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A GRADED SYZYGY THEOREM

IN MIXED CHARACTERISTIC

E. G. Evans and Phillip Griffith

About twenty years ago we gave the original proof of the so-called “syzygy
theorem” [6], at least in the case of a local integral domain containing a field. In
the intervening years several different styles of proofs and generalizations have
appeared (e.g., see our monograph [7, Chapter 3]). Perhaps the most notable
of these were the characteristic p proof of Hochster and Huneke [12] and the
generalization by Bruns [2] in which the minimal free complex is allowed some
positive homology (see [3, 9.5.5]). In addition Dutta [5] and Hochster [11] com-
bined to show that the crucial argument in [6] which rested upon the existence
of maximal Cohen-Macaulay modules could be reduced to an application of the
weaker canonical element theorem which holds in the equicharacteristic setting
(see also Ogoma [13]).

Our original proof [6] relied heavily on the fact we were able to show order
ideals of minimal generators for kth syzygies of finite projective dimension must
have grade at least k. We have long known that a single minimal generator with
this property would suffice. Until now we remained unaware of any context in
which one could actually apply this (no doubt well-known) fact. However, a
recent examination of a graded version of the syzygy theorem in mixed charac-
teristic produced just such a situation. To be specific, we are able to show (see
Theorem 8 and Corollary 9), under suitable conditions, a nonfree graded kth
syzygy of finite projective dimension over a graded ring R = R0 ⊕R1 ⊕R2 ⊕ · · ·
must have rank at least k, where the ring R0 is a discrete valuation ring. Other
than the observation described above, our techniques are simply a straightfor-
ward blend of those from our original manuscript and standard facts about
graded rings and modules. In order to keep the exposition somewhat self con-
tained, we supply a few elementary observations which can be found in some
form in our articles [6], [7], [8] or Bruns-Herzog [3, Chapter 9]. These observa-
tions or facts about syzygies have been tailored to the context of graded modules
over R = R0 ⊕ R1 ⊕ R2 ⊕ · · · as described above.

Received April 4, 2001.
Revised version received June 5, 2001.
1991 Mathematics subject classification. Primary: 13B10, 13B15, 13D10, 13F40, Sec-

ondary: 13F40, 13H10, 13N05, 14B07
Key Words and Phrases: Cohen-Macaulay local rings, normal domains, ramification, de-

formations, Segre products.
The authors would like to thank the referee for several corrections and helpful suggestions.

605



606 E. G. EVANS AND PHILLIP GRIFFITH

Preliminaries. Let R be a commutative Noetherian ring and let M be a finitely
generated R-module. For k ≥ 0, we say that M is a kth syzygy if there is
a projective acyclic complex · · · −→ Fs −→ · · · −→ F1

ϕ1−→ F0
ϕ0−→ 0 such

that M ∼= coker ϕk+1. In case R is local or graded (and H0(F•) is graded),
then it suffices to consider acyclic free resolutions. The notation pdR M < ∞
indicates that M has finite projective dimension. We say that M satisfies the
Serre condition Sk if

depthRP
MP ≥ min(k, codim P )

for each prime ideal P ∈ Spec R. The R-dual of M is denoted by M∗ =
HomR(M, R). If e ∈ M , then the order ideal of e, OM (e), is defined by

OM (e) = {f(e) | f ∈ M∗}.

We observe that the element e induces an R-homomorphism e : M∗ → R defined
by e(f) = f(e). Moreover, the image of this homomorphism is OM (e). When M
has finite projective dimension and, in addition, M has a finite free resolution
(as will always be the case in this article) then the rank of M may be defined as
the alternating sum of the ranks in any finite free resolution of M .

