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ON CONFORMALLY COMPACT EINSTEIN MANIFOLDS

Xiaodong Wang

1. Introduction

One of the new ideas under investigation in string theory is ADS/CFT cor-
respondence. It has a beautiful mathematical formulation and provides new
stimuli and insights to the study of conformally compact Einstein manifolds. By
the work of Lee [14] and recent results of Witten-Yau [22] we expect that there
should be a very interesting relationship between the geometry of a conformally
compact Einstein manifold and the conformal geometry of its conformal infinity.

In this paper we establish several results which support this philosophy. A
common theme in the approach is Bochner technique. In Section 3 we prove the
following theorem.

Theorem 1.1. Let (M, g) be a conformally compact Riemannian manifold of
dimension n+1 with Ric ≥ −n.

1. If λ0(g) > n− 1, then Hn(M, Z) = 0. In particular, the conformal infinity
is connected.

2. If λ0(g) = n − 1 and Hn(M, Z) �= 0, then M is isometric to R × Σ, with
warped product metric dt2 + cosh2(t)h, where Σ is compact and h is a
metric on Σ with Ric ≥ −(n − 1).

Combined with a theorem of J. Lee [14] this generalizes a result of Witten-Yau
[22] and Cai-Galloway [7]. The second part of the above theorem characterizes
the borderline case completely. It is interesting to note that it is precisely the
example given by Witten-Yau [22]. As a corollary of our theorem, we give a
simple proof of a result concerning convex cocompact hyperbolic manifolds due
to Bowen [6], Izeki [11] and Yue [23].

A Killing vector field on a conformally compact Einstein manifold M extends
to M and its restriction on the conformal infinity Σ is a conformal vector field.
In Section 4 the inverse problem is considered: given a conformal vector field on
Σ can it be extended to a Killing vector field on M? We show the answer is yes
if we assume M has non-positive curvature and there is an approximate Killing
vector field.

A large class of conformally compact Einstein manifolds are given by convex
cocompact hyperbolic manifolds. The conformal infinity of such manifolds is
necessarily conformally flat. In Section 5 we study conformally compact Einstein
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manifold whose conformal infinity is conformally flat. The main result in this
section is

Theorem 1.2. Let (M, g) be a conformally compact Einstein manifold whose
conformal infinity is conformally flat and has nonnegative Yamabe invariant. If
the sectional curvature satisfies − 3

4 < K + 1 < 3
4 , then g is hyperbolic.

In the last section, several interesting examples of conformally compact Ein-
stein manifolds are discussed. We also prove a non-existence result for certain
spin manifolds.

Theorem 1.3. Let M be the interior of a compact Spin manifold whose bound-
ary is Tn with its standard spin structure. Then there is no conformally compact
Einstein metric on M with the conformal infinity (Tn, [h]), where h is a flat met-
ric.

Compared with the known examples, this result illustrates the subtle role
played by spin structures.

2. Preliminaries

Let M be a compact (n+1)-dimensional manifold with boundary Σ. If r is a
smooth function on M with a first order zero on the boundary of M , positive on
M , then r is called a defining function. A Riemannian metric g on M = IntM
is called conformally compact if for any defining function r, g = r2g extends as
a smooth metric on M . The restriction of g to Σ gives a metric on Σ. This
metric changes by a conformal factor if the defining function is changed, so Σ
has a well-defined conformal structure c. We call (Σ, c) the conformal infinity of
(M, g). If g satisfies the Einstein equation Ric (g) + ng = 0 we say (M, g) is a
conformally compact Einstein manifold.

The following lemma is very useful.

Lemma 2.1 (see [8]). A metric h ∈ c on Σ determines a unique defining func-
tion r in a collar neighborhood of Σ such that

g = r−2(dr2 + hr),

where hr is an r−dependent family of metrics on Σ with hr|r=0 = h.

By the Einstein equation the expansion of hr is of the following form [9]. For
n odd,

hr = h(0) + h(2)r
2 + (even powers) + h(n−1)r

n−1 + h(n)r
n + . . . ,(2.1)

where the h(j) are tensors on Σ, and h(n) is trace-free with respect to h. The
tensors h(j) for j ≤ n − 1 are locally formally determined by the metric h, but
h(n) is formally undetermined.

For n even the analogous expansion is

hr = h(0) + h(2)r
2 + (even powers) + krn log r + h(n)r

n + . . . ,(2.2)

where the h(j) are locally determined for j ≤ n − 2, k is locally determined and
trace-free, but h(n) is formally undetermined.
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Conformally compact Einstein manifolds were first studied by Graham and
Lee [8] and they proved the following local existence theorem.

Theorem 2.1. Let M = Bn+1 be the ball and h0 the standard metric on the
sphere Sn. For any metric h on Sn which is sufficiently close to h0 in C2,α

norm if n ≤ 4, or C3,α norm if n = 3, for some 0 < α < 1, then there exists
a smooth conformally compact Einstein metric g on M with conformal infinity
(Sn, h).

During the last couple of years such manifolds have appeared in string theory
as the mathematical framework for the AdS/CFT correspondence which gives
a close connection between conformal field theory and supergravity. Therefore
the study of conformally compact Einstein manifolds has become even impor-
tant for physics. Inspired by physical considerations concerning the AdS/CFT
correspondence Witten-Yau [22] proved the following theorem for the positive
Yamabe invariant case in 1999. Shortly after Cai-Galloway [7] established the
zero Yamabe invariant case.

Theorem 2.2. Let (M, g) be a conformally compact Einstein manifold. If its
conformal infinity (Σ, [h]) has non-negative Yamabe invariant, then

Hn(M, Z) = 0.

