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UNIQUE REPRESENTATIONS OF REAL NUMBERS IN
NON-INTEGER BASES

Paul Glendinning and Nikita Sidorov

1. Introduction

Problems related to the expansions of real numbers in non-integer bases have
been systematically studied since the late 1950’s, starting with the seminal works
by Rényi [16] and Parry [15]. The original approach is based on a specific
algorithm for choosing “digits” (e.g. the greedy expansions). This usually leads
to the set of sequences of digits for all possible real numbers in question (for
instance, non-negative or belonging to a given interval) which, unlike the classical
d-adic case, is not a Cartesian product but has a complicated structure.

However, in the 1990’s a group of Hungarian mathematicians led by Paul
Erdös began to investigate 0-1 sequences that provide unique representations of
reals [6, 7, 8]. The present paper continues this line of research. Our set-up is
as follows.

Let q ∈ (1, 2) be our parameter and Σ =
∏∞

1 {0, 1}; we consider those x which
have unique expansions in base q of the form

x =
∞∑

n=1

εnq−n(1)

with ε = (εn)∞1 ∈ Σ. The special case of x = 1 has received a lot of attention
(see [6, 7, 8]), and recently Komornik and Loreti [12] have shown that there is
a smallest q ∈ (1, 2), denoted by qc, for which there is only one representation
of x = 1 in this form. Moreover, they show that qc is the unique solution of the
equation

∞∑
1

mnx−n+1 = 1,

where m = (mn)∞1 is the famous Thue-Morse sequence

m = 0110 1001 1001 0110 1001 0110 0110 1001 . . .(2)

(see, e.g., [4]). From this they obtain the numerical value

qc = 1.787231650 . . .

Recently, Allouche and Cosnard [2] have shown that qc is transcendental (see
also [3]).
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In this paper we return to the case of general x in (1). Given q ∈ (1, 2) we aim
to describe some properties of the set of all x ≥ 0 for which the representation
(1) with ε ∈ Σ exists and is unique.

2. Formulation of the main result

Our first remark consists in the observation that since ε ∈ Σ, x must belong
to [0, 1/(q − 1)] and we exclude the trivial cases x = 0 (where ε necessarily
equals 0∞) and x = 1/(q − 1) (where ε = 1∞). Secondly, if q ≤ G, where
G = 1+

√
5

2 = 1.618 . . . , then the set of such x’s is known to be empty – see [7,
Theorem 3]. So, we will consider only q ∈ (G, 2) and x ∈ (0, 1/(q − 1)).

If a sequence ε is a unique representation, it must be both the greedy (“choose
1 whenever you have a choice”) and lazy (“choose 0 whenever you have a choice”)
expansion of x.

The characterization of both expansions is well known (see, e.g., [7, 15]).
Namely, let the sequence (dn)∞1 be defined as follows: let 1 =

∑∞
1 d′kq−k be

the greedy expansion of 1, i.e, d′1 = [q] = 1, d′2 = [q{q}], etc. If the tail of the
sequence (d′n) differs from 0∞, then we put dn ≡ d′n. Otherwise let k = max {j :
d′j > 0}, and (d1, d2, . . . ) := (d′1, . . . , d

′
k−1, d

′
k − 1)∞. In the seminal paper [15]

it is shown that if x < 1 and (1) is the greedy expansion, then (εn, εn+1, . . . ) is
lexicographically less (notation: ≺) than (d1, d2, . . . ). Recall that (xn)N

1 ≺ (yn)N
1

(where 1 ≤ N ≤ +∞) iff xn < yn for the smallest n such that xn 
= yn. Similarly,
if x > 2−q

q−1 = 1
q−1 − 1, then (εn, εn+1, . . . ) ≺ (d1, d2, . . . ), where the bar denotes

the reflection, i.e., 1 = 0, 0 = 1.
It is natural to restrict x to the interval ∆q =

(
2−q
q−1 , 1

)
; however, in the end

we return to the interval (0, 1/(q − 1)) – see Corollary 15. Let

Aq := {x ∈ ∆q : the representation (1) is unique}.
Proposition 1. [6] The set Aq has Lebesgue measure zero for any q ∈ (G, 2).

One might think that the Hausdorff dimension of Aq is also always zero but
this is not the case for q close to 2. Let us formulate the main theorem of the
present paper.

