥ C(R)(2Q)−n
n∏

l=1

bep
j (2Rl, Rl+1).
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4.3. One crossing of the annulus. In order to derive (1), one has to translate
the existence of one blue connection between circles in terms of the exploration
processes. Consider as in the previous subsections a discrete exploration process
in the annulus A(r, R) up to its disconnection time T i.e. the first time at which
the exploration process contains a closed loop around the inner circle. Let ρ
denote the first hitting time of the inner circle.

If ρ < T , then it means that there exists one arm of each colour joining the
two circles, and in particular a blue one. If T < ρ, then one has to see in which
direction γ did wind around the inner circle: If γ[0, T ] contains a clockwise
loop around the inner circle, then it means that the exploration process has
discovered a closed loop of yellow hexagons around the inner circle, and in this
case, there is no blue connection between the inner and the outer circle. If
however γ[0, T ] makes an anti-clockwise loop around the inner circle, then the
exploration process has discovered a closed loop l of blue hexagons around the
inner circle that is connected to the outer circle by a blue path. Furthermore,
the exploration process has not explored any of the hexagons that are in the
connected component of A(r, R) \ l containing the inner circle. Hence, to see if
there is a blue crossing of the annulus, it remains to see if there is a blue crossing
between the inner circle and l i.e. to start the same algorithm again in this new
domain.

Hence, one is lead to study the following quantities: What is the probability
that the radial SLE6 in the unit disc up to its first hitting time ρ of the circle of
radius r contains no clockwise loop around the origin? In [21], this probability
is shown to decay like r5/48. The number 5/48 in fact corresponds to the same
differential operator as that describing the probability of no loop at all (i.e.
corresponding to the exponent 1/4), but with different boundary conditions
(one Dirichlet and one Neumann instead of two Dirichlet).

Using arguments in the same spirit than those described above, one can then
show that indeed, P[A1

R] = R−5/48+o(1). For details, we refer to [21]. Note that
this is equivalent to

P[0 is connected to x] = |x|−5/24+o(1)

when x goes to infinity (i.e., the exponent often denoted by η exists and is equal
to 5/24).

5. Some open questions

To conclude, we very briefly list some questions that seem still open at this
moment. Some of them are probably within reach, and some are less accessible.

1. Generalizing the results of Smirnov [30], to other lattices. The first two
natural candidates are bond percolation on the square lattice and site
percolation on a Voronoi tesselation (see e.g. [4]), that both have a “self-
duality” type property (in particular, the value p = 1/2 has to be studied).
It would be sufficient to prove Cardy’s formula, but in both cases the
method used in [30] does not apply directly.
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2. Existence of two, three, and four arms from the vicinity of a site represent
it belonging to frontier of a percolation cluster, perimeter of a percolation
cluster, and being a pivotal site respectively. Thus we infer that on a
lattice with mesh 1, when we speak of clusters of size ≈ N , a site has
probablity ≈ N−1/4 to belong to a frontier, probability ≈ N−2/3 to belong
to perimeter, and probability ≈ N−5/4 of being pivotal. One should be able
to show a stronger statement, roughly speaking that a cluster of size ≈ N
has frontier of ≈ N2−1/4 = N7/4 sites, perimeter of ≈ N2−2/3 = N4/3 sites,
and ≈ N2−5/4 = N3/4 pivotal sites. The counterpart of this stronger claim
for continuum percolation follows from the identification between SLE6

and the scaling limit of percolation cluster perimeter: e.g., the scaling limit
of the frontier of a percolation cluster has the same law (when properly
normalized) as the Brownian frontier, and hence has Hausdorff dimension
4/3 almost surely. See [3] for a more direct proof.

3. Show that the power laws hold up to constants. For instance, does P[A1
R] ∈

[cR−5/48, CR−5/48] hold for some constants c, C ∈ (0,∞)? Estimates up
to constants can be useful in order to derive results on “discrete fractal
dimension” (see the previous question).

4. Show that the exponent α associated to the mean number of clusters per
vertex exists and determine its value (conjectured to be −2/3).

5. Determine the exponents corresponding to j ≥ 3 blue crossings of an an-
nulus.

6. Understand the relation between other critical lattice models such as the
critical random cluster models and the relation to other SLEκ and their
critical exponents.
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cedex, France.

E-mail address: wendelin.werner@math.u-psud.fr


