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LENGTH FUNCTIONS, CURVATURE AND
THE DIMENSION OF DISCRETE GROUPS

MARTIN R. BRIDSON

ABSTRACT. We work with the class of groups that act properly by semisimple
isometries on complete CAT(0) spaces. Define dimss I' to be the minimal dimen-
sion in which I' admits such an action. By examining the nature of translation
length functions we show that there exist finitely-presented, torsion-free groups
I" for which dimgs I' is greater than the cohomological dimension of I'. We also
show that dimss I' can decrease when one passes to a subgroup of finite index.

Introduction

Associated to an isometry v of any metric space X one has the translation
length
| = inf{d(z,~-2) | z € X} ;

the isometry is said to be semisimple if this infimum is attained. If 4/ is conjugate
to v in Isom(X) then |y'| = |y| = |[y~!|. And if X is a complete CAT(0) space
then |y"| = n|y| for all n € N.

The nature of the functions v +— || that an abstract group I' admits can
provide valuable information about the group, in particular the way that it can
act on various types of metric spaces. For example, minimal actions of I" on
R-trees are in 1-to-1 correspondence with length functions I' — [0, c0) satisfying
five simple axioms ([CM], page 579); if the function has discrete image and
|v| # 0 for all v # 1, then the associated tree is simplicial and the group is
free. Length functions also play an important role in the study of geometric
structures on surfaces. For example, the conjugacy classes of discrete faithful
representations of the group I'y, = (a1, b1, ... ,an, by, | [a1,b1] -+ - [an, by] = 1) into
Isom H? can be distinguished from one another by the values that the associated
length function takes on a certain set of 9n — 9 elements in I',, (see [Th] and
compare with [Ot] and [Ki]).

At a more mundane level, one knows that the length functions associated to
actions on length spaces that are proper and cocompact have discrete images.
Less trivially, this is also true of discrete, cellular actions on polyhedral complexes
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with only finitely many isometry types of cells (see [Br]). Length functions are
used in [BH] to examine group actions on complete, 1-connected spaces that are
of non-positive curvature in the sense of A.D. Alexandrov, i.e. CAT(0) spaces.
In this article we shall use length functions as a tool to determine the minimal
dimension in which certain groups admit reasonable actions on CAT(0) spaces.

CAT(0) spaces are contractible and therefore give rise to classifying spaces
for discrete groups of isometries. Given a CAT(0) space X and a proper action
I' — Isom(X) by a torsion-free group, as a measure of how good a model X/T"
is for K(T",1) one might compare the (cohomological or geometric) dimension
dim I with the topological covering dimension of X. To this end, we define the
invariant

dim,, I' =

min{dim X | X complete CAT(0) and I" acts properly by s.s. isometries on X}

with dimgs I' := oo if T' does not admit such an action. (As an alternative
invariant one might consider only cocompact actions.)

One obviously has dimg, I' > dimI'. We shall show that in general one does
not get equality, even in the case where I' is the fundamental group of a compact,
finite-dimensional complex of non-positive curvature. Also, in contrast to the
behaviour of dim I, we shall see that there exist groups I' and subgroups of finite
index I' C T such that dimgs I' < dimg, I' < o00. Specifically:

Theorem. There exist compact aspherical 2-compleres X such that:

i) X is not homotopy equivalent to any 2-dimensional space of non-positive
curvature, indeed I' := m X does not act properly by semisimple isome-
tries on any complete, 2-dimensional CAT(0) space.

ii) X is homotopy equivalent to a compact 3-dimensional cubical complex of
non-positive curvature.

iii) A certain 2-sheeted covering X of X is homotopy equivalent to a compact
2-dimensional piecewise Fuclidean complex of non-positive curvature.

In the setting of this theorem, writing I' = m X we have a “dimension gap”
dim,, I' — dim,, I' = 1. One can obtain arbitrarily large dimension gaps between
commensurable groups by combining the construction in the above theorem with
the Product Decomposition Theorem ([BH], p. 239).

The above result contrasts with the behaviour of groups of isometries of the
most classical CAT(0) spaces: as a consequence of various rigidity results one
knows that if a group I" acts properly and cocompactly by isometries on a product
of symmetric spaces of non-positive curvature and irreducible Tits buildings that
are of affine type and have rank at least 2, then every finite extension of I' acts
properly and cocompactly by isometries on the same space.

