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REPRESENTATIONS OF FUNDAMENTAL GROUPS OF
ALGEBRAIC MANIFOLDS AND THEIR RESTRICTIONS TO

FIBERS OF A FIBRATION

Jürgen Jost and Kang Zuo

1. Introduction

We consider a surjective morphism f : X → Y from a smooth projective
variety X onto a smooth projective variety Y with connected fibers, henceforth
called a fibration for short. Typically, if a certain geometric object on X like a
cohomology class has a certain property, then its restriction to a smooth fiber of
f trivially satisfies the same property. The converse question is of more interest:
if the restriction of such a geometric object to a smooth fiber enjoys a certain
property, is this property also valid for the object on X itself? A prototype is
the geometric version of the (p, q) component theorem of Griffiths saying that if
a class Hk(X, C) is of pure Hodge type (p, q) at some smooth fiber f−1(y), then
it has Hodge type (p, q) at any smooth fiber.

In the so-called nonabelian cohomology, instead of classes in H1(X, C), one
considers representations ρ : π1(x) → G into some linear algebraic group G.
In the same way as one associates a harmonic form to a cohomology class, one
finds a ρ-equivariant harmonic map h : X → G�K into the symmetric space of
noncompact type obtained as a homogeneous space for G. This harmonic map
turns out to be pluriharmonic, meaning that its restriction to any subvariety is
harmonic itself. We may thus reformulate the question indicated in the title of
our paper, namely what one can infer about a representation of π1(X) if one
knows a relevant property of the induced representation on π1(f−1(y)), or, more
generally, of the one on π1(Z), Z a generic subvariety of X, as the question of
what we can deduce about a pluriharmonic map from its restriction to f−1(y)
or Z. Let us start with some easy observations in this direction before formu-
lating our actual results. A harmonic map into G�K is constant on any rational
variety. On one hand this implies that a pluriharmonic map h into G�K is an
invariant of the birational class of X, as has been observed by many people,
but on the other hand this tells us that we cannot deduce information about
h from its restriction to rational subvarieties. In a more positive direction, if
we have a smooth map g : X → G�K whose restriction to any fiber f−1(y)
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is harmonic, and if we are in a situation where the image of the fibers is suf-
ficiently large so that harmonic map uniqueness holds (this is the case if there
are no parallel vector fields along the image), then g itself must be harmonic.
In particular, in that situation if we have homomorphisms ρ : π1(f−1(y)) → G
on the fundamental groups of the fibers, then these homomorphisms induce a
unique homomorphisms ρ : π1(X) → G. An essential point of the present note
consists in results that refine the preceding simple observation. We shall only
need the weaker assumption that the harmonic maps on the fibers are noncon-
stant, or equivalently that the representations on π1(f−1(y)) are nontrivial, plus
the assumption that the image of π1(X) is Zariski dense. Then the representa-
tion of π1(X) cannot be deformed with the representation on π1(f−1(y)) kept
fixed (see Thm. 2b below). We also study a similar situation where instead of
the fibers of a holomorphic map we consider a subvariety Z whose fundamental
group surjects onto the one of X. Again, in that case, the representation on Z
locally determines the one on X (see Thm. 2a). Finally, we study how other
properties like coming from a variation of Hodge structures or arithmeticity on
the fibers of a holomorphic map induce the corresponding ones on X (Thm. 1
and 2c, resp.).

Remark. We wrote up and circulated the first version of the present paper in
December 1998. After we had circulated our result, also a preprint by Katzarkov
and Pantev appeared where they proved a somewhat weaker result by a different
method. This weaker result had already been announced by them earlier.

2. Results and proofs

Theorem 1. Let f : X → Y be a fibration and Z = ∪m
i=1Zi be a reduced

fibre of f with smooth irreducible components. Suppose ρ : π1(X) → G is
a Zariski dense representation into an almost simple algebraic group G and
does not factor through f. If the restriction ρ|Zi , 1 ≤ i ≤ m comes from
Z−variations of Hodge structure, then ρ itself comes from Z−variations of
Hodge structure.

