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NON-ORIENTABLE LAGRANGIAN SURFACES WITH
CONTROLLED AREA

Weiyang Qiu

Abstract. We show that any closed curve in R
4 bounds a Lagrangian Möbius

band with quadratic area(i.e. area bounded by length square). And we generalize
this result to flat chains mod 2 to conclude that in R

4 any one-dimensional integral
flat chain mod 2 without boundary bounds a two-dimensional Lagrangian integral
flat chain mod2 with quadratic area. Moreover we prove that in R

4 the set of
Lagrangian integral flat chains mod2 is dense under the flat norm in the space of
all two-dimensional integral flat chains mod2.

1. Introduction

Let ω = dx1 ∧ dy1 + dx2 ∧ dy2 be the standard symplectic form in R
4. Let

η = (x1dy1 + x2dy2 − y1dx1 − y2dx2)/2 be a primitive of ω. For a closed curve
γ : [0, 1] → R

4, define the symplectic area of γ to be
∫

γ
η. A two-dimensional

plane T is called Lagrangian if ω|T = 0. And a surface is called Lagrangian if
the tangent plane at each point is a Lagrangian plane. Stokes’ Theorem tells
us that if γ bounds any Lagrangian disk, it must have zero symplectic area.
Conversely D.Allcock [Al] and Gromov [Gr] proved that if a closed curve has
zero symplectic area, then it in deed bounds a Lagrangian disk. Moreover the
Lagrangian disk has area controlled by L2,where L is the length of γ.

In the present paper, the above result is modified to the case where the
curve does not have zero symplectic area. In this case, it no longer bounds any
orientable Lagrangian surface(by Stokes’ theorem), but it turns out that if we
allow non-orientable surfaces, the similar isoperimetric result is still true. In
fact we show in Corollary 2 that any closed curve bounds a Lagrangian Möbius
band with area controlled by L2. In section 5, using the decomposition theorem
of one-dimensional flat chain mod2, we extend this result and conclude that in
R

4 any one-dimensional integral flat chain mod2 without boundary bounds a
two-dimensional Lagrangian integral flat chain mod2 with quadratic area.

One natural question in the study of Lagrangian surfaces is whether the space
of Lagrangian surfaces is compact, i.e. ,whether the limit(in some suitable sense)
of a sequence of Lagrangian surfaces is still Lagrangian. If the surfaces are
orientable, this is known to be true( see R.Schoen and J. Wolfson [S-W] ). But
unfortunately, this is not true if we allow non-orientable surfaces. In fact in
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section 5 we prove that the set of all non-oriented Lagrangian surfaces is dense
in the space of all non-oriented surfaces in R

4.
I would like very much to thank my advisor Prof. Richard Schoen for his

superb direction, without which the writing of this paper is certainly impossible.
I would also like to thank Prof. Brian White for pointing out the construction
in the proof of Theorem 4. Finally I am pleased to thank Xiaodong Wang for
many helpful discussions.

Through out this paper, c, c′, c1, c2, . . . , will be used to denote absolute con-
stants.

2. Main Results

The followings are the main results of this paper:

Theorem 1. Let ω = dx1 ∧ dy1 + dx2 ∧ dy2 be the standard symplectic form in
R

4. Let η = (x1dy1 + x2dy2 − y1dx1 − y2dx2)/2 be a primitive of ω. If γ1 and
γ2 are two piecewise smooth closed curves in R

4 such that∫
γ1

η +
∫

γ2

η = 0

then there exists a piecewise smooth oriented Lagrangian surface H whose ori-
ented boundary is γ1 and γ2, and which has the area bound:

Area(H) ≤ c(L2(γ1) + L2(γ2) + dist2(γ1, γ2))

where L(γi) is the length of γi, dist(γ1,γ2) is the distance between the two curves,
and c is an absolute constant.

We will prove this theorem in section 4.
A immediate consequence of Theorem 1 is the following:

Corollary 2 (Isoperimetric Inequality). Let γ be any piecewise smooth closed
curve in R

4. Then γ bounds a non-oriented piecewise smooth Lagrangian surface
M (and it may be chosen to be a singular Möbius band) such that

Area(M) ≤ cL2(γ)

where L(γ) is the length of γ and c is an absolute constant.