We shall reduce the proof of the above theorem to a problem concerning the
length functions associated to discrete actions of free groups on R-trees, which is
the subject of section 1. The reduction, which is explained in section 3, relies on
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several facts concerning centralizers in groups that act by isometries on CAT(0)
spaces, and on the explicit constructions of spaces and groups given in section
2.

In the course of their work on Artin groups, Noel Brady and John Crisp [BC]
have also discovered classes of compact non-positively curved spaces X with
dimg, m1 X > dimm X.

I thank the referee for his/her careful reading and helpful comments.

1. Length functions for free groups

In all that follows |y| will denote the translation number of an isometry .
Note that || depends only on the conjugacy class of 7, and |y~ !| = |y|. Given
a length space X and v € m X, we shall write |y| to denote the translation
number of the corresponding deck transformation of the universal covering X,
which is assumed to be endowed with the length metric induced from X. If X is
compact and non-positively curved, then || is the length of any closed geodesic
in X that belongs to the free homotopy class of . In this section we shall make
extensive use of this last remark in order to identify the translation numbers of
elements in the fundamental groups of R-graphs.

1.1 Realisations of free groups. There are many ways to realise the free
group F' = F'(a,b) as the fundamental group of a compact non-positively curved
space. Perhaps the most natural way is to realise it as the fundamental group
of one of the metric graphs shown in figure 1. We shall also need to consider the
following realization of F' as the fundamental group of a non-positively curved
squared 2-complex T": consider the torus obtained by taking a Euclidean square
of side length 4 and identifying opposite pairs of edges; label the loops obtained
as the images of the sides of the square a and b; divide the square into 16 unit
squares in the obvious way; delete the image of one of the newly-introduced
edges from the quotient torus and take the completion of what remains.

Note that the boundary curve of T is a closed geodesic of length 4. Since this
curve represents the conjugacy class of [a,b] in F, for this realization of F' we
have |a| = |b| = |[a, b]|.

In contrast to the above 2-dimensional CAT(0) realization of F', we shall
show that there is no 1-dimensional realization of F' by a proper action with
lal = [b] = [[a, ]!

Recall that an R-tree is a geodesic metric space that does not contain any
topologically embedded circles.

1.2 Proposition. Let w +— |w| be the length function associated to an action
of the free group F' = F(a,b) by isometries on an R-tree. If the action is proper,
then either |[a,b]| # |a| or else |[a, b]| # |b].

Proof. First we recall that the union of the conjugacy classes of ¢! := [a, b]*!

in F is independent of the chosen basis {a,b}. Indeed, one sees immediately
that the images of ¢ under the automorphisms [a — a=1, b+ b], [a — b,b — al,
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and [a — ab, b — b] are all conjugate to ¢!, and these automorphisms generate
Aut(Fy). Thus |c| = |[a, 8]| for all bases {«, §} of F'.

The idea of the proof is to take an arbitrary proper action of F' by isometries on
an R-tree, look at a simplicial R-graph G with the same length function, choose
a convenient basis {«, 5} for m;G = F, and then by examining the lengths of
curves in G show that if g, h € F are such that |g| = |h| = |[a, (]| then {g, h} is
not a basis for F.

Whenever one has a group I' acting by isometries on an R-tree X so that
|| # 0 for some 7 € T', there exists a unique minimal I'-invariant subtree ' C X
(see [CM] or [Ti]). If the action of I' is proper, then T is a simplicial tree. The
length function associated to the action of I' on X is the same as that associated
to its action on T'. In the case I' = F}, the minimality of 7" means that G = T/’
is equal to its core (i.e., there is no proper subgraph G’ such that G’ — G is
a homotopy equivalence). Thus G is an R-graph homeomorphic to one of the

three shown in figure 1.
X y
(e

Case O Case 1 Case 2

Figure 1: The R-graphs of genus 2

We have labelled the edges by their lengths. We regard the first of these graphs
as the degenerate case z = 0.