We say a representation ρ : π1(X) → G factors through a fibration f : X →
Y, if there exists a finite etale covering with a blowing up e : X ′ → X and a
representation τ : π1(Y ′) → G, where Y ′ is the base of the Stein-factorisation
f ′ : X ′ → Y ′ of fe : X ′ → X → Y, such that e∗(ρ) = f ′∗(τ).

Remark 1. The following consideration was pointed out to the authors by C.
Simpson. We can replace ρ by a section of the relative Betti space MB(X/Y, G)
which is flat with respect to the nonabelian Gauss-Manin connection introduced
by Simpson [S2]. W A flat section glues to a global representation ρ̃′ on the
covering X̃ ′ → X corresponding to π1(X) → π1(Y ) → 1. The decktransforma-
tion group π1(Y ) acts on MB(X̃ ′, G). If G is almost simple and the image of
ρ is Zariski dense, then we can show that ρ′ can be descent to a representa-
tion ρ : π1(X ′) → G, where X ′ → X is a finite etale cover. In a forthcoming
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paper [JLZ] we shall prove a general version of Theorem 1 for the case, where
f : X → Y is a morphism between two quasi-projective varieties.

Theorem 1 is an easy consequence of Simpson’s theorem about when a rep-
resentation will come from variations of Hodge structure and Theorem 2 below,
which can be considered as a type of Lefschetz hyperplane theorem for possi-
bly singular subvarieties, whose fundamental groups surjects onto π1(X), or for
subvarieties arising as fibres of fibrations.

Theorem. (Simpson, Corollary 4.2, [S1]) The representations of π1(X)
which come from complex variations of Hodge structure are exactly the semisim-
ple ones which are fixed by the action of C∗.

Hitchin originally defined this action in the form of an action of U(1) ⊂ C∗

[H].
Let Z = ∪m

i=1Zi ⊂ X be a subvariety and suppose that all irreducible com-
ponents are smooth. Given a representation ρ ∈ MB(X, G), the pull back via
Zi ↪→ X defines a point ρ|Zi ∈ MB(Zi, G). Hence, that defines a morphism

r : MB(X, G) →
m∏

i=1

MB(Zi, G).

We may consider G ⊂ SLn as a group scheme defined over some number
field and with a fixed integral structure (for instance, induced by SLn ). So, the
morphism r is clearly also defined over some number field.

Theorem 2.
a) Suppose that the homomorphism π1(Z) → π1(X) is surjective. Then the

preimage of r over any point consists of finitely many points only.
b) Suppose that Z = ∪Zi is a reduced fibre of a surjective morphism f :

X → Y with connected fibres, and that ρ : π1(X) → G is Zariski dense and
does not factor through f. Then ρ ∈ r−1(r(ρ)) is an isolated point.

c) Let Z = ∪m
i=1Zi and ρ be the same as in b). If the restriction ρ|Zi

, 1 ≤
i ≤ m is valued in the ring of the algebraic integers of a number field, then this
also holds for ρ itself.

Proof of Theorem 1. Applying Simpson’s theorem, the action of C∗ fixes r(ρ).
Since the action of C∗ fixing r(ρ)) commutes with r, the fibre r−1(r(ρ) is fixed
by the C∗−action. Since ρ ∈ r−1(r(ρ)) is an isolated point by b) in Theorem 2,
ρ is a fix point of the C∗−action. Applying Simpson’s theorem again, ρ comes
from complex variations of Hodge structure. The integral property of ρ follows
from c) in Theorem 2.

Proof of Theorem 2 a). Since the morphism

r : MB(X, G) →
∏

i

MB(Zi, G)

is defined over some number field, we only need to check the property a) for
any point τ = (τ1, ..., τm) ∈ ∏m

i=1 MB(Zi, G), valued in some number field K.
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Since π1(Zi), 1 ≤ i ≤ m is a finitely presented group, we may find a prime
ideal p of OK such that τi(π1(Zi)) ⊂ G(OKp), 1 ≤ i ≤ m, where Kp is the
local field at the place p.

