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DEFORMING AREA PRESERVING DIFFEOMORPHISM OF
SURFACES BY MEAN CURVATURE FLOW

Mu-Tao Wang

Abstract. Let f : Σ1 → Σ2 be an area preserving diffeomorphism between
compact Riemann surfaces of constant curvature. The graph of f can be viewed
as a Lagrangian submanifold in Σ1 × Σ2. This article discusses a canonical way
to deform f along area preserving diffeomorphisms. This deformation process is
realized through the mean curvature flow of the graph of f in Σ1 × Σ2. It is
proved that the flow exists for all time and the map converges to a canonical
map. In particular, this gives a new proof of the classical topological results that
O(3) is a deformation retract of the diffeomorphism group of S2 and the mapping
class group of a Riemman surface of positive genus is a deformation retract of the
diffeomorphism group.

1. Introduction

The mean curvature flow is an evolution process under which a submanifold
evolves in the direction of its mean curvature vector. It represents the most
effective way to decrease the volume of a submanifold. The codimension one
case of the mean curvature flow has been studied extensively while very little is
known in the higher codimension case. The multidimensionality of the normal
bundle presents the essential difficulties in such attempts.

[14] studies the mean curvature flow of surfaces in an Einstein four-manifold
and proves that a symplectic surface in a Kähler-Einstein surface remains sym-
plectic along the mean curvature flow and the flow does not develope any type
I singularity. When the embient four-manifold M is locally a product of Rie-
mann surfaces, there are two Kähler forms ω′ = ω1 − ω2 and ω′′ = ω1 + ω2 that
determine opposite orientations for M . We proved long time existence and con-
vergence of the mean curvature flow in [14] under the condition that the initial
surface is symplectic with respect to both ω′ and ω′′. These results have been
generalized to arbitrary dimension and codimension in [15]. This article studies
the case when the initial surface is Lagrangian with respect to one Kähler form
and symplectic with respect to the other.

Theorem A. Let M be a compact four manifold. If the universal covering of
M is any one of S2 ×S2, R

2 ×R
2 or H

2 ×H
2 and Σ is a compact surface in M
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that is Lagrangian with respect to ω1−ω2 and symplectic with respect to ω1+ω2 ,
then the mean curvature flow of Σ exists smoothly for all time.

It is proved by maximum principle in §2 that each slice Σt is again Lagrangian
with respect to ω1−ω2 and symplectic with respect to ω1+ω2. In this Lagrangian
case, the condition of being symplectic with respect to ω1 + ω2 is the same as
saying Σ is locally a graph over both Σ1 and Σ2. This happens when Σ is
the graph of a diffeomorphism between Σ1 and Σ2. Recall a diffeomorphism
f : Σ1 → Σ2 is called area preserving if f∗ω2 = ω1. It is not hard to see this is
true if and only if the graph of f in M = Σ1 × Σ2 is an embedded Lagrangian
surface with respect to the symplectic structure ω′ = ω1 − ω2.

As for convergence at infinity, we prove the following general subconvergence
theorem.

Theorem B. Let Σ1 and Σ2 be compact Riemann surfaces with the same con-
stant curvature and f : Σ1 �→ Σ2 be an area preserving diffeomorphism. As
t → ∞, a sequence of the mean curvature flow of the graph of f converges to a
smooth minimal Lagrangian graph.

After this work was completed, the author was informed that K. Smoczyk
claimed a proof to this theorem in the non-positive curvature case assuming an
extra angle condition.

The limit in this case is a ”minimal map”. This notion was introduced by R.
Schoen in [6].

Definition 1.1. A map f : Σ1 → Σ2 is called a minimal map if the graph is a
minimal embedding in M .

Schoen also proved the existence and uniqueness of minimal Lagrangian map
when Σ1 and Σ2 are hyperbolic surfaces. Theorem B gives a new proof of the
existence part.

When Σ1 = Σ2 and f is homotopic to identity map, we prove the following
uniform convergence theorem.

Theorem C. Let Σ1 be a compact Riemann surface of constant curvature and
f : Σ1 �→ Σ1 be an area preserving diffeomorphism that is homotopic to the
identity map. Denote by Σ the graph of f in Σ1 ×Σ1. The mean curvature flow
of Σ converges uniformly to a totally geodesic Lagrangian graph along Lagrangian
graphs .