In particular, Σ is connected.

For more background information we refer the reader to Graham-Lee [8], Lee
[14], Graham-Witten [9] and Witten-Yau [22].

3. A homology vanishing theorem

We first state a general technical lemma.

Lemma 3.1. Let θ be a harmonic 1-form on a Riemannian manifold M of
dimension n + 1. Then

|∇θ|2 ≥ n + 1
n

|∇|θ||2.

Proof. We introduce a 2-tensor H by

H(u, v) = ∇uθ(v).

Since θ is harmonic, H is symmetric and has trace zero. Given p ∈ M we choose
a local orthonormal frame {e0, e1, . . . , en} such that at p

θ(e0) = |θ|, θ(ei) = 0, for i = 1, . . . , n.

In the following we do the calculation at p.

|∇θ|2 − |∇|θ||2 =
n∑

i,j=0

H(ei, ej)2 −
n∑

j=0

〈∇ej θ, θ〉2
|θ|2

=
n∑

i,j=0

H(ei, ej)2 −
n∑

j=0

H(e0, ej)2



674 XIAODONG WANG

=
∑
i �=0

H(ei, ej)2

≥
n∑

i=1

H(ei, e0)2 +
n∑

i=1

H(ei, ei)2

≥
n∑

i=1

H(ei, e0)2 +
1
n

H(e0, e0)2

≥ 1
n
|∇|θ||2.

i. e. |∇θ|2 ≥ n+1
n |∇|θ||2.

If equality holds at p then H has an eigenvalue µ of multiplicity n and another
eigenvalue −nµ such that

H(ei, ej) = µδij , H(e0, e0) = −nµ, H(e0, ei) = 0

for i, j = 1, . . . , n. �

For a complete, non-compact Riemannian manifold (M, g), we denote the
infimum of the L2 spectrum of its Laplacian − by λ0(g). It can be defined as

λ0(g) = inf f∈C1
c (M)

∫
M

|∇f |2∫
M

f2
.

Let Hk(M) be the space of L2 harmonic k-forms.

Theorem 3.1. Let (M, g) be a conformally compact Riemannian manifold of
dimension n+1 with Ric ≥ −n.

1. If λ0(g) > n − 1, then H1(M) = 0.
2. If λ0(g) = n−1 and H1(M) �= 0, then M is isometric to R×Σ, with warped

product metric dt2 + cosh2(t)h, where Σ is compact and h is a metric on
Σ with Ric ≥ −(n − 1).

Proof. Suppose that θ is a non-zero L2 harmonic 1-form on M . By the Bochner
formula we have

1
2
|θ|2 = |∇θ|2 + Ric (θ, θ) ≥ |∇θ|2 − n|θ|2.

By Lemma 3.1

1
2
|θ|2 ≥ n + 1

n
|∇|θ||2 − n|θ|2.(3.1)

By Mazzeo’s work (see [15] and [16]) we have f � |θ| = O(rn) (Mazzeo proved an
asymptotic expansion for θ by constructing a parametrix for the Hodge Laplacian
in a collar neighborhood of the conformal infinity. His method originally gives
the decay rate |θ| = O(rn−1). By using the well-known fact that an L2 harmonic
form on a complete Riemannian manifold is both closed and coclosed, one can
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improve the decay rate to get |θ| = O(rn). See [21] for more details). This
implies that φ � f (n−1)/n = O(rn−1) ∈ L2(M). From (3.1) we get

n

2(n − 1)
div∇φ2 ≥ n

n − 1
|∇φ|2 − nφ2.

Therefore ∫
Mδ

|∇φ|2 − (n − 1)φ2 ≤
∫

Σδ

φ
∂φ

∂ν
,(3.2)

where ν is the outer unit normal of Σδ. By geometric-mean inequality∣∣∣∣
∫

Σδ

φ
∂φ

∂ν

∣∣∣∣ ≤
∫

Σδ

φ|∇φ| ≤ 1
2

∫
Σδ

(
φ2 + |∇φ|2) .

As
∫

M
φ2 + |∇φ|2 < ∞, there exists a sequence δk → 0 such that

∫
Σδk

φ2 +
|∇φ|2 → 0. Taking limit in (3.2), we get∫

M

|∇φ|2 ≤ (n − 1)
∫

M

φ2.

This implies that λ0 ≤ n − 1. Thus H1(M) = 0 if λ0(g) > n − 1.
If λ0(g) = n− 1 and there is a nonzero harmonic form θ, then all the inequal-

ities in the above argument are equalities. First we have

−φ = (n − 1)φ.(3.3)

By Harnack inequality φ is positive everywhere. We also have

|∇θ|2 =
n + 1

n
|∇|θ||2.

Let X be the unit vector field dual to the 1-form θ/|θ|. By the proof of Lemma
3.1, we have

∇Xθ(X) = −nµ(3.4)

∇uθ(v) = µ〈u, v〉(3.5)

∇Xθ(u) = 0(3.6)

for u, v orthogonal to X. Then

∇uθ(v) = uf〈X, v〉 + f〈∇uX, v〉.
By (3.4)(3.5) and (3.6) we get

∇XX = 0(3.7)

Xf = −nµ(3.8)

〈∇uX, v〉 =
µ

f
〈u, v〉,(3.9)

uf = 0,(3.10)

for u, v orthogonal to X. It follows that ∇f = −nµX. Let γ : R → M be any
trajectory of X, which is a geodesic by (3.7). We have

df ◦ γ

dt
= −nµ ◦ γ.(3.11)
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We choose a local orthonormal frame {e0, e1, . . . , en} near γ(t) such that e0 = X.
By (3.7) (3.9) and (3.10) we calculate

f(γ(t)) = XXf +
n∑

i=1

(eieif −∇eieif)

=
d2f

dt2
−

n∑
i=1

〈∇f,∇eiei〉

=
d2f

dt2
+ nµ

n∑
i=1

〈X,∇eiei〉

=
d2f

dt2
− nµ

n∑
i=1

〈∇eiX, ei〉

=
d2f

dt2
− n2µ2/f.