For the final portion of this discussion we assume that R = R0⊕R1⊕R2⊕· · ·
is an N-graded ring (N = nonnegative integers) in which R0 is a local ring.
Actually, our main interest here will concentrate on the case where R0 is a DVR
(i.e., discrete valuation ring). For such an R, there is a unique graded maximal
ideal m = m0 + R+ where m0 is the maximal ideal of R0 and R+ = ⊕i>0Ri. If
M = M0 ⊕M1 ⊕ · · · is a nonzero graded R-module, we may assume M0 �= 0 (by
“twisting” M) as long as the actual grading is not important. We refer to an
element e ∈ M − mM as a minimal generator of M . This is equivalent to the
statement that the element e is part of a minimal set of homogenous generators.
This is consistent with conventional terminology in the local case (see [7, p. 2]).
We remark that, if m ∈ M is homogenous, then its order ideal OM (m) is graded
as well (although the elements of degree zero may all be zero in this case).

Finally, any unexplained terminology may be found in Bruns-Herzog [3] or
our monograph [7].

The Graded Syzygy Theorem in Mixed Characteristic. Throughout the
remainder of this article the ring R = R0 ⊕ R1 ⊕ R2 ⊕ · · · is a Noetherian
graded ring where R0 = V is a DV R with uniformizing parameter p. Further,
we assume p is a regular element on R, that is, the V -modules Ri, for i > 0,
are finitely generated, torsion free modules (we discuss the situation where p is
a zero divisor at the end of the article). Although our central point of interest
concerns the situation V has mixed characteristic, actually any DV R will do.
The graded maximal ideal of R is denoted by m = pV + R+. For a graded
module M , the notation M̄ denotes M/pM ; so also R̄ = R/pR. Of course M̄ is
a graded R̄-module.
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We begin with a sequence of elementary lemmas concerning grade and codi-
mension of order ideals of homogenous elements. While our statements are for
the graded case, it goes without saying that these observations hold in the local
case as well. The first of these lemmas is a simple fact about colon ideals. We
omit its proof.

Lemma 1. Let (R, m) be as above and let I and J be homogenous ideals such
that I ⊆ J . If codim(I : J) ≥ k, then codim I ≥ min(k, codim J).

Lemma 2. Let M = M0 ⊕ M1 ⊕ · · · be a graded kth syzygy of finite projective
dimension and let e ∈ M0 − pM0. Let ē = e + pM ∈ M̄ . Then one has the
following inequalities

codimR OM (e) ≥ codimR̄(OM (e) + (p)/(p)) ≥ min(k, codimR̄ OM̄ (ē))

Proof. The element e induces an R-homomorphism e : M∗ → R and similarly
ē induces a homomorphism ē : M̄∗ → R̄. Moreover, one has the following
commutative diagram

0 −−−−→ M∗ p−−−−→ M∗ −−−−→ M̄∗ −−−−→ T −−−−→ 0

e



� e



� ē



�

0 −−−−→ R
p−−−−→ R −−−−→ R̄ −−−−→ 0.

We note that the module T is a result of the fact M∗ ↪→ M̄∗ is not always
an isomorphism; T represents the cokernel. Moreover, T fits into the left exact
sequence

0 −→ T −→ Ext1R(M, R)
p−→ Ext1R(M, R).

Since M is a kth syzygy of finite projective dimension the R-module Ext1R(M, R)
has no support in codimension ≤ k. Therefore, codimensionR(ann Ext1R(M, R)) ≥
k + 1. Since T ⊆ Ext1R(M, R) and pT = 0 it follows codimR̄(annT ) ≥ k. Let
a = annR̄ T . Then

aOM̄ (ē) ⊆ OM (e) + (p)/(p).

From Lemma 1 we have

codimR̄(OM (e) + (p)/(p)) ≥ min(k, codimR̄ OM̄ (ē)).

Finally an application of Krull’s principal ideal theorem yields

codimR OM (e) ≥ codimR̄(OM (e) + (p)/(p)).

�
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Corollary 3 (Notation as above). If p belongs to a prime divisor of OM (e) of
minimal codimension, then

codimR OM (e) ≥ 1 + min(k, codimR̄ OM̄ (ē)).