When Σ1 is a sphere, we prove a stronger convergence in §3.
The result in [14] has applications in the deformation of maps between Rie-

mann surfaces. It was proved that any map between spheres with Jacobian less
than one is deformed to a constant map along the mean curvature flow of its
graph. The result in this article applies to the case when Jacobian is equal to
one.
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Corollary C. Any area preserving diffeomorphism f : Σ1 �→ Σ1 that is ho-
motopic to the identity can be deformed to an isometry along area preserving
diffeomorphisms by the mean curvature flow.

Since any diffeomorphism is isotopic to an area preserving diffeomorphism,
this gives a new proof of Smale’s theorem [12] that O(3) is the deformation
retract of the diffeomorphism group of S2. For a positive genus Riemann surface,
this implies the identity component of the diffeomorphism group is contractible.

2. Long time existence

Let M be a smooth compact four manifold whose universal covering is any of
S2 × S2, R

2 ×R
2 or H

2 ×H
2. Equipping with the quotient metric, M is in fact

a locally symmetric space. The standard Kähler forms on the factors extend to
two parallel forms ω1 and ω2 on M . ω′ = ω1 − ω2 and ω′′ = ω1 + ω2 are two
Kähler forms on M that determine opposite orientations for M in the sense that
ω′ ∧ ω′ = −ω′′ ∧ ω′′. The metric on M is in particular Kähler-Einstein with
respect to either Kähler form and Ric = c · g. We shall fix the Kähler structure
of M to be ω′.

Let F0 : Σ → M be a Lagrangian immersion of a compact surface Σ. We
evolve F0 in the direction of its mean curvature vector.

dF

dt
(x, t) = H(x, t)

where F : Σ×[0, T ) → M is a one parameter family of immersions Ft(·) = F (·, t)
of Σ and H(x, t) is the mean curvature vector of Ft(Σ) at Ft(x). Whenever there
is no ambiguity, we shall write Ft(Σ) = Σt.

Let ∗ be the Hodge operator on Σ, then ∗ωi is the Jacobian of the projection
from Σ onto the i-th factor of M .

Definition 2.1. We say Σ is a local graph with respect to ωi if ∗ωi > 0 on Σ.

The following proposition shows in particular the condition of being the graph
of an area preserving diffeomorphism is preserved and thus the mean curvature
flow does provide a deformation for such diffeomorphisms.

Proposition 2.1. Being a Lagrangian local graph in M is preserved along the
mean curvature flow.

Proof. The condition is equivalent to ω′ = 0 and ω′′ > 0. By Proposition 4.1 in
[14] for any parallel Kähler form ω, η = ∗ω satisfies the following equation,

d

dt
η = ∆η + η[(h31k − h42k)2 + (h32k + h41k)2] + cη(1 − η2)(2.1)

where {e1, e2, e3, e4} is an orthonormal basis for TpM such that {e1, e2} forms
an orthonormal basis for TΣt. The basis is chosen so that dµ(e1, e2) > 0 and
ω2(e1, e2, e3, e4) > 0 where dµ is a fixed orientation on Σt. Besides, A(ei, ej) =
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h3ije3+h4ije4 is the second fundamental form of Σt. From this and the maximum
principle for parabolic equations we immediate see that being a Lagrangian local
graph is preserved.

We fixed the complex structure J ′ that corresponds to ω′ and choose a or-
thonormal basis {e1, e2, e3, e4} so that e3 = J ′e1 and e4 = J ′e2. The orientation
given by this basis is in fact opposite to the one given by J ′ in the sense that
(ω′)2(e1, e2, e3, e4) < 0. Therefore (ω′′)2(e1, e2, e3, e4) > 0 and η = ∗ω′′ satisfies
the equation (2.1).

The normal bundle of a Lagrangian surface is canonically isomorphic to its
tangent bundle by J ′. Through this isomorphism the second fundamental form
A and the mean curvature vector H are associated with tensors B and σ. B
is the symmetric three-tensor defined by B(X, Y, Z) = − < ∇XY, J ′(Z) > for
X, Y, Z ∈ TΣ. σ is the one-form defined by σ(X) =< J ′(X), H >. If we
denote B(ei, ej , ek) = Bijk and σ(ei) = σi, then h3ij = −B1ij and h4ij =
−B2ij . Therefore the term involving the second fundamental form in (2.1) can
be calculated as the following.