(3.12)

By (3.3) and the fact that φ = fn/(n−1) we obtain

f = |∇f |2/nf − nf = nµ2/f − nf.(3.13)

By (3.11)(3.12) and (3.13) we get the following ODE

d2f ◦ γ

dt2
=

n + 1
nf ◦ γ

(
df ◦ γ

dt

)2

− nf ◦ γ.

This ODE can be easily solved to give

f ◦ γ(t) = a cosh−n(t + c),(3.14)

where a > 0 and c are constants. By (3.8)

µ ◦ γ(t) = − 1
n

d

dt
f ◦ γ(t) = a cosh−n−1(t + c) sinh(t + c).(3.15)

Let B = max f . If γ(0) ∈ Σ � {x ∈ M |f(x) = B}, then c = 0 and a = B.
Therefore the flow of X moves any level set of f to another level set. It is now
clear that Σ is a compact hypersurface and the flow of X contracts M to Σ.
Therefore M = R × Σ and the metric g must be the form

g = dt2 + hij(t, x)dxidxj ,

where x is coordinates on Σ. By (3.9) (3.14) and (3.15) we have

1
2

∂hij

∂t
= 〈∇ ∂

∂xi

∂

∂t
,

∂

∂xj
〉 =

µ

f
hij =

sinh(t)
cosh(t)

hij .

This implies that
hij(t, x) = cosh2(t)hij(0, x).

Therefore g = dt2 + cosh2(t)h where h is a metric on Σ. As Ric g ≥ −n, it is
easy to see that Ric h ≥ −(n − 1).
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Conversely for such a manifold M one can easily verify that cosh−n dt is an
L2 harmonic 1-form and

− cosh−(n−1)(t) = (n − 1) cosh−(n−1)(t).

Hence λ0 = n − 1 and H1(M) �= 0. �

Corollary 3.1. Let (M, g) be a conformally compact Riemannian manifold with
Ric ≥ −n and λ0(g) > n − 1, then Hn(M, Z) = 0. In particular, the conformal
infinity is connected.

Proof. It has been shown by R. Mazzeo [15] that H1(M) is isomorphic to
H1(M, Σ). Therefore H1(M,Σ) = 0 by Theorem 3.1. It then follows
H1(M, Σ; Z) = 0 for we know it is also torsion free. By Lefshetz duality
Hn(M, Z) = 0. To prove the second claim we use the cohomology exact se-
quence

0 → H0(M) → H0(Σ) → H1(M, Σ) → · · · .

As H1(M,Σ) = 0, H0(M) → H0(Σ) is an isomorphism. Therefore Σ is con-
nected. �

The significance of Hn(M, Z) = 0 for AdS/CFT correspondence is that it
rules out the existence of wormholes (see [22] for a detailed explanation). About
λ0(g), the following result is known.

Theorem 3.2 (J. Lee [14]). Let (M, g) be a conformally compact Einstein man-
ifold. If its conformal infinity has positive Yamabe invariant, then λ0(g) = n2/4.

Combining the previous two theorems we get

Corollary 3.2. Let M be the interior of a compact manifold whose boundary Σ
has more than one components. Let c be a conformal structure on Σ such that
each component has nonnegative Yamabe invariant. Then there is no conformal
compact Einstein metric with (Σ, c) as its conformal infinity.

Remark. In the Corollary we have to assume that each component of the con-
formal infinity has positive Yamabe invariant. Actually the result is established
if one of the components has positive Yamabe invariant (Witten-Yau [22]) or
zero Yamabe invariant (Cai-Galloway [7]).

Remark. In another sense, Theorem 3.1 is obviously stronger than the result
of Witten-Yau and Cai-Galloway who prove Hn(M, Z) = 0 under the condition
that the conformal infinity has nonnegative Yamabe invariant. Theorem 3.1
shows that this is true even for certain manifolds whose conformal infinity has
negative Yamabe invariant. Consider a hyperbolic manifold M = Bn+1/Γ where
Γ is a torsion-free convex cocompact discrete subgroup of Isom +(Hn+1). Such
M is a conformally compact Einstein (hyperbolic) manifold with conformally
infinity (Sn − Λ(Γ))/Γ where Λ(Γ) is the limit set of Γ. For such manifolds
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Sullivan [18] proved that λ0 < n2/4 iff Λ(Γ) has Hausdorff dimension δ > n/2,
and in that case λ0 = δ(n − δ). By Theorem 3.1 we get

if δ < n − 1 then Hn(M, Z) = 0.

If δ > (n−2)/2 by a result due to Schoen-Yau [17] the conformal infinity actually
has negative Yamabe invariant.

In 1979, Bowen [6] proved that the Hausdorff dimension of the limit set of a
quasi-Fuchsian group acting on S2, which is not Fuchsian, is greater than 1. It
had been conjectured that the same result should be true in higher dimensions.
The conjecture was solved by Izeki [11] and Yue [23], independently using quite
different methods. As an application of Theorem 3.1, we can give a simple proof
of a special case of their theorem.