Proof. Let γ be parametrized by γ(s) = (x1(s), y1(s), x2(s), y2(s)), 0 ≤ s ≤
1. By translation, we can assume γ(0) = 0 = γ(1). Choose one point P =
(a1, b1, a2, b2), whose distance from the origin is 4L(γ). Define a new loop γ̃ by

x̃i(s) =

{
(xi(2s) − ai)/

√
2, if 0 ≤ s ≤ 1/2;

(xi(2s − 1) − ai)/
√

2, if 1/2 ≤ s ≤ 1;

ỹi(s) =

{
(yi(2s) − bi)/

√
2, if 0 ≤ s ≤ 1/2;

(yi(2s − 1) − bi)/
√

2, if 1/2 ≤ s ≤ 1;
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for i = 1, 2. Then it is easy to check that γ̃ is a closed curve winding around
twice with

∫
γ̃

η =
∫

γ
η. Apply Theorem 1, we get an oriented Lagrangian surface

M with oriented boundary γ and γ̃−1. Note that the distance between γ and
γ̃ is less than 4L(γ). Moreover L(γ̃) ≤ 2L(γ). Thus Area(M) ≤ c1L

2(γ). But
since γ̃ winds around twice, we see that as non-oriented surface, the boundary
of M is γ. And in fact it is a Möbius band bounded by γ.

3. A Sequence of Lemmas

In this section, we give a sequence of lemmas which will lead to the proof of
Theorem 1.

The following Lemma 1 and Lemma 2 were proven by D.Allcock in [Al]. For
completeness, we include the proofs here.

Lemma 1 (Allcock). Let α, β be two piecewise smooth closed curves in R
4.

If their images lie in x1y1-plane and x2y2-plane respectively, and if they are
parametrized such that

ω(α(s), α′(s)) = ω(β(s), β′(s)), s ∈ [0, 1],

then there exists a Lagrangian homotopy1 between α and β with area less than
c(A + B)(L(α) + L(β)), where A = max(‖α(s)‖ : 0 ≤ s ≤ 1), B = max(‖β(s)‖ :
0 ≤ s ≤ 1), and c is an absolute constant.

Proof. Define H : [0, 1] × [0, π/2] → R
4 as

H(s, t) = α(s) cos t + β(s) sin t.

Clearly H is a homotopy between α and β. To show it is Lagrangian, notice
that

H∗
∂

∂s
(s, t) =

∂H

∂s
(s, t) = α′(s) cos t + β′(s) sin t,(1)

H∗
∂

∂t
(s, t) =

∂H

∂t
(s, t) = −α(s) sin t + β(s) cos t.

Therefore, using the fact that α, β lie in two symplectically orthogonal planes,
together with the fact that ω(α(s), α′(s)) = ω(β(s), β′(s)), we conclude that
ω(∂H/∂s, ∂H/∂t) = 0. Thus H is Lagrangian.

To get the area bound, consider the general formula

Area(H)(2)

=
∫∫

[0,1]×[0,π/2]

√
‖∂H/∂s‖2‖∂H/∂t‖2 − ((∂H/∂s) · (∂H/∂t))2dsdt.

1A homotopy H(s, t) from [0, 1] × [0, 1] to R
4 is said to be Lagrangian if

ω(H∗∂/∂s, H∗∂/∂t) = 0. Therefore the image of H is a Lagrangian surface.
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Apply this to (1), we get

Area(H)

≤
∫∫

[0,1]×[0,π/2]

‖∂H/∂s‖‖∂H/∂t‖dsdt

≤
∫∫

[0,1]×[0,π/2]

(‖α(s)‖ + ‖β(s)‖)(‖α′(s)‖ + ‖β′(s)‖)dsdt

≤ (π/2)(A + B)(L(α) + L(β))

Lemma 2 (Allcock). Let γ : [0, 1] → R
4 be a piecewise smooth closed curve

passing through the origin, with γ(s) = γ1(s) + γ2(s), where γi is the orthogonal
projection of γ on to the xiyi-plane. Then there is a piecewise smooth Lagrangian
homotopy between γ and the loop obtained by first traversing γ1 and then γ2.
Moreover, the area of the homotopy is less than cL2(γ).

Proof. By extending its domain, we may assume that γ is a piecewise smooth
map from R

1 to R
4 which vanishes outside [0, 1]. Define H(s, t) = γ1(s + t) +

γ2(s), where t ∈ [0, 1] and s ∈ [−1, 1]. Then it is easy to check H is a La-
grangian homotopy between γ and the loop obtained by first traversing γ1 and
then γ2( it is in fact parametrized by γ1(s+1)+ γ2(s) ). The area bound is also
straightforward using (2).