(h31k − h42k)2 + (h32k + h41k)2 = (Bk11 − Bk22)2 + 4B2
k12 = 2|B|2 − |σ|2

Therefore η = ∗ω′′ satisfies

d

dt
η = ∆η + η[2|B|2 − |σ|2] + cη(1 − η2)(2.2)

Now we proceed to prove the long time existence theorem.

Proof of Theorem A. Notice that 0 ≤ η ≤ 1. By the equation of η and compar-
ison theorem for parabolic equations, we get

η(x, t) ≥ αect

√
1 + α2e2ct

where α > 0 satisfies α√
1+α2 = minΣ0 η. Therefore η(x, t) converges uniformly

to 1 when c = 1 and is nondecreasing when c = 0. In any case, η has a positive
lower bound at any finite time.

Since

|σ|2 = B2
111 + 2B111B122 + B2

122 + B2
211 + 2B211B222 + B2

222

and

|B|2 = B2
111 + 3B2

112 + 3B2
122 + B2

222

It is easy to see |σ|2 ≤ 4
3 |B|2, therefore

d

dt
η ≥ ∆η +

2
3
η|B|2 + cη(1 − η2)
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We can proceed to prove regularity at any finite time as in [14]. The idea is
to prove the Gaussian density

lim
t→t0

∫
ρy0,t0dµt = 1

for any point y0 ∈ M and t0 < ∞, where ρy0,t0 is the backward heat kernel

ρy0,t0(y, t) =
1

(4π(t0 − t))
exp(

−|y − y0|2
4(t0 − t)

)(2.3)

White’s regularity theorem [16] would implies (y0, t0) is a regular point. As in
[14], for any point (y0, t0) we can select sequences ti → t0 and λi → ∞ such
that the parabolic rescaling of Σti

by λi at (y0, t0) converges to a Lagrangian
submanifold with |B| = 0, or a linear subspace. This implies the Gaussian
density at (y0, t0) is 1 and there is no singular point at (y0, t0).

3. Convergence at infinity-the sphere case

In this section, we prove the convergence in the sphere case. The key point
is the uniform boundedness of the norm of the second fundamental form. We
accomplish this using the blow up analysis at infinity. We already have a mean
curvature flow F : Σ × [0,∞) �→ M that exists for all time. If supΣt

|A| is
not bounded, then there exists a sequence ťk → ∞ such that supΣťk

|A| → ∞.
Choose x̌k ∈ Σťk

such that |A|(x̌k, ťk) = supΣťk
|A|. Fix a number a less than

the injective radius of M . Because M is compact, we may assume x̌k → x̌ ∈ M
and dM (x̌k, x̌) < a

2 by passing to a subsequence.
Since M is locally a product, we can choose a coordinate system on a neigh-

borhood U = U1 × U2 of x̌ such that each ωi on Ui is the standard symplectic
form. We shall use this coordinate system to identify U with an open set B in
R

4. On U there is the metric induced from M and on B there is the flat metric.
However, being Lagrangian does depend on any particular metric structure.

Let S be the total space of the mean curvature flow F in M × [0,∞), take

Sk = S ∩ (U × [ťk − 1, ťk + 1])

For any (x, t) ∈ Sk denote the parabolic distance to the boundary of U × [ťk−
1, ťk + 1] by

δk(x, t) = min
x0∈∂U, t0∈{ťk−1,ťk+1}

{dM (x, x0),
√
|t − t0|}

Denote

αk = sup
(x,t)∈Sk

δk(x, t)|A|(x, t)

Notice that αk is a scaling invariant quantity. Since δk(x̌k, ťk)|A|(x̌k, ťk) ≥
min{a

2 , 1}|A|(x̌k, ťk), we have αk → ∞. Now we consider Sk as a smooth flow
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in B ⊂ R
4 with the flat metric, let

α′
k = sup

(x,t)∈Sk

δ′k(x, t)|A′|(x, t)

where

δ′k(x, t) = min
x0∈∂B, t0∈{ťk−1,ťk+1}

{|x − x0|,
√
|t − t0|}

is the parabolic distance in the flat metric on B and |A′|(x, t) is the second
fundamental form of Σt ∩ B as a submanifold in R

4. Since the two metrics are
equivalent, α′

k → ∞ too.
Now we take (xk, tk) ∈ Sk such that

δ′k(xk, tk)|A′|(xk, tk) ≥ α′
k

2
Let λk = |A′|(xk, tk). Because δ′k(xk, tk) ≤ min{a, 1}, λk → ∞ too. For any

Sk, we consider it as a submanifold in B × [ťk − 1, ťk + 1] ⊂ R
4 ×R and take the

parabolic rescaled flow S̃k = DkSk by λk.