Corollary 3.3. Let Mn+1 = H
n+1/Γ be an oriented convex compact hyperbolic

manifold whose limit set Λ(Γ) is a round sphere Sn−1 ⊂ Sn. Suppose that Γ′ is
another convex cocompact Kleinian group which is isomorphic to Γ as an abstract
group. Then the Hausdorff dimension δ(Γ′) ≥ n−1. Moreover, if δ(Γ′) = n−1,
Γ′ is conjugate to Γ by a Möbius transformation.

Proof. Since Λ(Γ) is a round sphere Sn−1 ⊂ Sn, the convex hull of Λ(Γ) is
Bn ⊂ Bn+1 and Σ = Bn/Γ is a compact hyperbolic manifold. M is the warped
product R×Σ, hence Hn(M, R) = R. The convex cocompact hyperbolic manifold
M ′ = H

n+1/Γ′ is homotopy equivalent to M because both are K(Γ, 1) manifolds.
Therefore Hn(M ′, R) = R. By Theorem 3.1, λ0 ≤ n − 1. Thus by Sullivan’s
theorem

δ(Γ′) > n/2 and δ(Γ′) (n − δ(Γ′)) ≤ n − 1.

It follows that δ(Γ′) ≥ n − 1.
If δ(Γ′) = n − 1, by Theorem 3.1 M ′ is the warped product of R with a

compact hyperbolic manifold Σ′ whose fundamental group is Γ′. Since Γ′ is
isomorphic to Γ as an abstract group, Σ′ is isometric to Σ by Mostow rigidity.
Therefore M ′ is isometric to M , or equivalently, Γ′ is conjugate to Γ by a Möbius
transformation. �

4. Asymptotic symmetry

Let (M, g) be a conformally compact Einstein manifold with conformal infinity
(Σ, [h]). By Lemma 2.1 we can write the metric near infinity as

g = r−2(dr2 + hij(r, x)dxidxj),

where (x1, . . . , xn) are local coordinates on Σ. Let X = a(r, x) ∂
∂r + bi(r, x) ∂

∂xi

be a vector field on M . By calculation we have the following formulas

LX
g(

∂

∂r
,

∂

∂r
) = 2r−2(

∂a

∂r
− a/r),(4.1)
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LX
g(

∂

∂r
,

∂

∂xi
) = r−2(

∂bj

∂r
hij +

∂a

∂xi
),(4.2)

LX
g(

∂

∂xi
,

∂

∂xj
) =

(
∂bk

∂xi
+ blΓk

il

)
hkj

r2
+

(
∂bk

∂xj
+ blΓk

jl

)
hki

r2
− 2

a

r3
hij +

a

r2

∂hij

∂r
,

(4.3)

where Γk
ij are Christoffel symbols of the metric hij(r, x)dxidxj .

Proposition 4.1. Let X be a Killing vector field. Then X extends to a smooth
vector field on M whose restriction on Σ is a conformal vector field.

Proof. Write X = a(r, x) ∂
∂r + bi(r, x) ∂

∂xi near infinity. As X is a Killing vector
field we have LX

g = 0. By (4.1) we get
∂a

∂r
− a/r = 0.

It follows a(r, x) = ra0(x). By (4.2) we get

∂bj

∂r
hij +

∂a

∂xi
= 0.

It implies bj(r, x) = bj(r0, x) − ∫
∂a
∂xi h

ij(r, x)dr. Hence X extends to a vector
field on M and its restriction on Σ is Y = bi(0, x) ∂

∂xi . By (4.3) we have(
∂bk

∂xi
+ blΓk

il

)
hkj +

(
∂bk

∂xj
+ blΓk

jl

)
hki − 2

a

r
hij + a

∂hij

∂r
= 0.

When we retric to the boundary r = 0 we get(
∂bk

∂xi
+ blΓk

il

)
hkj +

(
∂bk

∂xj
+ blΓk

jl

)
hki = 2a0(x)hij ,(4.4)

where we use the fact that ∂hij

∂r |r=0 = 0. Note (4.4) is equivalent to LY h = 2a0h
and thus Y is a conformal vector field on Σ. �

Lemma 4.1. Let (M, g) be an n + 1-dimensional Riemannian manifold with
Ric (g) = −ng. A vector field X on M satisfies

1
2
LX

g =
1
2
L�X−nX

g −
◦
RLX

g,

where, in terms of an orthonormal frame, (
◦
Rh)ij = Rikjlhkl for a symmetric

2-tensor h.

Proof. Let Ft be the (local) flow generated by X. Let gt = F ∗
t g. We have

−ngt = Ric (gt). We differentiate both sides with respect to t and use the
formula (1.180a) in Besse [5]

−nLX
g =

d

dt
Ric (gt)|t=0

= −1
2
LX

g −
◦
RLX

g − δ∗δLX
g − D2(div X) + Ric ◦ LX

g.



680 XIAODONG WANG

As Ric ◦ LX
g = −nLX

g, we get

−1
2
LX

g −
◦
RLX

g − δ∗δLX
g − D2(div X) = 0.(4.5)

If we identify a vector field with its dual 1-form we have the following identity

δLX
g = X + ∇div X + Ric (ej , X)ej = X + ∇div X − nX.(4.6)

It is also easy to verify

δ∗∇div X = −D2(div X).(4.7)

By (4.5) (4.6) and (4.7) we get

−1
2
LX

g −
◦
RLX

g +
1
2
L�X−nX

g = 0.

This is the formula we want. �

Definition 4.1. A vector field X on M is asymptotic Killing if LX
g = O(rn−2).

Theorem 4.1. Let (M, g) be a conformally compact Einstein manifold with
nonpositive sectional curvature. For any asymptotic Killing vector field Y on
M there is a Killing vector field X such that X|Σ = Y |Σ.