The next lemma tells us that we can translate curves Lagrangianly in certain
directions.

Lemma 3. Let γ : [0, 1] → R
4 be a piecewise smooth closed curve such that

γ(s) − γ(0) ∈ x2y2-plane,∀s ∈ [0, 1]. Then γ is Lagrangianly homotopic to a
closed curve entirely lying in x2y2-plane, and the area of the homotopy is less
than

4(L2(γ) + dist2(0, γ)).

Proof. Assume γ(0) = (a1, b1, a2, b2). Let

H(s, t) = γ(s) − t(a1, b1, 0, 0), (s, t) ∈ [0, 1] × [0, 1].

It is easy to check H(s, 1) lies in x2y2-plane. Since γ(s) = (a1, b1, x(s), y(s)),
γ′(s) = (0, 0, x′(s), y′(s)). Also note that

∂H/∂s = γ′(s), ∂H/∂t = (a1, b1, 0, 0).



NON-ORIENTABLE LAGRANGIAN SURFACES WITH CONTROLLED AREA 697

Then ω(∂H/∂s, ∂H/∂t) = 0. So H is Lagrangian. Moreover, by (2), we have

Area(H) ≤
∫∫

[0,1]×[0,1]

‖∂H/∂s‖‖∂H/∂t‖dsdt

≤
∫∫

[0,1]×[0,1]

√
a2
1 + b2

1 ‖γ′(s)‖dsdt

=
√

a2
1 + b2

1 L(γ)

≤ ‖γ(0)‖L(γ)
≤ 4(L2(γ) + dist2(0, γ))

The last inequality follows from the fact that ‖γ(0)‖ ≤ L(γ) + dist(0, γ).

Lemma 4. Let γ : [0, 1] → R
4 be a piecewise smooth closed curve lying en-

tirely in x2y2-plane. Then there exists a piecewise smooth closed curve γ̃, which
lies entirely in x1y1-plane , which passes through the origin, and which is La-
grangianly homotopic to γ with homotopy area less than c(L2(γ) + dist2(0, γ)) ,
where c is an absolute constant.

Proof. By means of Lemma 1, we want to find a curve γ̃ : [0, 1] → R
4,

parametrized by γ̃(s) = (x̃(s), ỹ(s), 0, 0), such that

γ̃(0) = γ̃(1) = 0,(3)

ω(γ(s), γ′(s)) = ω(γ̃(s), γ̃′(s))

Let γ(s) = (0, 0, x(s), y(s)), then (3) becomes

x̃′(s)ỹ(s) − x̃(s)ỹ′(s) = x′(s)y(s) − x(s)y′(s)(4)

x̃(0) = x̃(1) = 0

ỹ(0) = ỹ(1) = 0

It is not difficult to solve this boundary value ordinary differential equation. Let

ỹ0(s) =

{
4
√

s, if 0 ≤ s ≤ 1/2,
4
√

1 − s, if 1/2 ≤ s ≤ 1.
(5)

Let k =
√

L2(γ) + dist2(0, γ). Define ỹ(s) = kỹ0(s). Then define

x̃(s) = ỹ(s)
∫ s

0

f(t)
ỹ2(t)

dt(6)

where f(t) = x′(t)y(t)−x(t)y′(t). It is easy to check that x̃(s) is well-defined and
that x̃(s), ỹ(s) satisfy (4). Therefore, by Lemma 1, there exists a Lagrangian
homotopy H between γ and γ̃ with area less than c1(A + B)(L(γ) + L(γ̃)),
where A = max(‖γ(s)‖ : 0 ≤ s ≤ 1), B = max(‖γ̃(s)‖ : 0 ≤ s ≤ 1), and c1 is an
absolute constant.

Now we need to get an estimate on the area of H. First note that by a
reparametrization of γ, we may assume that ‖γ′(s)‖ = L(γ) ( s ranges from 0
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to 1). Then we have

|f(t)| = |x′(t)y(t) − x(t)y′(t)|
≤

√
x2(t) + y2(t)

√
(x′(t))2 + (y′(t))2

=
√

x2(t) + y2(t)‖γ′(s)‖
≤ (dist(0, γ) + L(γ))L(γ)
≤ 4k2.

Then combining (6) we have B = max(‖γ̃(s)‖ : 0 ≤ s ≤ 1)) ≤ c2k, where c2 is
an absolute constant.