Case 1: We orient the edges as shown and regard F' as the fundamental
group of T'/F with a basepoint at the vertex of z. Let « be the element of F
corresponding to the loop x, and let 3 be the loop that crosses z, loops around
y then returns along z. Note that {«, 3} is a basis for F' and |a| = z, |5] = v,
lla, ]| = 2(x + y) + 42 =: L.

We are interested in locally-injective loops of length L that represent the free
homotopy classes of primitive' elements. Since a™ and 3" are not primitive if
|n| # 1, we need not consider words of the form a™ or 8". Given any other word
w=a"Fm ... " 3™ replacing it by its inverse and cyclically permuting (i.e.
conjugating) it if necessary, we may assume that all of the exponents n;, m; are
non-zero and ny > 0. Then,

J4 J4
wl =2 ||+ [mi + 20z .
=1 =1

We seek primitive words w such that |w| = L. There are only three cases to
consider, ¢ = 0,1,2; for if £ > 2 then X|n;| > 2 and X|m;| > 2, so |w| > L.

T An element of a free group is called primitive if it belongs to some free basis of the group.
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The case ¢ = 1 gives rise to the possibilities w = a™3™. We claim that one
cannot find a basis {a, b} for F' so that a is conjugate to o™ 3™ and b is conjugate
to a”/ﬁm/ where

In| @+ |m|y = ||z + |m/]y.

Indeed, without loss of generality we may assume n > n’ > 0, hence |m’| > |m].

But this implies [nm/| — |mn’| > 2, whereas if {a”™, o™ ™'} were a basis for
/

72 then the determinant of :1 :1, would be +1.
If £ = 2 then |w| = L implies > |n;| = > |m;| = 2, so the only possibilities
are w = o a2 (3 with |¢;| = 1. None of these possibilities maps to a primitive

element in the abelianization of F.

Case 2: In this case we take a to be the loop that follows x and then returns
to the basepoint along z, and we take 3 to be the loop that runs along 2z and
then returns along ¥. In this setting we have

[, 8] = 2(z +y +2) .

Arguing as in case 1, we are left to examine the primitivity of words w =
a™pBm .. a™pB™ with n; > 0 and all exponents non-zero. In case 2, the
length of the geodesic loop representing w is

¢ ¢
wl =2 " |ni| +y Y |mil + 0z,
=1 i=1

where ¢ is the number of subwords in w read cyclically of the form afa®, 3°5°,
afB7¢ or Bfa~ ¢, where ¢ = £1 and the subwords may overlap; if w = « or
w = 3, then by definition o = 1.

The equality |w| = 2(x 4+ y + z) can only arise in the following cases.

o If 0 =0, then w = (af)™ with n > 2.

e If o =1, then w = (af)"8 or a(af)™, with n > 2.

o If 0 =2, then w = afa" 87, aBa™13, o33, aB?, a?4%, afta" 15! or
af ta"1B.

o If ¢ > 3, then w = o™ or aB3™, with m > 4, else w = "3~ ! or a3~ " with
r> 2.

We are looking for primitive elements, so we can ignore those of the above
words whose abelianization is trivial or a proper power. This leaves us (a3)"3
and a(aB)™ with n > 2, and a™B, af™ with m > 3, and o"371, a8~ with
r> 2.

Note that

(aB)"B] = nx+ (n+ 1)y + 2z and
la(af)"| = (n+ 1)z +ny + 2.
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And in order for these lengths to equal 2(z+y+2), it must be that z > max{z, y},
except that if n = 2 then . =y = 2.
On the other hand,

@™ B| = mx+y+ (m—1)z and
"B = rety+(r+1)z

can equal 2(x + y + z) only if y > max{x, z}, except if r = 2 or m = 3, when
T=y =2z
Similarly,

laf™| = 2+ my+ (m—1)z and
o™ = x+ry+ (r+1)z

can equal 2(x + y + z) only if z > max{y, z}, except if r = 2 or m = 3, when
T=y ==z

We are trying to prove that F(«, 3) does not have a basis consisting of two
elements of translation length 2(x+y+z2). By comparing the compatibility of the
above conditions we see that the only pairs of our words that can simultaneously
have translation length 2(x + y + 2) are

{(@B)"B, a(ap)"}, {a™B7", ™16}, {af™™, ap™ ),

with n > 2 and m > 3, and those pairs arising from the exceptional setting
xr = y = z. The words arising in the exceptional setting have abelianization
O‘pﬁq where {pa Q} = {173}7 {2a3} or :t{l’ _2}'

Calculating determinants, we find that the areas of the parallelogram in R?
spanned by any pair of these vectors is 0, 3, 5, 7 or 8. And the determinants for
the other pairs of words displayed above are, respectively (2n+1), (2m+1) and
(2m + 1). Since none of these expression is equal to 1, we conclude that in case
2 there does not exist a basis for the free group in which both elements have
translation length 2(x + y + 2).