Proof. First by general elliptic theory on conformally compact manifolds e. g. ,
see [14], we can solve

Z − nZ = −(Y − nY )

to get a vector field Z which satisfies Z = O(rn−2). Let X = Y + Z. Then X is
asymptotic Killing and X − nX = 0. By Lemma 4.1 we have

1
2
|LX

g|2 = |∇LX
g|2 − 2〈

◦
RLX

g, LX
g〉.

As |LX
g|2 = O(r2n), integration by parts gives∫

M

|∇LX
g|2 = 2

∫
M

〈
◦
RLX

g, LX
g〉.(4.8)

On the other hand we have the following formula from Besse [5]

(δd + dδ)LX
g = −LX

g −
◦
RLX

g − nLX
g.

By integration by parts we get∫
M

|∇LX
g|2 ≥

∫
M

〈
◦
RLX

g, LX
g〉 + n|LX

g|2.(4.9)

By (4.8) and (4.9) we get∫
M

〈
◦
RLX

g, LX
g〉 ≥ n

∫
M

|LX
g|2.(4.10)
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As M has nonpositive sectional curvature, by Theorem 12. 71 in Besse [5] we
have

〈
◦
RLX

g, LX
g〉 ≤ n|LX

g|2.(4.11)

Combining with (4.10) we conclude LX
g = 0, i. e. X is a Killing vector field. �

Given a conformal vector field on Σ, one may try to construct an asymptotic
Killing vector field. In general this seems to be difficult to do. Nevertheless we
have the following

Theorem 4.2. Let (M1, g1) and (M2, g2) be two conformally compact Einstein
manifolds with the same conformal infinity (Σ, [h]). If Y is a Killing vector
field on M1, then there is an almost Killing vector field X on M2 such that
X|Σ = Y |Σ.

Proof. Identifying M1 and M2 near the infinity we can write g1 and g2 as

g1 = r−2(dr2 + h̃r),(4.12)

g1 = r−2(dr2 + hr).(4.13)

By the discussion at the end of Section 2 we have

hr = h̃r + O(rn).(4.14)

Let Y = a(r, x)∂/∂r + bi(r, x)∂/∂xi. Extending Y to the compact part of M2

we get a vector field X on M2. By (4.1) (4.2) (4.3) and (4.14) we get

LX
g2 = LY

g2 = LY
g1 + O(rn−2) = O(rn−2).

i. e. X is an almost Killing vector field. �

Remark. If we further assume (M2, g2) is nonpositively curved in the above
theorem, we can produce a Killing vector field on M2 by Theorem 4.1. It is
possible to use this result to prove global uniqueness of nonpositively curved
Einstein metrics with certain conformal infinities.

5. Conformal infinity which is conformally flat

Let (M, g) be a Riemannian manifold of dimension n+1. We denote its Weyl
tensor by W . We will first prove a Bochner formula for W by straightforward
calculation.

Lemma 5.1. Let X, Y and Z be vector fields on M and {eα} a local orthonormal
frame. Then

∇XW (eα, Y, eα, Z) = 0.
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Proof. It is obvious that the left hand side is independent of the orthonormal
frame, hence we need only to check it pointwise using a normal frame. Then we
have

∇XW (eα, Y, eα, Z)
= X(W (eα, Y, eα, Z)) − W (eα,∇XY, eα, Z) − W (eα, Y, eα,∇XZ)
= 0,

where in the last step we simply use the fact that the trace of W is zero. �

If (M, g) is Einstein, we have

R =
s

2n(n + 1)
g ◦ g + W.

It follows that W satisfies the second Bianchi identity.

Lemma 5.2. Let (M, g) be an Einstein manifold of dimension n + 1. Then
1
2
|W |2 = |∇W |2 + K,

where K = −2n|W |2 − 2RiαjβWαβklWijkl − 4RiαkβWjαlβWijkl.

Proof. For any p ∈ M we choose a local orthonormal frame {ei} which is normal
at p. The following calculation is done at p. As usual we sum over repeated
indices. By Lemma 5.1 and the first and second Bianchi identities we have

∇eα
∇eα

W (ei, ej , ek, el)
= eα(∇eαW (ei, ej , ek, el))
= −eα(∇ei

W (ej , eα, ek, el) + ∇ej
W (eα, ei, ek, el))

= −eα[eiWjαkl + ejWαikl − W (∇eiej , eα, ek, el) − W (ej ,∇eieα, ek, el)
−W (ej , eα,∇eiek, el) − W (ej , eα, ek,∇eiel)] − W (∇ej eα, ei, ek, el)
−W (eα,∇ej

ei, ek, el) − W (eα, ei,∇ej
ek, el) − W (eα, ei, ek,∇ej

el)]
= −eieαWjαkl − ejeαWαikl + W (∇eα∇eiej , eα, ek, el)

+W (ej ,∇eα
∇ei

eα, ek, el) + W (ej , eα,∇eα
∇ei

ek, el)
+W (ej , eα, ek,∇eα∇eiel)] + W (∇eα∇ej eα, ei, ek, el)
+W (eα,∇eα∇ej ei, ek, el) + W (eα, ei,∇eα∇ej ek, el)
+W (eα, ei, ek,∇eα∇ej el)]

= −ei[∇eα
W (ej , eα, ek, el) + W (∇eα

ej , eα, ek, el)
+W (ej ,∇eαeα, ek, el) + W (ej , eα,∇eαek, el)
+W (ej , eα, ek,∇eαel)] − ej [∇eαW (eα, ei, ek, el)
+W (∇eαeα, ei, ek, el) + W (eα,∇eαei, ek, el)
+W (eα, ei,∇eα

ek, el) + W (eα, ei, ek,∇eα
el)]