Similarly we can control L(γ̃). In fact,

L(γ̃) =
∫ 1

0

√
(x̃′(s))2 + (ỹ′(s))2ds

=
∫ 1

0

√
[ỹ′(s)

∫ s

0

f(t)
ỹ2(t)

dt +
f(s)
ỹ(s)

]2 + (ỹ′(s))2ds

≤ c3k

∫ 1

0

√
[|ỹ′

0(s)|
∫ s

0

1
ỹ2
0(s)

dt +
1

ỹ0(s)
]2 + (ỹ′

0(s))2ds

≤ c4k

where c3 and c4 =
∫ 1

0

√
[|ỹ′

0(s)|
∫ s

0
1

ỹ2
0(s)

dt + 1
ỹ0(s)

]2 + (ỹ′
0(s))2ds are absolute con-

stants(the finiteness of the integral is easy to check using (5)). Therefore we get
L(γ̃) ≤ c4k.

Now combine the estimates foy B and L(γ̃), we have

Area(H) ≤ c1(A + B)(L(γ) + L(γ̃))
≤ c5k

≤ c6(L2(γ) + dist2(0, γ))

4. The Proof of Theorem 1

Now we are in the position to prove Theorem 1. It is a modification of the
approach used by D.Allcock in [Al]. Without loss of generality, we assume that
γ1(0) = (0, 0, 0, 0) and |γ2(0) − γ1(0)| = dist(γ1, γ2). By lemma 2, we might
assume that γ1 lies entirely in x1y1-plane and γ2 − γ2(0) lies entirely in x2y2-
plane. Apply Lemma 3 to γ2, we get a closed curve β1 entirely lying in x2y2-
plane, which is Lagrangianly homotopic to γ2 with quadratic homotopy area.
Then apply Lemma 4, there is a closed curve β2 entirely lying in x1y1-plane and
passing through the origin, which is Lagrangianly homotopic to β1. Since all the
homotopies are Lagrangian, by Stokes’ Theorem, we get

∫
γ2

η =
∫

β1
η =

∫
β2

η.
Now let ρ be the curve obtained by joining γ1 and β2. Then ρ lies entirely on
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x1y1-plane with zero symplectitc area. Let ρ be parametrized as (x(s), y(s), 0, 0),
for 0 ≤ s ≤ 1. Define a new curve σ in x2y2-plane by

σ(s) = (0, 0, L(ρ),

∫ s

0
[x(t)y′(t) − y(t)x′(t)]dt

L(ρ)
), s ∈ [0, 1].

It is easy to check that ω(ρ(s), ρ′(s)) = ω(σ(s), σ′(s)) and L(σ) ≤ 4L(ρ). More-
over since

∫
ρ
η = 0, we get

∫ 1

0
[x(t)y′(t) − y(t)x′(t)]dt = 0. Thus, σ is a closed

curve. By lemma 1, there exists a Lagrangian homotopy between σ and ρ with
area less than cL(ρ)2.

Finally since the image of σ is actually on a straight line segment, we can
easily use a linear homotopy(which is obviously Lagrangian and which has zero
area) to deform it to a point in x2y2-plane.

Now combine all the Lagrangian homotopies constructed above , we get an
oriented Lagrangian surface with boundary γ1 and γ2. The area bound of the
total homotopy is easily obtained by keeping track of the area of each individual
step.

5. Lagrangian Flat Chains mod2

In this section we extend our result about non-orientable Lagragian surfaces
to flat chains mod2. Let F2

k (R4) denote the set of k-dimensional flat chains
mod2( See Federer [Fe] section 4.2.26 and Fleming [Fl] for a detailed discussion
on flat chains mod2 ). We will use M(τ) to denote the mass of τ in F2

k (R4).
Then the flat norm of τ in F2

k (R4) is defined to be

W (τ) = inf{M(ρ) + M(π) : τ = ρ + ∂π, ρ ∈ F2
k (R4), π ∈ F2

k+1(R
4)}(7)

And the flat distance W (τ1, τ2) between τ1 and τ2 is define to be W (τ1 − τ2).
A flat chain mod2 is said to be rectifiable if it could be approximated under

M -norm by Lipschitz chains( the image of polyhedral chains under Lipschitz
maps). A flat chain mod2 is said to be integral if both itself and its boundary
are rectifiable. We will use I2

k(R4) to denote the set of all k-dimensional integral
flat chains mod2.