This completes the proof that there does not exist an R-graph with funda-
mental group F'(a,b) in which the basis {a, b} satifies |a| = |b] = |[a, b]]. O
2. The groups I' and I < I', and the covering space X X

2.1. Consider the group
I'={a,b,7,s,t ‘ yay P =a byt = bt sasT = [a,b] = tht ™) |
This is the fundamental group of the compact aspherical 2-complex that one

obtains as follows. First join two copies of the Klein bottle along an embedded
circle as shown in figure 2 (the labelled loops in this figure correspond to the
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a b b a

Figure 2: Two Klein bottles joined along a circle

c C
Figure 3: The two cylinders
c p
it

S

1B 1(C)

c @
o B I(0) 1B

Figure 4: The space X

1(C) 1(C)

generators in the presentation given above). Fix a loop C' in the complex that
represents the homotopy class of [a, b] and attach two cylinders to the complex
as shown in figure 3. Let X be the resulting 2-complex. (Note that in our
description of X there is an ambiguity in the choice of how we attach the cylinders
— for example C' may follow the edge path labelled a~'b~!ab, or it may be the
loop shown in figure 4 — to be definite we shall assume the latter choice.)

2.2. One can map I' onto Z, by sending v to the generator of Zy and killing
all other generators of I'. The covering space X > X corresponding to the
kernel of this map is shown in figure 4 — it is obtained by first taking two tori
joined along a meridian (the loop representing 72); the deck-group (I) preserves
each torus; the two lifts of C' that are drawn are interchanged by I, as are the
loops {a, I(a)}, {ﬂ, I(ﬁ)} drawn to represent the homotopy classes of a*! and
b*!; the involution I extends naturally to the cylinders that are drawn.

By the van Kampen theorem (equivalently, the Reidemeister—Schreier rewrit-
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ing process [LS]) we see that I' = 7, X has presentation:

f‘ = <(l, b,y,Sl,SQ,tl,tQ ‘
[avy] = [ba y] = 17 Slasl_l = tlbtl_l = [CL, b}v 52a82_1 = t2bt2_1 = [ba CL] >

Here, y = 42 in I'. Also, s; = s, t; = t, and so = (yab)~'sy, to = (yab) 'ty
inI.

2.3. A non-positively curved space with fundamental group r

Consider the skew tori obtained by identifying the sides of the parallelograms
shown in figure 5, and let Y be the piecewise-Euclidean 2-complex obtained by
gluing these tori along the circles labelled y. (The length of the side labelled y
is not important.)

Figure 5: The skew tori

Figure 6 shows part of the universal cover of Y with a lift of a geodesic loop
representing the conjugacy class of the commutator [a,b] = a=tb~1ab.

) y y

e
e
— a a//kc[la,b]

Figure 6: A lift of a geodesic for [a, b]

The important point to note is that [a, b] translates its axes (which are orthog-
onal to the axes for y) a distance 4 = |a| = |b|. Thus, noting that [a, b] = [b,a]*,
we have the following equalities for translation lengths in mY:

lal = [b] = [[a, b]| = [[b, a]| -

Finally, let Y be the piecewise-Euclidean 2-complex obtained by attaching to
Y along geodesic circles four cylinders that realise the conjugacies sl_lasl =
[a,b], t7 bty = [a,b], s; bsy = [b,a] and t; 'bty = [b, a].
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2.4 Proposition.

(1) Y is non-positively curved.
(2) mY =T
(3) Y is homotopy equivalent to X.