+W (∇eα∇eiej , eα, ek, el) + W (ej ,∇eα∇eieα, ek, el)
+W (ej , eα,∇eα

∇ei
ek, el) + W (ej , eα, ek,∇eα

∇ei
el)]
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+W (∇eα
∇ej

eα, ei, ek, el) + W (eα,∇eα
∇ej

ei, ek, el)
+W (eα, ei,∇eα∇ej ek, el) + W (eα, ei, ek,∇eα∇ej el)]

= ei[∇ek
W (ej , eα, el, eα) + ∇el

W (ej , eα, eα, ek)]
+ej [∇ek

W (eα, ei, el, eα) + ∇el
W (eα, ei, eα, ek)]

+W (Riαej , eα, ek, el) + W (ej , Riαeα, ek, el)
+W (ej , eα, Riαek, el) + W (ej , eα, ek, Riαel)
+W (Rjαeα, ei, ek, el) + W (eα, Rjαei, ek, el)
+W (eα, ei, Rjαek, el) + W (eα, ei, ek, Rjαel)

= W (Riαej , eα, ek, el) + W (ej , Riαeα, ek, el)
+W (ej , eα, Riαek, el) + W (ej , eα, ek, Riαel)
+W (Rjαeα, ei, ek, el) + W (eα, Rjαei, ek, el)
+W (eα, ei, Rjαek, el) + W (eα, ei, ek, Rjαel)

= −2nWijkl + W (Riαej , eα, ek, el) + W (ej , eα, Riαek, el)
+W (ej , eα, ek, Riαel) + W (eα, Rjαei, ek, el)
+W (eα, ei, Rjαek, el) + W (eα, ei, ek, Rjαel)

This implies

1
2
|W |2 = |∇W |2 + 〈W, W 〉

= |∇W |2 − 2n|W |2 + 2RiαjβWβαklWijkl

+2RiαkβWjαβlWijkl + 2RiαlβWjαkβWijkl

= |∇W |2 − 2n|W |2 − 2RiαjβWαβklWijkl

−4RiαkβWjαlβWijkl.

Thus we get the formula

1
2
|W |2 = |∇W |2 + K.(5.1)

�

Following [19], for fixed k, j, i,h we introduce a local skew symmetric tensor
u

(kjih)
lm by

u
(kjih)
lm = Wljihδmk + Wklihδmj + Wkjlhδmi + Wkjilδmh

−Wmjihδlk − Wkmihδlj − Wkjmhδli − Wkjimδlh.

The following two lemmas are stated in [19] (our notation is slightly different).
The proof is a long but simple calculation.

Lemma 5.3.

Rlmpqu
(kjih)
lm u(kjih)

pq = 8K.
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Lemma 5.4. ∑
l,m

k,j,i,h

u
(kjih)
lm u

(kjih)
lm = 8n|W |2.

In dimension three, there is the following beautiful construction due to Bers
[4]. Let Σ be a compact oriented surfaces of genus ≥ 2. Given two conformal
structures c1 and c2 on Σ, there is a conformally compact hyperbolic metric on
Σ× (0, 1) with the conformal infinity (Σ, c1)� (Σ, c2). In higher dimensions, we
can not expect such a picture. Let Γ be a Kleinian group acting on Sn. We
denote its limit set by Λ(Γ). Suppose that Sn − Λ(Γ) has a component Ω on
which Γ acts freely. Then Ω/Γ is a manifold with a conformally flat structure.

Proposition 5.1. If Ω/Γ is a compact manifold with a hyperbolic metric in its
conformal structure, then Γ is a Fuchsian group. Hence Λ(Γ) is round (n − 1)-
dimensional sphere in Sn.

Proof. Let h0 be the standard metric on Sn. By the assumption there is a
complete hyperbolic metric h = ρ−2h0 on Ω, where ρ is a positive function. By
the formula relating the Ricci tensor of h and that of h0 we get

D2ρ =
ρ

n
h0,

where D2 and  are taken with respect to h0. The above formula simply means
that ∇ρ is a conformal vector field of h0. Then ∃ ξ ∈ Sn and a constant c such
that ρ(x) = x · ξ + c. For h to be complete Ω must be one of the sphere caps
bounded by the n− 1-dimensional round sphere on which ρ is zero. Therefore Γ
fixes a round Sn−1 in Sn. This implies that Γ is a Fuchsian group. �

Let (M, g0) be a compact hyperbolic manifold of dimension at least three
with another conformally flat structure c, e. g. If M contains a totally geodesic
hypersurface, the bending construction produces exotic conformally flat struc-
tures. By the proposition there exists no conformally compact hyperbolic metric
on M × (0, 1) with the conformal infinity (M, [g0])� (M, c). But it is possible to
have a conformally compact Einstein metric.

Theorem 5.1. Let (M, g) be a conformally compact Einstein manifold whose
conformal infinity is conformally flat and has nonnegative Yamabe invariant. If
the sectional curvature satisfies − 3

4 < K + 1 < 3
4 , then g is hyperbolic.