Proof. This statement follows from Lemma 2 and the observation

codimR OM (e) = 1 + codimR̄(OM (e) + (p)/(p)).

�
Corollary 4. If M satisfies the Serre condition Sk, then so does R. Moreover,
the notation “codimension” in (3) may be replaced by “grade”, that is,

gradeR OM (e) ≥ 1 + min(k, gradeR̄ OM̄ (ē)).

Proof. That R satisfies Sk follows directly from the Auslander-Buchsbaum for-
mula pdM + depthM = depthR. Then since R is Sk one has gradeR I =
codimR I for ideals I up to codimension ≤ k. The ring R̄ satisfies these assump-
tions for ideals of codimension ≤ k − 1. �

Our next result gets to the heart of the connection between order ideals and
kth syzygies of finite projective dimension. We recall from [7, 3.8] that kth syzy-
gies of finite projective dimension coincide with Sk-modules of finite projective
dimension in case the ring R satisfies the Serre condition Sk.

Proposition 5. Let M be a finitely generated graded Sk-module of finite pro-
jective dimension over R. If e ∈ M0 − pM0 is such that

gradeOM (e) ≥ k > rankM,

then M/Re is an Sk−1 module of finite projective dimension and
rank(M/Re) = rank M − 1.

Proof. If p ∈ Spec R and p � OM (e), then Mp
∼= Rpe ⊕ Np where N = M/Re.

Hence Np is an Sk-module (so also Sk−1) in this case. If p ⊇ OM (e), then codim
p ≥ k. The exactness of

0 → Rpe → Mp → Np → 0

together with the Depth Lemma [7, p. 13] will give

depthNp ≥ depthMp − 1 ≥ k − 1,

once we have established that the R-homomorphism R → Re, where 1 �→ e,
is injective. However, if I denotes the kernel of this homomorphism, then
IOM (e) = 0 which means I = 0 since grade OM (e) > 0. �
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Theorem 6. Let M = M0 ⊕M1 ⊕ · · · be a finitely generated nonfree R-module
such that M has finite projective dimension and satisfies the Serre condition Sk.
If e ∈ M0 − pM0 is such that p is contained in a prime divisor of OM (e) of
minimal codimension, then rank M ≥ k.

Proof. We assume the contrary, i.e., rank M < k. Further, we may assume our
“k” is the smallest positive integer for such an occurrence. In this circumstance
we note M̄ = M/pM is an Sk−1 module of finite projective dimension over
R̄. Moreover, since the graded ring R̄ must contain a field, we may apply the
original syzygy theorem [7, 3.15] after making a straightforward translation from
the local to the graded case. What we obtain here is that gradeR̄ OM̄ (ē) ≥ k− 1
since M̄ is necessarily nonfree as an R̄-module. Therefore gradeR OM (e) ≥ k
follows from Corollary 4 above. We invoke Proposition 5 to get that N = M/Re
is an Sk−1-module having rank < k − 1. This contradicts our original choice of
k. �

Our next move will be to demonstrate that Theorem 6 comes into play in the
context we described at the outset. Before doing so we make a few observations
about what occurs when one inverts “p”. Let K be the fraction field of V . Then
R[p−1] = K ⊕ R1[p−1] ⊕ R2[p−1] ⊕ · · · is an N-graded ring with R[p−1]0 = K.
Moreover, M [p−1] = M0[p−1] ⊕ M1[p−1] ⊕ · · · is a graded R[p−1]-module. The
following technical lemma is key to our final argument.

Lemma 7. Suppose the graded R-module M = M0 ⊕ M1 ⊕ · · · is such that
M0 �= 0 and M is torsion free as a V = R0-module, that is, assume p is regular
on M . Further suppose M [p−1] is a projective R[p−1]-module. Then M [p−1] is
in fact a free R[p−1]-module. Moreover each e ∈ M0 − pM0 is a part of some
homogenous, free R[p−1]-basis of M [p−1].