Theorem 2. The cardinality of the set Aq is
(i) 2, if q ∈ (G, qf ], where qf is the root of the equation

x3 = 2x2 − x + 1, qf = 1.7548776 . . . ;

(ii) ℵ0 if q ∈ (qf , qc) and
(iii) 2ℵ0 if q ∈ [qc, 2).

Moreover, if q ∈ (qc, 2), then Aq is a Cantor set (i.e., it is perfect and nowhere
dense), and dimH(Aq) > 0.

Thus, for this problem the “Komornik-Loreti constant” qc is critical as well –
it separates a Cantor set of positive Hausdorff dimension from a countable set!
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Remark 3. Note that formula (1) may be regarded as a map πq : Σ → R and by
definition, it is one-to-one on the preimage of Aq which we will denote by Uq.
Theorem 2 (i) is implicitly contained in [5], where some partial results on the
structure of Uq were also obtained; however, for the reader’s convenience we are
going to give the proof of this item as well (especially as it is very simple).

Our tool will be the following lemma which describes the set Uq (see above):

Lemma 4.
Uq = ε ∈ Σ : (εn, εn+1, . . . ) ≺ (d1, d2, . . . )

and (εn, εn+1, . . . ) ≺ (d1, d2, . . . ), n ∈ N}.

3. Proof: above the critical value

We will begin with the proof of Theorem 2 (iii). From Lemma 4 it follows
that the set Uq is a non-decreasing function of q, i.e., if q′ ≤ q, then Uq′ ⊂ Uq

(this is because the sequence (dn) is an increasing function of q in the sense
of the lexicographic order – see [15]) . Therefore, to prove Theorem 2 (iii),
it suffices to construct a sequence qn ↘ qc such that Uqn is uncountable and
dimH(πq(Uqn)) > 0 for any q ∈ (qn, 2). We will call the sequences from Uq q-
admissible. Let the notation q : 1 ∼ ε1ε2 . . . indicate the fact that (dn) ≡ (εn),
where (dn) = (dn)(q) is as above.

We define qn as the number for which qn : 1 ∼ m2m3 . . .m2n(m1 . . .m2n)∞,
i.e., q1 : 1 ∼ 1(10)∞, q2 : 1 ∼ 110(1001)∞ , etc. It is obvious from (2) that
qn ↘ qc, because qc : 1 ∼ m2m3 . . . . Let σ denote the shift on sequences;
following [12], we denote σ(m) by δ, i.e.,

δ = 1101 0011 0010 1101 0010 . . .(3)

We are going to prove a number of technical lemmas first. We will use the
following relations: δ2n = 1, δ2n+j = δj for 1 ≤ j < 2n (see [12]).

Lemma 5. We have δk . . . δk+2n−2 ≺ δ1 . . . δ2n−1 for any n ≥ 1 and any k ∈
{2, . . . , 2n − 1}.
Proof. By [12, Lemma 1], δkδk+1 . . . ≺ δ1δ2 . . . ,whence δk . . . δk+2n−2 �
δ1 . . . δ2n−1. Assume that n ≥ 2 and δk . . . δk+2n−2 = δ1 . . . δ2n−1. Then δk =
δk+1 = 1, whence δk−1 = 0, and we can use the same argument as in the proof
of [12, Lemma 1]. Namely, we have k − 1 = 2s + 2m + j, where s ≤ n− 1, m < s
and 0 ≤ j < 2m. It was shown in the proof in question that if δk−1 = 0,
then δk . . . δk+2m+1−j−1 ≺ δj+1 . . . δ2m � δ1 . . . δ2m−j , whence δk . . . δk+2n−2 ≺
δ1 . . . δ2n−1, because m + 1 < n.

Remark 6. In a similar way one can show that δk . . . δk+2n−2 ≺ δ1 . . . δ2n−1 for
k < 2n.

Lemma 7. If δk . . . δ2n−1 = δ1 . . . δ2n−k or δk . . . δ2n−1 = δ1 . . . δ2n−k for k ≤
2n − 1, then δ2n−k+1 = 1.
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Proof. We are going to prove both statements simultaneously using induction
on n. For n = 1, 2 it is a direct inspection; let n ≥ 3 and assume the claim to be
true for any i ≤ n and δk . . . δ2n+1−1 = δ1 . . . δ2n+1−k. Note first that if k < 2n,
then δk . . . δ2n+k−1 = δ1 . . . δ2n , which contradicts Lemma 5. Hence k > 2n (it
is obvious that k 
= 2n); we have δk−2n . . . δ2n−1 = δ1 . . . δ2n+1−k, and we can
apply the induction hypothesis for l = k − 2n. Hence δ2n+1−k+1 = 1. The case
δk . . . δ2n+1−1 = δ1 . . . δ2n+1−k is considered in the same way.