Proof. First we show that the Weyl tensor W decays rapidly. As the conformal
infinity is conformally flat we can take a metric h in the conformal class which is
Euclidean on a local chart U ⊂ Σ. On (0, ε) × U the metric g = r−2(dr2 + h) is
hyperbolic and thus has zero Weyl tensor. As g = r−2(dr2 + hr) = g + O(rn−2)
on (0, ε) × U we have W = O(rn−2). Therefore we get

|W |2 = O(r2n+4).
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By (5.1), Lemma 5.3 and 5.4 we have

|W |2 ≥ |∇W |2 − n‖R‖|W |2,
where ‖R‖ stands for the norm of the curvature operator on 2-forms. By the
Berger inequality [12] we have the following estimate under our pinching as-
sumption

‖R‖ <
3
2
.(5.2)

Therefore

|W |2 ≥ |∇W |2 − n2

4
|W |2.

This implies, in view of (5.2)∫
|∇W |2 ≤ n2

4

∫
|W |2.

As λ0 = n2/4, we conclude W ≡ 0. Therefore g is hyperbolic. �

6. Examples and a non-existence result

Let (N, g0) be a Riemannian manifold of dimension n + 1 − k such that
Ric = −(n − k). Consider the following metric on Bk × N

g =
4

(1 − |x|2)2
(

dx2 +
(1 + |x|2)2

4
g0

)
,

where x is the coordinates on Bk. Then g is a conformally compact Einstein
metric. The conformal infinity is the Sk−1 × N with the product metric. If we
use polar coordinates on the hyperbolic space the metric can be written in the
following form

g = dt2 + sinh2(t)dω2 + cosh2(t)g0,

where dω2 is the standard metric on Sk−1.

Remark. If (N, g0) is hyperbolic, then g is also hyperbolic. We write N =
Bn+1−k/Γ, where Γ is a torsion-free cocompact lattice in O(1, n + 1− k). Then
Bk ×N = Bn+1/Γ, here we view Γ as a discrete subgroup in O(1, n+1) through
the inclusion O(1, n + 1 − k) → O(1, n + 1).

Remark. The referee pointed out that the above metric is the Euclidean version
of a well-known static solution to the vacuum Einstein equations (referred to as
the Kottler k = 0 solution).

When k = 2, the above Einstein metric was constructed in Bérard Bergery
[4]. He also constructed Einstein metrics with negative scalar curvature on
B2 × N , where N is a compact Einstein manifold of positive or zero scalar
curvature. We show his metrics, properly normalized, are conformally compact.
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We take a slightly different perspective as we encountered first their Lorentzian
counterparts in general relativity.

Consider the ADS-Schwarzschild spacetime in general relativity

g = −f(r)dt2 + f(r)−1dr2 + r2dω2,

where dω2 is the standard metric on Sn−1 and f(r) = 1+ r2 − M
rn−2 with M > 0

a constant. The metric is defined on R × (r0,∞) × Sn−1, where r0 > 0 is the
zero of f , and satisfies the Einstein equation Ric (g) = −ng. If we replace t by
it we get a Riemannian Einstein metric

g = f(r)−1dr2 + f(r)du2 + r2g0

on (r0,∞) × S1 × M , where u is periodic of length L and (N, g0) is a compact
(n-1)-dimensional manifold such that Ric (g0) = (n− 2)g0. That we can replace
(Sn−1, dω2) by (N, g0) is because the Einstein equation Ric (g) = −ng only
involves the Ricci curvature of g0. The metric g is not complete when r goes to r0.
However we will show that this is caused by the failure of the coordinates we use,
something also happened to the Schwarzschild spacetime in general relativity.
We change coordinates by solving the following ODE{

r′′(t) = r + n−2
2

M
rn−1 ,

r(0) = r0, r
′(0) = 0.

(6.1)

This easily implies that r′(t) =
√

f(r) and thus the metric takes the form

g = dt2 + h(t)du2 + r(t)2g0

on (0,∞) × S1 × N , where h(t) = f ◦ r(t). From the ODE we see that r
is analytic and even in t. Hence h(t) is also even in t. Note h(0) = 0 and
h

′′
(0) = 2(r0 + n−2

2 M/rn−1
0 )2. If we chose L such that Lh′′(0)/2 = 2π then g

can be extended to t = 0 and we get a complete metric on R
2 × N . From its

original form this metric is obviously conformally compact.
If M = 0 the metric becomes

g = (1 + r2)−1dr2 + (1 + r2)du2 + r2g0

initially defined on (0,∞) × S1 × N . Let r = sinh(t) we get

g = dt2 + cosh2(t)du2 + sinh2(t)g0.

We can not extend the metric as before. However if g0 is the standard metric
on Sn−1, the part dt2 + sinh2(t)g0 is the hyperbolic metric on H

n in polar
coordinates. Therefore g is a complete metric on H

n×S1. In fact g is hyperbolic.
It can be obtained as H

n+1/Γ where Γ is the elementary group generated by a
dilation. This is a conformally compact hyperbolic metric on H

n × S1 with
conformal infinity Sn−1 × S1.

By the same argument, given a compact (n− 1)-dimensional Ricci-flat mani-
fold (N, g0) we can show that

g = (r2 − M/rn−2)−1dr2 + (r2 − M/rn−2)du2 + r2g0, r > M1/n
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is conformally compact Einstein metric on B2×N , where u has period 4π/nM1/n

(to resolve the conical singularity at r = M1/n). The conformal infinity is easily
seen to be (S1 × N, [dθ2 + h]). In the following we specialize to the special case
that (N, g0) is the torus Tn−1 with a flat metric. Let τ0 be the spin structure
on the torus defined by the trivial spin bundle. Note B2 × Tn−1 is a spin
manifold, but none of its spin structures induces τ0 on its boundary Tn. As the
spin cobordism group in dimension 3 is trivial [13], there is a compact spin 4-
manifold Σ4 with boundary (T 3, τ0). Therefore Σ4×Tn−3 is a spin manifold with
boundary (Tn, τ0). We have shown on B2×Tn−1 there is a conformally compact
Einstein metric whose conformal infinity is Tn with a flat metric, however this
is not true for Σ4 × Tn−3 by the following theorem.