Consider now the morphism r defined over Kp. If the statement a) were not
true, then r−1(τ) would contain a positive dimensional component C. Hence,
we may find some representation ρ ∈ C which is valued in some finite extension
of Kp and is p−unbounded. Notice that r(ρ) is p−bounded.

Now let

uρ : X̃ → 	(G(Lp))

denote the ρ−equivariant pluriharmonic map into the corresponding Bruhat-
Tits building. The existence of such harmonic maps is shown in [GS]. Since ρ
is p−unbounded, uρ is not constant.

On the other hand, the surjectivity of π1(Z) → π1(X) and the p−boundedness
of r(ρ) imply that uρ is constant. The following argument can be found in [LR].

Since π1(X) → π1(Z) is surjective, the preimage Z̃ = ∪Z̃i is connected. The
restriction uρ|Z̃i

is just the corresponding equivariant harmonic map of τi and
is constant, since τi is p−bounded. Hence, uρ(Z̃) is a point q. Therefore, the
action of ρ(π1(X)) also fixes q. This implies that uρ(X̃) = q. A contradiction.

Proof of b). We may find a stratification on

r : MB(X, G) →
m∏

i=1

MB(Fi, G)

which is defined over some number field and such that:
i) r(MB(X, G)j) = (

∏m
i=1 MB(Fi, G))j and

ii) r : MB(X, G)j → (
∏m

i=1 MB(Fi, G))j is flat.
We want to show that if ρ ∈ r−1(r(ρ)) is not an isolated point, then ρ factors

through f after passing to a finite etale covering and a blowing up X ′ → X.

Using the above stratification we may first show that property for those ρ′,
who are in the same strata as ρ and valued in some number field. If all such ρ′

factor through f, then ρ also factors through f.

Suppose ρ is valued in some number field K. By the same reason as explained
in the proof of a), we may find a local field Kp, such that r(ρ) is valued in OKp

.

If ρ ∈ r−1(r(ρ)) were not an isolated point, then we would find an irre-
ducible curve ρ ∈ C ⊂ r−1(r(ρ)) that contains infinitely many p−unbounded
and Zariski dense representations ρi : π1(X) → G(Lp,i), where Lp,i is a finite
extension of Kp.

Let

uρi
: X̃ → 	(G(Lp,i))
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denote the ρi−equivariant pluriharmonic map into the Bruhat-Tits building.
uρi is not constant, since ρi is not p−bounded.

Consider the pulled back fibration

f̃ : X̃ → Ỹ .

We have
Claim 1 uρi factors through f̃ .

Proof of Claim 1. The differential d′uρi
is a collection of holomorphic 1-forms

θi on a finite ramified covering Xs → X. The pull back of θi to the correspond-
ing fibre F s = ∪m

i=1F
s
i is zero, since r(ρ) is p−bounded and uρi

|Fi
, 1 ≤ i ≤ m

is constant.
The pull back of θi to any fibre of fs is also zero, since any closed 1-cycle

on a fibre of fs is homotopic to some 1-cycle in F s and the integration of θi

on any closed 1-cycle on a fibre of fs is zero. Therefore, we see that uρi factors
through f̃ .

Claim 2 Let F0 := f−1(y0) be a smooth fibre of f. Then ρi(π1(F0)) is a
finite subgroup of G(Kp).

Proof of Claim 2. Pulling back f to the universal coverings, by Claim 1 the
harmonic map uρi factors through f̃ ,

X̃
f̃

✲ Ỹ

❅
❅

❅❘ ❄	(G(Kp))

Fixing a base point x0 ∈ F0, let Γ =: im(π1(F0, x0) → π1(X, x0)). We first
want to show that Γ fixes a unbounded subset in 	(G(Lp,i)).
Let X0 ⊂ X be the Zariski open set, such that the map f : X0 → Y0 is regular.
We denote by X̃0 → X0 the universal covering of X̃0.