Proof. (1) is an immediate consequence of the local gluing lemma for non-
positively curved spaces ([BH], I11.11.13), and (2) is immediate from van Kam-
pen’s theorem (the isomorphism is implicit in our labelhng of loops). (3), of
course, follows from general considerations, because Y and X are both models
for K (F , 1), but it can also be seen directly (cf. the parenthetical remark at the
end of paragraph (2.1)). O

3. Proof of the Theorem

The theorem stated in the introduction is an immediate consequence of Propo-
sitions 2.4, 3.1 and 3.3.

3.1 Proposition. The group T' = m X constructed in paragraph (2.1) does not
act properly by semisimple isometries on any 2-dimensional CAT(0) space.

Proof. Suppose that such an action were to exist, say I' — Isom(M), and con-
sider

Min(+?) = {p € M | d(+* - p,p) = |1?|} .

According to ([BH], 11.6.2), there is an isometric splitting Min(y?) = N x R.
Moreover C'(y?) C T, the centralizer of 72, preserves Min(7?) and its splitting.
The action of C'(v?) on the second factor R is by translations. C(y?) obviously
contains gp{7v, a, b} (in fact this subgroup is the whole of C(72)). Since yay~! =

~! and vby~! = b~!, the image of both a and b in the torsion-free abelian
group IsomyR is trivial. Thus the free subgroup F' := gp{a,b} C T leaves
N = N x {0} C M invariant.

Because N C M is convex, the restriction of every w € F to N has the same
translation length as w € Isom(M) (see [BH], I1.6.2). Moreover, the action of F'
on N is proper ([BH], I1.6.10).

In T" the elements a, b and [a, b] are conjugate, therefore the translation num-
bers of these elements (as isometries of M and N) are equal. But since N x R C
M is at most 2-dimensional, N is an R-tree (see lemma below) and thus we have
a contradiction to Proposition 1.1. O

In the following statement the product X =Y x R is assumed to be a metric
product, i.e. the metric on X is related to the metrics on Y and R by the
Pythagorean formula.
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3.2 Lemma. If X =Y X R is a 2-connected geodesic space with covering di-
mensiton dim X = 2, then Y is an R-tree.

Proof. Y is convex in X and therefore it is a geodesic space. If it were not an R-
tree then it would contain a topologically embedded circle f : S — Y. Identify
S? with the quotient of S! x [—1,1] by the relation that collapses S! x {—1}
to a point and S! x {1} to a point. Extend f to F : S — Y x R so that
F(0,t) = (f(0),t) for [t| <1/2, and F|[_1 _1/9 and F'|[;/2,1) are null-homotopies
of (f(S'),£1/2) in Y x {&1/2}.

Let G : F(S?) — S? be the continuous map that sends F(6,t) to (6,2t)
for [t| < 1/2 and is constant on each of the remaining components of F(S?).
Note that G o F is homotopic to idgz. Since F(S?) is null-homotopic in X (we
assumed o X = 0), the map G does not have a continuous extension to X. This
contradicts the fact that dim X < 2 (see [HW], Theorem VI.4). O

3.3 Proposition. The group T’ described in (2.1) is the fundamental group of
a compact, non-positively curved, 3-dimensional cubed complex.

Proof. Consider the squared complex T described in paragraph 1.1. There is a
unique orientation-preserving isometry of 1" that interchanges the two 1-cells in
the boundary curve of T'; this isometry is a cellular map, call it ¢. The outer
automorphism of F'(a,b) induced by ¢ is the outer automorphism class of the
automorphism a — a1, b b1,

Consider the mapping cylinder M (¢) of ¢: this is the non-positively curved
three dimensional cube complex obtained by taking the quotient of T x [0, 1]
by the relation [(x,0) ~ (¢(x),1) Vo € T]. There are closed geodesics in the
1-skeleton of T' x {0} C M(y) representing a,b and [a,b]. Let A = S(2) x
[0, 1], where S(2) is a circle of length 2. Let Z be the cubed complex obtained
from M (p) by attaching the ends of two copies of the cylinder A to the loops
representing a and [a,b] (respectively b and [a,b]) by maps that are cellular
isometries with respect to the obvious squared-complex structure on A.

Proposition I1.11.13 of [BH] assures us that Z is non-positively curved, and
van Kampen’s theorem tells us that 7 Z = I" (and in fact it is easy to construct
a homotopy equivalence from 7' to X). O
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