Dk : R
4 × R → R

4 × R

(x, t) → (λk(x − xk), λ2
k(t − tk))

Notice that Dk(xk, tk) = (0, 0). Let |Ãk|(y, s) denote the second fundamental
form of (S̃k)s at y ∈ (S̃k)s, then |Ãk|(0, 0) = 1.

Since δ′k|A′| is also a scaling invariant quantity.

δ̃k(0, 0)|Ãk|(0, 0) = δ′k(xk, tk)|A′|(xk, tk) ≥ α′
k

2

where δ̃k is the parabolic distance to the boundary of λk(B − xk)× [λ2
k(ťk − 1−

tk), λk(ťk + 1 − tk)].
From this we see δ̃k(0, 0) → ∞ as k → ∞. For any (y, s) ∈ S̃k,

δ̃k(y, s)|Ãk|(y, s) ≤ α′
k ≤ 2δ̃k(0, 0), and therefore

|Ãk|(y, s) ≤ 2
δ̃k(0, 0)

δ̃k(y, s)
≤ 2

δ̃k(0, 0)

δ̃k(0, 0) − max{|y|, √|s|}
Take (y, s) ∈ K for any compact set K ⊂ R

4 × R, the above estimate shows
|Ãk| is uniformly bounded for all k on any compact set in space-time. Therefore
S̃k → S̃∞ smoothly and since δ̃k(0, 0) → ∞, S̃∞ is defined on (−∞,∞). We
have proved the following proposition.

Proposition 3.1. If supΣt
|A| is not bounded, then there exists a blow-up flow

S̃∞ ⊂ R
4 × R defined on the whole (−∞,∞) with uniform bounded second fun-

damental form and |A|(0, 0) = 1.



MEAN CURVATURE FLOW IN KÄHLER SURFACES 657

The main convergence theorem in the sphere case is the following.

Theorem 3.3.1. Under the same assumption as in Theorem A. If M has posi-
tive curvature then the mean curvature flow of Σ converges smoothly to a totally
geodesic Lagrangian surface at infinity.

Proof. We already know the long time existence and we are going to show the
uniform boundedness of the second fundamental form by contradiction.

By the equation of η we have η(x, t) ≥ 1 − εk for (x, t) ∈ Sk and εk → 0.
This continue to hold for the corresponding η̃k on S̃k. Therefore η(x, t) ≡ 1 for
(x, t) ∈ S̃∞ ⊂ R

4 × R. In particular the t = 0 slice is a complete Lagrangian
graph with η ≡ 1. If we write the graph as (x, y, f(x, y), g(x, y)), then the
Lagrangian condition implies

fxgy − gxfy = 1

and η = 1 is equivalent to
2√

1 + f2
x + f2

y + g2
x + g2

y + (fxgy − fygx)2
= 1

or

f2
x + f2

y + g2
x + g2

y = 2

These implies h = f +
√−1g is holomorphic and |∂h

∂z | = 1, therefore h is of
the form h = e

√−1θz + C, where θ and C are constants. The graph of h has
zero second fundamental form and this contradicts with |Ã∞|(0, 0) = 1.