Proof. Since M [p−1] is a graded R[p−1]-module, we may identify a finite set of
homogeneous elements which become a free basis after localizing at the irrelevant
maximal ideal R[p−1]+. To form such a homogenous set we may start with a
set of minimal generators of M0 which form a basis for the K = R[p−1] vector
space M0[p−1]. It is well known (see [9, Lemma 10.4]) that such a homogenous
set is actually a free basis for M [p−1]. �

Our main result follows.

Theorem 8. Let R = V ⊕ R1 ⊕ R2 ⊕ · · · be a graded V -algebra for which the
uniformizing parameter p is a regular element. If the graded module M is a
nonfree Sk-module of finite projective dimension, then rank M ≥ k.

Proof. It suffices to consider k > 0 and M0 �= 0. We suppose to the contrary that
rank M < k. Since R[p−1] contains a field, it follows from the original syzygy
theorem [7, 3.15] that M [p−1] is a locally free module. In particular, M [p−1]
is projective. So Lemma 7 applies and we obtain an element e ∈ M0 − pM0

which forms part of a free basis of M [p−1]. Hence, 1 ∈ OM [p−1](e) which is
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equivalent to pv ∈ OM (e) for some v > 0. We reach a contradiction after
invoking Theorem 6. �

Corollary 9. We assume the graded ring R = V ⊕ R1 ⊕ R2 ⊕ · · · satisfies the
Serre condition Sk and that M is a kth syzygy of finite projective dimension.
Then rank M ≥ k in case M is not free.

Proof. We may assume that k > 0. The result of Auslander-Bridger [1] (see [7,
3.8]) gives that M is an Sk-module. The result now follows from Theorem 8. �

Corollary 10. Let R = V [X1, . . . , Xn] be the polynomial ring in n variables
over V with the standard grading. If M is a graded nonfree kth syzygy over R,
then rank M ≥ k.

Proof. Since pd N ≤ n for each R-module N , it follows k < n since M is nonfree.
Of course R is Cohen-Macaulay; so the claim follows from Corollary 9. �

We wish to comment on the case p is a zero divisor on R. Two such situations
are easily resolved. If dimR = dimR/(p) then the “Improved New Intersection
Theorem” (see introduction) holds for R and, thus the syzygy theorem holds as
well. If p is contained in an embedded prime component then R cannot satisfy
the Serre condition S1. So the possibilities of Sk-modules of finite projective
dimension are of little interest.

We close with some remarks on Bruns’ generalization of the syzygy theorem
(see [2, 9.5]). Bruns considers finite free complexes F• which satisfy his condition
codim F• ≥ 0. To be more specific, if

0 −→ Fs
ϕs−1−−−→ Fs−1 −→ · · · −→ F1

ϕ1−→ F0 −→ 0

is such a complex, then Bruns defines

codim F• = inf{codim Iri(ϕi) − i | 1 ≤ i ≤ s − 1}

where Iri(ϕi) denotes the ideal generated by the ri × ri minors of a matrix
representation of the map ϕi. Bruns refers to “ri” as the “expected rank” of
ϕi, that is, the rank predicted by the Buchsbaum-Eisenbud Theorem [4] in case
F• is acyclic. Within this framework Bruns [2] shows, if F• is a minimal free
complex (over a local ring) such that codim F• ≥ 0, then ri ≥ codim F• + i,
for i = 1, . . . , s − 1. It would be interesting to know if the Bruns result could
be extended to the setting of this article or perhaps to the following situation:
let X be a nonsingular projective scheme over V having very ample line bundle
O(1). Suppose F• is a finite acyclic complex of sheaves on X where each Fi is a
direct sum of twists “O(nij)” for each i. Does the syzygy theorem hold for such
complexes?
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