To any integral flat chain mod2 τ we can associate a varifold V (τ)(see Fed-
erer [Fe] section 4.2.26 for definition). τ ∈ I2

2 (R4) is said to be Lagrangian if
the approximate tangent plane of V (τ) is Lagrangian µτ -a.e, where µτ is the
underlying measure of τ .

Flat chains mod2 are generalization of non-oriented surfaces. For example ,
any Möbius band in R

4 is a 2-dimensional integral flat chain mod2 in R
4(See

F.Morgan [Mo], Chapter 11).
We have the following generalization of Corollary 2.

Corollary 3 (Isoperimetric Inequality). Let ρ ∈ I2
1 (R4) be any one-dimensional

integral flat chain mod2 in R
4 such that ∂ρ = 0 and M(ρ) < ∞. Then there ex-

ists a two-dimensional Lagrangian integral flat chain mod2 τ such that ∂τ = ρ
and M(τ) ≤ cM(ρ)2 , where c is an absolute constant.
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Proof. By the decomposition theorem of one-dimensional boundariless integral
flat chains mod2( see Federer [Fe] section 4.2.25 and section 4.2.26) ρ may be
written as ρ =

∑∞
i=1 ιi, where ιi are closed Lipschitz curves, viewed as flat

chains mod2. Moreover, the mass adds up, i.e., M(ρ) =
∑∞

i=1 M(ιi). By Corol-
lary 2, we can fill in each ιi with a Lagrangian flat chain mod2 τi with M(τi) ≤
cM(ιi)2. Let τ =

∑∞
i=1 τi. Then we see that ∂τ =

∑∞
i=1 ∂τi =

∑∞
i=1 ιi = ρ.

Moreover,

M(τ) ≤
∞∑

i=1

M(τi)(8)

≤
∞∑

i=1

cM(ιi)2

≤ c(
∞∑

i=1

M(ιi))2

= cM(ρ)2

Let I2
2,L(R4) denote the set of all integral Lagrangian flat chains mod2. In

the study of the regularity of minimal Lagrangian currents, we would like to
know whether or not I2

2,L(R4) is closed under the flat norm. Unfortunately, the
answer is no.

Theorem 4. The set of all integral Lagrangian flat chains mod2 in R
4, de-

noted as I2
2,L(R4), is dense under the flat norm in the space I2

2 (R4) of all integral
flat chains mod2 in R

4.

Proof. Since the set of two-dimensional polyhedral chains is dense under flat
norm in I2

2 (R4) (see Fleming [Fl]), it suffices to prove that any polyhedral cell P
can be approximated by elements in I2

2,L(R4). Furthermore, by approximating
polyhedral cell with squares, we might without loss of generality assume P is
a unit square in R

4. Divide P evenly into N2 small square P1, . . . , PN2 , each
with width 1/N . By Corollary 3, for each Pi, there exists a Lagrangian flat
chains mod2 τi such that ∂τi = ∂Pi, and M(τi) ≤ c1M(∂Pi)2 = c1(4/N)2. Let
τ =

∑N2

i=1 τi Notice that the interior boundaries of Pi cancel when they are

added together, hence we get ∂P =
∑N2

i=1 ∂Pi. Therefore, ∂τ = ∂P . Moreover

M(τ) ≤ ∑N2

i=1 M(τi) ≤ N2c1(4/N2) = c2. On the other hand, since ∂(τi−Pi) =
0, the standard isoperimetric inequality( See Fleming [Fl]) says that there exists
a three dimensional integral flat chain mod2 φi such that ∂φ = Pi − τi and
M(φi) ≤ c3(M(Pi − τi))3/2. Since M(Pi − τi) ≤ M(Pi) + M(τi) ≤ c4/N

2, we
have M(φi) ≤ c5/N

3. Let φ =
∑N2

i=1 φi. It follows that ∂φ = P − τ and M(φ) ≤
c5N

2/N3 ≤ c5/N . By the definition of flat norm, W (P, τ) ≤ M(φ) ≤ c5/N . Let
N go to infinity we get the W-approximation of P.
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Finally we make a remark that these results can be generalized to isotropic
surfaces in R

2n. If we replace R
4 by R

2n and replace Lagrangian by isotropic,
then Theorem 1, Corollary 2, Corollary 3 and Theorem 4 still hold, the proofs
of which are exactly the same.
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