Theorem 6.1. Let M be the interior of a compact Spin manifold with boundary
(Tn, τ0). Then there is no conformally compact Einstein metric on M with the
conformal infinity (Tn, [h]), where h is a flat metric.

Proof. The proof is based on the idea due to Andersson and Dahl [1]. Suppose
there is such a metric g. Then near infinity we can choose a defining function r
such that g = r−2(dr2+hr), with h0 a flat metric on Tn. The Einstein condition
implies that

hr = h0 + O(rn),(6.2)

tr h0hr = n + O(r2n).(6.3)

Consider the hyperbolic manifold (0,∞) × Tn, g = t−2(dt2 + h0) with the
spin structure defined by the trivial Spin(n+1)-bundle. It has Killing spinors
ψ = t−1/2(1 − √−1e1·)u (with respect to the obvious trivialization of the tan-
gent bundle), where u is a spinor vector and e1 = −t ∂

∂t . We use ψ to construct
an asymptotically Killing spinor on M . This is possible for the induced spin
structures on Tn are the same. By (6.2) and (6.3), the same calculation as in [1]
shows that the mass of this asymptotic Killing spinor is zero. Therefore M has
a Killing spinor. We refer to [1] for detail. Then by a theorem of Baum [2] M
is a warped product R × Tn with metric g = dt2 + e2th0. But then it has two
ends and one of them (t → −∞) is a cusp. This contradiction shows that such
a metric g can not exist. �

Acknowledgment

I wish to thank my advisor, Prof. Rick Schoen, for guiding my study and
sharing his ideas and insights with me over the last three years. Without his
guidance, encouragement and valuable suggestions, this work would not be pos-
sible. Thanks are also due to Prof. Rafe Mazzeo for his interests in my work
and for many helpful discussions. He explained to me how to resolve the conical
singularity for the metrics discussed in the last section.



688 XIAODONG WANG

References

[1] L. Andersson and M. Dahl, Scalar curvature rigidity for asymptotically locally hyper-
bolic manifolds, Ann. Global Anal. Geom. 16 (1998), no. 1, 1–27.

[2] H. Baum, Complete Riemannian manifolds with imaginary Killing spinors, Ann.
Global Anal. Geom. 7 (1989), no. 3, 205–226.

[3] L. Bérard Bergery, Sur de Nouvelles Variétés Riemanniannes d’Einstein, Publications
de l’Institut E. Cartan (1982), no. 4, 1–60.

[4] L. Bers, Simultaneous uniformization, Bull. Amer. Math. Soc. 66 (1960), 94–97.
[5] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, 1987.
[6] R. Bowen, Hausdorff dimension of quasi-circles, Inst. Hautes tudes Sci. Publ. Math.

No. 50, (1979), 11–25.
[7] M. Cai and G. J. Galloway, Boundaries of zero scalar curvature in the ADS/CFT

Correspondence, preprint hep-th/0003046.
[8] R. Graham and J. Lee, Einstein metrics with prescribed conformal infinity on the ball,

Advances in Math. 87 (1991), 186–225.
[9] R. Graham and E. Witten, Conformally anomaly of submanifold observables in

ADS/CFT Correspondence, preprint hep-th/9901021.
[10] M. Henningson and K. Skenderis, Holograph and the Weyl anomaly, preprint hep-

th/9812032.
[11] H. Izeki, Limit sets of Kleinian groups and conformally flat Riemannian manifolds,

Invent. Math. 122 (1995), no. 3, 603–625.
[12] H. Karcher, A short proof of Berger’s curvature tensor estimates, Proc. Amer. Math.

Soc. 26(1970) 642–644.
[13] H. B. Lawson and M.-L. Michelson, Spin Geometry, Princeton Univ. Press, 1989.
[14] J. Lee, The spectrum of an asymptotically hyperbolic Einstein manifold, Comm. Anal.

Geom. 3 (1995), no. 1-2, 253–271.
[15] R. Mazzeo, The Hodge cohomology of a conformally compact metric, J. Differential

Geom. 28 (1988), no. 2, 309–339.
[16] R. Mazzeo and R. Phillips, Hodge theory on hyperbolic manifolds, Duke Math. J. 60

(1990), no. 2, 509–559.
[17] R. Schoen and S.-T. Yau, Conformally flat manifolds, Kleinian groups and scalar cur-

vature, Invent. Math. 92 (1988), no. 1, 47–71.
[18] D. Sullivan, Related aspects of positivity in Riemannian geometry, J. Differential Geom.

25 (1987), no. 3, 327–351.
[19] S. Tachibana, A theorem of Riemannian manifolds of positive curvature operator, Proc.

Japan Acad. 50 (1974), 301–302.
[20] Xiaodong Wang, A new proof of Lee’s Theorem on the spectrum of conformally compact

Einstein manifolds, to appear in Comm. Anal. Geom.
[21] Xiaodong Wang, On the L2 cohomology of convex cocompact hyperbolic manifolds, to

appear in Duke Mathematical Journal.
[22] E. Witten and S.-T. Yau, Connectedness of the boundary in the ADS/CFT Correspon-

dence, preprint hep-th/9910245.
[23] C. Yue, Dimension and rigidity of quasi-Fuchsian representations, Ann. of Math. (2)

143 (1996), no. 2, 331–355.

Department of Mathematics, MIT, Cambridge, MA 02139.
E-mail address: xwang@math.mit.edu


