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ALMOST CONTINUOUS EXTENSION FOR TAUT
FOLIATIONS

Danny Calegari

Abstract. A taut foliation F of a hyperbolic 3–manifold M has the continuous
extension property for leaves in almost every direction; that is, for each leaf λ of

F̃ and almost every geodesic ray γ in λ the limit of γ in M̃ is a well–defined point

in the ideal boundary of M̃ = H
3.

Introduction

Let F be a taut foliation of an atoroidal 3–manifold M . Then a theorem of
Candel ([1]) says that there is a path metric on M such that with their induced
path metrics, leaves of F are locally isometric to H

2. In particular, it follows
that for any metric on M , the leaves of F̃ with their induced path metrics
are uniformly quasi–isometric to H

2, and therefore have a well–defined circle at
infinity. For a leaf λ of F̃ we denote this circle at infinity by S1

∞(λ). Actually,
one only needs to know leaves of F̃ are quasi–isometric to hyperbolic planes
to construct these circles at infinity, a fact which is much easier to prove than
Candel’s theorem.

If M is hyperbolic, there is an identification M̃ = H
3 and there is a natural

ideal boundary which we denote by S2
∞.

A basic problem in the theory of foliations of 3–manifolds is to understand
the relationship between the intrinsic geometry of the leaves of the foliation and
the extrinsic (coarse) geometry of the ambient manifold (usually in the universal
cover). In particular, a question that has received a lot of attention has been
the following

Question 1. Let F be a taut foliation of a hyperbolic 3–manifold. Does the
inclusion i : λ → M̃ = H

3 extend continuously to a map on the ideal boundaries
i∂ : S1

∞(λ) → S2
∞(H3)?

This is a difficult question, and the (positive) answer is only known in certain
cases. In particular, the answer is known for surface bundles over the circle
([2]), for depth one and certain other finite depth taut foliations ([3],[4]) and
other special cases. The problem is that leaves of taut foliations are far from
being quasi–isometrically embedded in the universal cover, so a path which is
quasi–geodesic in a leaf may potentially fail to limit to a definite point in the
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ideal boundary of the ambient space. The subtlety of the question is evidenced
by the complicated structure of the image of such i∂ ; limit sets of leaves are
frequently “exotic” geometric sets such as dendrites, gaskets or sphere–filling
curves.

It is easy to see, from the properness of leaves of F̃ , that if i∂ is defined for
each point then it is continuous. It turns out that if we only want to show that
i∂ is defined almost everywhere, then there is a surprisingly simple proof, which
works immediately for all taut foliations of hyperbolic 3–manifolds.

Theorem 1. With notation as above, for every leaf λ of F̃ , for almost all
geodesic rays r ⊂ λ, the ray r ⊂ H

3 converges to a definite point in S2
∞, and

defines a measurable map i∂ : S1
∞(λ) → S2

∞(H3).

Proof. Actually, the only property of a taut foliation we use is that λ is quasi–
isometric to H

2 and the embedding i : λ → H
3 is proper with bounded geometry

and extends to a collar neighborhood of λ. That is, there is an ε so that there
is a quasi–isometric embedding I : λ × [−ε, ε] → H

3 such that I(p, 0) = i(∗).
That the geometry of the embedding is bounded follows from the compactness

of M . To see that there is a uniform collar neighborhood of i(λ), observe that
there is a uniform δ so that the δ–neighborhood of any point in M is contained
in a ball foliated as a product. If λ were to intersect such a lift of a product
ball in two distinct disks in M̃ we could find a transversal τ to F̃ from λ to
itself, and therefore by perturbation, a closed loop γ ⊂ M̃ transverse to F̃ .
This contradicts the well–known fact that for a taut foliation of a 3–manifold,
transverse loops are homotopically essential.

Pick a basepoint a ∈ H
3 through which the basepoint p of λ passes, and let S

be the visual sphere of a. There is an obvious visual projection π : H
3 − a → S

which is basically just a version of the Gauss map for hyperbolic space. Let B
be the ball of radius 1 about a.