Therefore |A|2 is uniformly bounded in space and time. By equation (7.7) in
[14], |A|2 satisfies the following equation.

d

dt
|A|2 ≤ ∆|A|2 − 2|∇A|2 + 4|A|4 + K1|A|2 + K2

Integrating this equation and we see
d

dt

∫
Σt

|A|2dµt ≤ C(3.1)

Recall d
dtη ≥ ∆η + 2

3η|A|2 and η has a positive lower bound, thus

∫ ∞

0

∫
Σt

|A|2dµtdt ≤ ∞(3.2)

Equation (3.1) and (3.2) implies

∫
Σt

|A|2dµt → 0

By the small ε regularity theorem in [4], supΣt
|A|2 → 0 uniformly as t → ∞.
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Since the mean curvature flow is a gradient flow and the metrics are analytic,
by the theorem of Simon [11], we get convergence at infinity. The flow converges
to a minimal Lagrangian submanifold with η = 1. Since η = ∗(ω1 + ω2), this
implies the limiting submanifold is holomorphic with respect to the complex
structure associated with the Kähler form ω1 + ω2. The limiting map is both
holomorphic and area preserving and thus an isometry.

4. Positive genus case

The following theorem is a general subconvergence theorem for mean curva-
ture flow of surfaces. The proof is essentially contained in that of Theorem 2 in
[8].

Theorem 4.4.1. Let Ft : Σ × [0,∞) �→ M be a smooth mean curvature flow of
an immersed compact oriented surface F0(Σ) in a compact Riemannian manifold
M . We assume F0(Σ) represents a nontrivial homology class in M . Then there
exists a sequence ti → ∞ such that Fti converges to a C1,α branched minimal
immersion F : Σ̃ �→ M where Σ̃ is a compact oriented surface and F is a smooth
immersion of Σ̃ − B into M for a finite set B ⊂ Σ̃.

Proof. Since d
dt

∫
dµt = − ∫ |H|2dµt, we have

∫ ∞
0

(
∫ |H|2dµt)dt < ∞. Therefore

there exists a sequence Fti such that
∫
Σti

|H|2 → 0. Now we apply Theorem 2

of [8] with the functional F(Σ) = 1
2

∫
Σ
|H|2dµ − χ(Σ) where χ(Σ) is the Euler

number of Σ. By Gauss-Bonnet Theorem, this can be written as the form of
those functionals considered in [8]. Fti form a minimizing sequence of F in
the space of immersions smoothly homotopic to F0. The homology class of Fti

is nontrivial, so the diameter has positive lower bound. It follows by Simon’s
theorem [8] that a limit exists as a branched immersion.

The convergence is in the sense of varifold and Housdorff distance as discussed
in [9]. By [10] and Definition 2 of [8], the sequence Fti , while remains a mini-
mizing sequence for

∫ |H|2, can be modified locally so that the convergence is
in the following sense. There exists a sequence φti of diffeomorphisms of Σ̃ − B
onto open subsets Uti of Σ such that

1. Fti ◦ φti converges to F locally in the C2 sense on Σ̃ − B.
2. Fti(M − Uti) ⊂ ∪x∈BBεk

(F (x)) for some εk ↓ 0.

By conclusion 2, it is not hard to see F (Σ̃) is in the same homology class as
F0(Σ). As was remark in [8], the surface Σ̃ may have lower genus than Σ due
to necks or handles pinching. Such pinching was caused by the concentration of
the limit measure |A|2dµti . We shall prove Theorem B now.

Proof of Theorem B. The case when Σ1 = Σ2 = S2 is already proved in Theo-
rem 3.3.1. We shall assume they are of positive genus now. By Theorem 4.4.1,
a subsequence converges to a minimal Lagrangian immersion F : Σ̃ �→ Σ1 × Σ2

which may posses some branched points. We first show that indeed there is
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no branched point. Since a minimal immersion is a conformal harmonic map,
the composite map π1 ◦ F : Σ̃ �→ Σ1 is a harmonic map with respect to some
smooth metric in the same conformal calss as the pull back metric by F . This
is now a degree one harmonic map since F (Σ̃) is in the same homology class as
Σti

by conclusion 2 in the remark right after Theorem 4.4.1. Since the conver-
gence Fti(Σ) → F (Σ̃) is in the varifold sense and π1 ◦Fti has positive Jacobian,
π1 ◦ F has non-negative Jacobian. Use the proposition on page 13 of [7] we
can show the Jacobian of π1 ◦ F is positive everywhere and Σ∞ is the graph
of a map f∞. Therefore the sequence Σti converges to a smooth minimal La-
grangian graph. When Σ1 and Σ2 are both torus, the Gauss-Bonnet theorem
shows

∫ |A|2dµti =
∫ |H|2dµti → 0, so the limit is totally geodesic.