The subgroup Γ ⊂ π1(X0, x0) operates on a connected component F̃0,0 of
the preimage F̃0 ⊂ X̃0. Since the harmonic map ui is ρ−equivariant and factors
through the fibration f̃ : X̃0 → Ỹ0 to an equivariant harmonic map

vi : Ỹ0 → 	(G(Lp,i)),

ρi(Γ) fixes the image ui(F̃0,0) = vi(ỹ0,0) =: z0,0.

If F̃0,j is another connected component of F̃0, then there exists an element
gj ∈ π1(X0, x0), such that gi(F̃0,0) = F̃0,j . So, the conjugation gjΓg−1

j op-
erates on F̃0,j , and by the same reason as above ρi(gΓg−1) fixes ui(F̃0,j) =
vi(ỹ0,j) := z0,j .



574 JÜRGEN JOST AND KANG ZUO

Considering the exact sequence of the homotopy groups (coming from the defi-
nition of Γ)

1 → Γ → π1(X0, x0) → π1(Y0, y0) → 1,

we see in particular that Γ ⊂ π1(X0, x0) is a normal subgroup. Hence,
ρi(Γ) = ρi(gjΓg−1

j ) fixes z0,j ,∀j ∈ J.

Now we show that the subset Z := {z0,j}j∈J ⊂ 	(G(Lp,i)) is unbounded.
Since each different point in the subset {y0,j}j∈J ⊂ Ỹ0 is contained in a dif-
ferent fundamental domain Dj ⊂ Ỹ0 and the images vi(Dj) 
 z0,j , j ∈ J are
uniformly bounded (they are permuted by ρi(π1(X0, x0)) as isometry), together
with the unboundedness of vi(Ỹ0) this implies that Z must be an unbounded
subset in 	(G(Lp,i)).

We want to show further that ρi(Γ) fixes a point on the boundary of
	(G(Lp,i)). Since Z ⊂ 	(G(Lp,i)) is an unbounded subset, the convex sub-
complex generated by Z contains at least one geodesic line L. Since ρi(Γ) fixes
Z pointwisely, ρi(Γ) fixes this convex subcomplex pointwisely. Hence, ρi(Γ)
fixes L and the point on the boundary of 	(G(Lp,i) defined by L.
That shows that ρi(Γ) is contained in a parabolic subgroup of G. In particu-
lar, it is not Zariski dense in G(Lp,i). Furthermore, the exact sequence of the
homotopy groups above shows that the Zariski closure of ρi(Γ) is a normal al-
gebraic subgroup in G(Lp,i). Since G(Lp,i) is almost simple, ρi(Γ) must be
finite. Claim 2 is proved.

By restriction to F0 we get a family of representations

ρt : π1(F0) → G(Kp), t ∈ C.

By Claim 2 ρi(π1(F0)) ⊂ G(Kp), i ∈ I is not Zariski dense. Since I is
infinite and C is irreducible, the subset {ρi|F0}i∈I ⊂ C is Zariski dense. Since
G is an almost simple group, the Zariski density of representations is a Zariski
open condition in the space of representations. That shows ρ(π1(F0)) ⊂ G(Kp)
is not Zariski dense, too. By the same reason as in Claim 2, ρ(π1(F0)) ⊂ G(Kp)
is a finite subgroup.

Since ρ(π1(X) ⊂ G is residually finite, one may find a finite etale covering
with a blowing up X ′ → X such that the pull back of ρ factors through the
Stein factorisation of f : X ′ → Y. So, this leads to a contradiction to our
assumption in b).

Proof of c. Since r(ρ) is valued in some number field K and ρ ∈ r−1(r(ρ)) is
an isolated point, ρ is valued in some finite extension L ⊃ K. Now as r(ρ) is
bounded with respect to any prime ideal of OK , the same argument in b) shows
that ρ is also bounded with respect to any prime ideal of OL.
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