Lemma 8. We have δk . . . δ2n−1δ2n . . . δ2n+1−1 ≺ δ1 . . . δ2n+1−k for any n ≥ 1
and any k ∈ {1, . . . , 2n − 1}.
Proof. Again, by [12, Lemma 1], δk . . . δ2n−1 � δ1 . . . δ2n−k. If this inequal-
ity is strict, we are done. Assume we have an equality here. Note first that
by (3), k ≥ 5; next, by Lemma 7, δ2n−k+1 = 1, and it suffices to show that
δ2n+1 . . . δ2n+1−1 ≺ δ2n−k+2 . . . δ2n+1−k, which is equivalent to δ1 . . . δ2n−1 ≺
δ2n−k+2 . . . δ2n+1−k, which in turn is equivalent to δ2n−k+2 . . . δ2n+1−k ≺
δ1 . . . δ2n−1. Since 2n − k + 2 < 2n, the latter inequality follows from Re-
mark 6.

Now we are ready to prove the main statement of this item. Let vn :=
m1 . . .m2n .

Proposition 9. If q > qn for some n ≥ 2, then Uq ⊃ Vn :=
∏∞

1 {vn, vn}.
Proof. We need to show that any 0-1 sequence which is constructed of blocks
vn and vn is q-admissible for any q > qn. Let V ′

n := {σkε : ε ∈ Vn, k ≥ 0}.
We claim that the maximal sequence in V ′

n is σ(vn)(vn)∞ – which is exactly the
expansion of 1 for qn. Let us prove this.

As vn starts with 0 and vn starts with 1, it is obvious that we must look
for the largest element in V ′

n among the sequences of the form σk(vn)(vn)∞ or
σk(vn)(vn)∞ for some k < 2n. The cases k = 0, 1 are straightforward; let k ≥ 2.

Let us first show that σk(vn)(vn)∞ ≺ σ(vn)(vn)∞. It suffices to prove the
strict inequality for the segments of length 2n, i.e. δk . . . δk+2n−1 ≺ δ1 . . . δ2n ,
which is exactly the claim of Lemma 5. Similarly, taking the segments of length
2n+1 − k, we see that the inequality σk(vn)(vn)∞ ≺ σ(vn)(vn)∞ follows from
Lemma 8.

By the symmetry of Vn, the lexicographically smallest sequence in V ′
n will be

σ(vn)v∞n . Both conditions of Lemma 4 are satisfied, whence Vn ⊂ Uq.

Thus, Uq (and therefore, Aq) has the cardinality of the continuum for q > qc.
To show that the Hausdorff dimension of Aq is positive, it suffices to prove that
dimH(πq(Vn)) > 0 for any q > qn (where Vn is as in Proposition 9). In fact,
there is an explicit formula for the latter dimension, namely,

dimH(πq(Vn)) =
log 2

2n log q
< 1.(4)

This follows from the following simple lemma:
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Lemma 10. Let Q > 2 and πQ be as above, i.e., πQ(ε) =
∑∞

k=1 εkQ−k. Then

dimH

(
πQ(

∞∏
1

{a, b})
)

=
log 2
log Q

for any a 
= b.

Proof. Let a < b; it is a direct inspection that πQ(
∏∞

1 {a, b}) is the middle-

third Cantor set in
[

a
Q−1 , b

Q−1

]
with the middle part of length (b−a)(Q−2)

Q(Q−1) and
therefore it is homothetic to the middle-third Cantor set in [0, 1] with the middle
part of length 1 − 2/Q. The Hausdorff dimension of the latter set is known to
be equal to log 2/ log Q (the proof is essentially the same as for the classical
middle-third Cantor set – see, e.g., [9, Chapter 1]).

To obtain (4), it suffices to apply this lemma to our framework with q >

qn, Q := q2n

> 2 (as n ≥ 1), a :=
∑2n

1 miq
−i, b :=

∑2n

1 miq
−i. This proves that

dimH(Aq) > 0.
To conclude the proof of Theorem 2 for q > qc, we need to show that Aq is

a Cantor set. Note first that from Proposition 1 it follows that Aq is nowhere
dense. Furthermore, if we endow Σ with its natural weak topology (the topology
of coordinate-wise convergence), then the map πq : Σ → R is continuous. From
Lemma 4 it is easy to deduce that Uq is closed, whence Aq is closed as well.
Hence πq|Uq is a homeomorphism, as Uq is compact.