This gives a new proof of the existence theorem of minimal maps between
hyperbolic surfaces in Proposition 2.12 of [6].

Indeed, Theorem B also holds when Σ is locally a graph which corresponds
to the local condition ω1|Σ = ω2|Σ > 0.

Theorem 4.4.2. Let M = (Σ1, ω1) × (Σ2, ω2), where Σ1 and Σ2 are Riemann
surfaces of the same constant curvature. If Σ is a compact Lagrangian surface
with respect to ω1 − ω2 and is locally a graph over Σ1 and Σ2, then the mean
curvature flow of Σ exists for all time and a sequence converges to a smooth
minimal Lagrangian surface.

Proof. The locally graphical condition implies π1|Σ : Σ �→ Σ1 is a covering map,
so 2g − 2 = deg(π1|Σ)(2g1 − 2) where g and g1 is the genus of Σ and Σ1 respec-
tively. Now the limit Σ̃ has lower genus than Σ and π1◦F is a branched harmonic
immersion of degree deg(π1|Σ) by the the same argument. This precludes the
possibility of branched point by the topological Riemann-Hurwitz formula.

We remark that the existence of minimal Lagrangian submanifold in such
homology class was first proved by Y.-I. Lee using variational methods in [5].

Next we prove Theorem C. First of all, we observe that when Σ1 = Σ2, the
graph of the identity map is a totally geodesic submanifold in the product space.
When f : Σ1 �→ Σ1 is homotopic to the identity, we claim the limit obtained in
Theorem C is actually totally geodesic. When Σ1 is a torus, the Gauss-Bonnet
theorem shows

∫ |A|2dµti
=

∫ |H|2dµti
→ 0, so the limit has |A| ≡ 0. When

Σ1 is a hyperbolic surface, we apply the uniqueness of minimal graph in each
homotopy class in [6].

The next lemma should be well-known. We sketch the proof for completeness.

Lemma 4.1. Let Γ be a totally geodesic submanifold in a Riemannian manifold
of non-positive sectional curvature and ρ(x) = d(x,Γ) is the distance function
to Γ. Then ρ is a convex function in a tubular neighborhood of Γ.

Proof. Let α(s) be a smooth curve defined for −ε < s < ε and α(0) = x. We
need to show d2

ds2 ρ(α(s)) ≥ 0. Join each point α(s) to Γ by a geodesic that
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realizes the distance. The lemma now follows from the second variation formula
of length (see e.g. page 20 in [1]) and the fact that Γ is totally geodesic.

We prove Theorem C in the following. Corollary C follows from the corre-
spondence between Lagrangian graph and area-preserving diffeomorphism.

Proof of Theorem C. Let ρ be the distance function to the diagonal in Σ × Σ.
We calculate the parabolic equation of ρ(F (x, t)) as the following.

d

dt
ρ(F (x, t)) = ∇ρ · H

where ∇ρ denotes the gradient of ρ in Σ × Σ.
Split ∇ρ into the normal part and tangent part we get divΣ∇ρ = ∆Σρ−∇ρ·H.
Therefore the equation is

d

dt
ρ = ∆Σρ − divΣ∇ρ

divΣ∇ρ is the trace of the Hessian of ρ restricted to Σ and is always non-
negative by the convexity of ρ . By maximum principle, maxx∈Σ ρ(F (x, t)) is
non-increasing. Since we already have the convergence of a subsequence Σti in
Hausdorff distance, this implies the convergence of the whole flow Σt. We can
write each Σt as (x, ft(x)) for x ∈ Σ. Since ρ((x, ft(x)) → 0 uniformly, this
implies ft(x) converges to x uniformly.

In fact, even when the domain and target of a diffeomorphism are of different
conformal structure, we can prove the following isotopy theorem.

Corollary 4.1. Every area preserving diffeomorphism of Riemann surfaces is
isotopic through area preserving diffeomorphisms to a minimal diffeomorphism.

Proof. Given any area preserving diffeomorphism h : Σ1 �→ Σ2, we can compose
it with another area-preserving minimal diffeomorphism g : Σ2 �→ Σ1 so that
g ◦ h is homotopic to the identity map on Σ1. We can deform g ◦ h by the mean
curvature flow to get ft isotopic to the identity map. Then g−1 ◦ ft gives the
desired isotopy of h to g−1.
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