For a point b ∈ H
3 with distH3(a, b) = t and a vector v ∈ UTbH

3 the norm
|dπ(v)| is O(e−t). The area of a sphere of radius t in H

3 is O(e2t). Therefore we
can estimate

∫
H3−B

‖dπ(x)‖αdvolH3 ≤
∫ ∞

1

const. · et(2−α)dt < ∞ when α > 2

where ‖ · ‖ denotes the operator norm on dπ : TH
3 → TS.

Since I is an embedding, we obviously have∫
I(λ×[−ε,ε])\B

‖dπ(x)‖αdvolH3 < ∞

with the same assumption on α, namely that α > 2.
The value of ‖dπ(x)‖ depends only on the distance from x to a. So, away

from B, the fact that I is a quasi–isometry implies that this value varies only
a bounded amount over q × [−ε, ε] for each q ∈ λ\B independently of q, and so



ALMOST CONTINUOUS EXTENSION FOR TAUT FOLIATIONS 639

there is a bounded cost in replacing the integral of this value over the interval
with the value at q × 0.

Moreover, we know dI has uniformly bounded distortion over λ, by the com-
ments above, so that in particular dvolλdt ≤ const.I∗dvolH3 . Thus

∫
λ\B

‖dπ ◦ i(x)‖αdvolλ < ∞

In particular, using spherical co–ordinates on λ, we can conclude that for
almost every geodesic ray γ ⊂ λ emanating from p,

∫ ∞

c

∣∣∣∣∣dπ(γ(t))
dt

∣∣∣∣∣
α

etdt < ∞

so in particular, et/α dπ(γ(t))
dt is in Lα. On the other hand, e−t/α is certainly

in Lα/(α−1), so by Hölder’s inequality dπ(γ(t))
dt is in L1. That is, the position

of π(γ(t)) in S moves only a bounded amount and therefore has a well–defined
limit. (Here we have chosen a hyperbolic metric on λ according to Candel’s
theorem; such a metric is quasi–isometric to the path metric on λ inherited as a
subspace of H

3.)
It remains to show that i∂ is measurable. Recall that π : H

3 − a → S is just
radial projection onto the visual sphere at a. Let φ : S → S2

∞ be the visual
identification. For any positive real number r, let Sr(p) denote the circle of
radius r in λ centered at p, and let

fr : Sr(p) → S1
∞(λ)

be radial projection in λ. Then

φπf−1
r : S1

∞(λ) → S2
∞

is continuous for each r, and converges pointwise a.e. to i∂ as r → ∞. In
particular, this limit is measurable.

Remark 1. Basically the point of the proof is the following: hyperbolic 3–
space grows in volume like O(e2t); a leaf of a taut foliation grows in area like
O(ekt) where −k is the “coarse” negative curvature on a large scale of the leaf
with respect to the induced subspace metric (obviously 1 ≤ k ≤ 2 and can be
estimated from a quasi–isometry constant of a uniformizing map λ → H

2). Since
the embedding of the leaf in H

3 is a quasi–isometry into its ε–neighborhood for
some ε, the volume of a collar neighborhood of the leaf can be efficiently measured
by its area. Since the growth rate of both λ and H

3 are exponential, it follows
that “most” paths in λ make roughly comparable progress in H

3 and in λ; that
is, “most” quasigeodesic rays in λ limit to a definite point in S2

∞.

Remark 2. A more subtle analysis of the properties of proper embedded min-
imal planes in H

3 shows that we can actually estimate k ≤ √
2 (see [6]).
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Remark 3. The proof applies essentially without modification to show that
leaves of the universal covers of essential laminations have measurable extensions
to S2

∞. The only technical issues are, firstly, that essential laminations do not
admit homotopically trivial tight transverse loops (by [5]), and secondly that the
leaves of the universal cover of an essential lamination of a hyperbolic manifold,
with their induced path metrics, are uniformly quasi–isometric to hyperbolic
planes. This follows from Candel’s theorem.
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