Since Aq and Uq are homeomorphic, it suffices to show that Uq does not
contain isolated points. Let q > qn and assume first that ε ∈ Uq has a tail
different from (01)∞. Then there exists an infinite number of indices k such
that εk−2εk−1εk = 110 or 001. In view of the symmetry of Uq both cases are
similar; let it be 110, for instance. Then it is easy to see that (ε1, . . . , εk, v∞n ) and
(ε1, . . . , εk, vn(vn)∞) are both q-admissible. This follows from the q-admissibility
of ε and of (1, 1, 0, v∞n ). Therefore, ε cannot be an isolated point.

Assume now that ε = (ε1, . . . , εk, (01)∞) is q-admissible. Then it is a direct
inspection that (ε1, . . . , εk, (01)k, v∞n ) and (ε1, . . . , εk, (01)k, (vn)∞) are both q-
admissible as well for any k ≥ 2. Hence Aq is a Cantor set if q > qc.

Remark 11. Note that actually there exists an explicit formula for the Hausdorff
dimension of Aq. Namely, let un(q) denote the number of 0-1 words (ε1 . . . εn),
each of which can be extended to some sequence in Uq. Note that by Lemma 4,
the set Uq is obviously shift-invariant. Then the general theorem says that the
topological entropy of the shift σq on Uq is given by the formula

htop(σq) = lim
n→+∞

log un(q)
n

(5)

(see, e.g., [13]). Furthermore, by the standard result from the theory of cookie-
cutters [10] and the fact that Aq = πq(Uq),

dimH(Aq) =
htop(σq)

log q
= lim

n→+∞
log un(q)
n log q

.(6)
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One of the consequences of this formula is that the function q �→ dimH(Aq) is
continuous (this is because the function q �→ {un(q)}∞n=1 is continuous). How-
ever, it is not Hölder continuous, as dimH(Aq) ≥ C/| log(q−qc)| when q > qc for
some C > 0, because, as is easy to see, qn − qc = O(q−2n

c ) and by Proposition 9
and formula (4), dimH(Aqn) ≥ 2−n.

4. Proof: below the critical value

Let us first prove Theorem 2 (i). Let q ∈ (G, qf ] and suppose ε ∈ Uq and
εk = εk+1 = 1 for some k ≥ 1. Since qf : 1 ∼ (1100)∞, we have by Lemma 4 and
the monotonicity of Uq, (εk+2, εk+3, . . . ) = ((0011)∞), which is not q-admissible,
as q ≤ qf . In view of the symmetry of Uq, the same argument works in the case
εk = εk+1 = 0. Therefore, there cannot be two consecutive equal symbols in
Uq, whence (01)∞ and (10)∞ are the only possible elements of Uq. However, as
q > G, both these sequences are indeed q-admissible, because G : 1 ∼ (10)∞.

It remains to show that Uq is countable for q ∈ (qf , qc) and has the cardinality
of the continuum for q = qc.

Lemma 12. If q ≤ qc, then for any q-admissible sequence ε such that
ε1 . . . ε2n = δ1 . . . δ2n for some n ≥ 1, necessarily ε2n+1 . . . ε2n+1−1 =
δ2n+1 . . . δ2n+1−1.

Proof. By monotonicity, it suffices to consider the case q = qc. Since ε is qc-
admissible and qc : 1 ∼ δ, we have by Lemma 4, ε2n+1 . . . ε2n+1−1 �
δ2n+1 . . . δ2n+1−1 = δ1 . . . δ2n−1. Hence δ1 . . . δ2n−1 � ε2n+1 . . . ε2n+1−1. At
the same time, since ε is qc-admissible, ε2n+1 . . . ε2n+1−1 � δ1 . . . δ2n−1, whence
ε2n+1 . . . ε2n+1−1 = δ1 . . . δ2n−1, and ε2n+1 . . . ε2n+1−1 = δ2n+1 . . . δ2n+1−1.

Let wn := σ(vn)1 = δ1 . . . δ2n , n ≥ 0.

Proposition 13. If qf < q < qc, then there exists n = n(q) such that Uq

contains only eventually periodic sequences with the period wkwk for some k ≤ n.

Proof. Suppose ε is q-admissible and εm . . . εm+2k−1 = wk or wk for some m ≥
1, k ≥ 1 (this always happens unless ε = (10)∞ or (01)∞). Let it be wk, for
instance. Then the next 2k − 1 symbols are determined by Lemma 12. For
εm+2k+1−1 there is a choice. If it equals 1, then εm . . . εm+2k+1−1 = wk+1;
otherwise εm . . . εm+2k+1−1 = wkwk. Therefore, either we obtain the period
(wkwk) or we will meet wk+1. As q is strictly less than qc, the latter event
cannot occur for arbitrarily large k, because wn cannot be the prefix of a q-
admissible sequence starting with some n. Therefore, the periodic tail of the
form described above, is inevitable for a q-admissible sequence if q < qc.

Hence Aq is at most countable if q < qc. However, as q > qf , it is easy to
construct a countable subset of Uq; for example, take all the sequences of the form
(10)k(1100)∞ with k ∈ N. Thus, cardAq = ℵ0, which proves Theorem 2 (ii).
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Finally, from the proof of Proposition 13 and by monotonicity, Uqc
is exactly

the set of all words of the form

(w0w0)k0 . . . (wnwn)kn , kj ∈ Z+

together with their shifts and reflections and therefore has the cardinality of the
continuum. The main theorem is proven.

Remark 14. It is interesting to study the behaviour of the sequence uk(q). If q >
qc then from (5) it follows that uk(q) grows exponentially at the rate ekhtop(σq).
For any q < qc it is easy to show that uk(q) = O(kn), where n = n(q) – this
follows from the proof of Proposition 13.

The most intriguing case is q = qc. Let P (k) denote the number of represen-
tations of k as a sum

∑∞
0 ej2j with ej ≥ 0. This combinatorial quantity is well

studied; in particular, K. Mahler [14] showed that

log P (k) ∼ log2 k

2 log 2
.

From our observation on the structure of Uqc
(see above) it easily follows that

un(qc) � P ([n/2]), whence

log un(qc) � log2 n,

i.e., this sequence has an intermediate growth of order nlog n.

Corollary 15. The set A′
q of all x ∈ (0, 1/(q− 1)) that have a unique represen-

tation of the form (1), is countable for q ∈ (G, qc) and uncountable with positive
Hausdorff dimension for q ∈ (qc, 2).

Proof. It suffices to note that every sequence ε′ from U ′
q = π−1

q (A′
q) is of the

form 0kε or 1kε, where ε ∈ Uq and k ≥ 0. This follows, for instance, from the
characterization of the greedy expansions for all x ∈ (0, 1/(q − 1)) analogous to
Parry’s theorem. Namely, ε′ is the greedy expansion of some x ∈ (0, 1/(q − 1))
if and only if (ε′n+1, ε

′
n+2, . . . ) ≺ (d1, d2, . . . ) whenever ε′n = 0 – see [8].

Remark 16. Note that if q < qc, then Aq is still closed but not perfect. Indeed,
any sequence whose tail is (wnwn)∞ for n = n(q), is an isolated point. However,
Aqc is a Cantor set of zero Hausdorff dimension. We leave the proof of this claim
to the reader as a simple exercise.

Example 17. Let T = 1.839286 . . . be the “tribonacci number”, i.e., the posi-
tive root of the equation x3 = x2 + x + 1. It lies above qc, hence by Theorem 2,
the set UT must have the cardinality of the continuum. Let, as above, un denote
the number of 0-1 words that can be extended to sequences in UT – which is
exactly the set of 0-1 sequences without three consecutive equal symbols. Hence
it is easy to see that u1 = 2, u2 = 4, u3 = 6, . . . , and by induction, un = 2Fn+1,
where (Fn)∞1 is the Fibonacci sequence! Therefore, from the formula (6) it
follows that

dimH(AT ) = lim
n→∞

log(2Fn+1)
n log T

=
log G

log T
= 0.789677 . . .
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A similar pattern occurs for the “multinacci” number Tn, i.e., the appropriate
root of the equation xn = xn−1+xn−2+· · ·+x+1, n ≥ 3. Namely, dimH(ATn) =
log Tn−1
log Tn

, whence it follows that 1−dimH(Aq) � 2−q as q ↗ 2. For more details
see [11].
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