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NON-PAC FIELDS WHOSE HENSELIAN

CLOSURES ARE SEPARABLY CLOSED

Wulf-Dieter Geyer and Moshe Jarden

0. Introduction

A field K is PAC if every nonvoid absolutely irreducible variety V over K
has a K-rational point. The concept of a PAC field originated in Ax’ work [Ax]
on the elementary theory of finite fields. Although finite fields are not PAC,
nonprincipal ultra products of finite fields (Ax, [FrJ, Cor. 10.6]) and infinite
algebraic extensions of finite fields (Ershov, [FrJ, Cor. 10.7]) are PAC. Each
separably closed field is PAC. If K is a countable Hilbertian field and e is a
positive integer, then for almost all σ ∈ G(K)e the field Ks(σ) is PAC [FrJ,
Thm. 16.18]. Here G(K) is the absolute Galois group of K equipped with
the Haar measure, Ks is the separable closure of K, and Ks(σ) is the fixed
field of σ1, . . . , σe in Ks. An explicit example of an algebraic extension of Q

which is PAC is Qtr(
√
−1), where Qtr is the field of all totally real algebraic

numbers (Pop). Finally, Fried starts from an arbitrary field K0 and adjoins
algebraically independent generic points of all absolutely irreducible varieties
over K0. Then he iterates this construction inductively. Finally he takes the
union of the sequence of fields obtained in this way to obtain a regular extension
K of K0 which is PAC [FrJ, Prop. 12.11].

Although one expects most fields to be non-PAC, it is not easy to construct
one. Clearly, if K is formally real, then it is non-PAC [FrJ, Thm. 10.2]. If K
has a valuation v whose residue field is finite, then K is non-PAC (Ax). More
generally, if the Henselian closure Kv of K with respect to v is not separably
closed, then K is non-PAC (Frey-Prestel [FrJ, Thm. 10.14]). Consequently, [FrJ,
Prob. 10.16(b)] raises the following problem:

Problem A. Is there an infinite field K which is neither formally real nor PAC
all of whose Henselian closures are separably closed?

A recent work of Efrat gives a clue to the solution of Problem A. To this end
consider a field K and let F be an extension of K of transcendence degree 1.
Denote the set of all equivalence classes of valuations of F which are trivial on
K by P(F/K). For each p ∈ P(F/K) let Fp be the Henselian closure of F at v.
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We say that F satisfies the Hasse principle for Brauer groups if the restriction
maps of Brauer groups

res: Br (F ) →
∏

v∈V (F/K)

Br (Fv)

is injective.

Proposition B. Let K be a perfect field.
(a) If K is PAC, then each extension F of K of transcendence degree 1

satisfies the Hasse principle for Brauer groups [Efr, Thm. 3.4].
(b) Suppose that K is not necessarily PAC but each extension F of K of

transcendence degree 1 satisfies the Hasse principle for Brauer groups.
Then every nontrivial valuation of K has an algebraically closed residue
field and a divisible value group [Efr, Thm. 4.1].

Following these results, Efrat [Efr, Question 4.2] asks:

Problem C. Let K be a non-real infinite perfect field such that the Hasse prin-
ciple holds for all extensions F of K of relative transcendence degree 1. Is K
necessarily PAC?

The goal of this work is to construct a field which simultaneously solves both
Problems.

Theorem D. Let K0 be either a finite field or a global field. Then K0 has an
infinite regular extension K with the following properties:

(a) Every extension F of K of transcendence degree 1 satisfies the Hasse
principle for Brauer groups.

(b) K is not formally real.
(c) Each Henselization of K is separably closed.
(d) K is not PAC.

Our construction follows that of Fried which we mentioned above. However
instead of adjoining generic points of all varieties we adjoin only generic points
of varieties which are birationally equivalent over the algebraic closure to either
a rational variety or to an abelian variety. If the basic field K0 is either a finite
field or a number field, then the constructed field K is not PAC but each variety
of the above types has a K-rational point. So, K is weakly PAC. Using the
results of [Efr], we prove that K satisfies conditions (a)-(d) of Theorem D.

1. Weakly PAC fields

Let K be a field. Denote the algebraic (resp., separable, purely inseparable)
closure of K by K̃ (resp., Ks, Kins) and let G(K) = G(Ks/K) be the absolute
Galois group of K. When we say that V is a variety (or a curve) over K we
mean that V is absolutely irreducible and nonempty. This is the case if V is
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irreducible and if the function field of V is a regular extension of K [FrJ, Lemma
9.5]. If L is an extension of K, we abbreviate V ×K L by VL and put Ṽ = VK̃ .
Similarly, if α:V → W is a rational map, then α̃: Ṽ → W̃ is the rational map
which is obtained from α by extension of scalars from K to K̃.

Recall that K is PAC if each variety V over K has a K-rational point. In
this work we impose the latter condition only on varieties of restrictive type. We
obtain ”weakly PAC fields” which are not always PAC fields.

Let V be a variety over K. We say that V is a variety of type i, i = 0, 1, if
the following condition holds:

(Type 0) Ṽ is birationally equivalent to An for some positive integer n.
(Type 1) Ṽ is birationally equivalent to an abelian variety of positive dimen-

sion.
Here are some simple conservation rules for the types that follow immediately

from the definition:
(1a) Suppose that V and V ′ are birationally equivalent varieties over K. If

V is of type i, then so is V ′.
(1b) If V1, . . . , Vm are varieties over K of type i, then so is V1 × · · · × Vm.
(1c) If V is a variety over K of type i, then so is VL for every field extension

L of K.
(1d) Suppose that V is a variety over K, L is an algebraic extension of K,

and W is a variety of type i over L which is birationally equivalent to
VL. Then V is of type i.

We say that K is weakly PAC if each affine variety V over K of type 0 or
1 has a K-rational point. It follows from (1a) that V (K) is Zariski-dense in V
for each projective variety of type 0 or 1 over K. In particular, K is an infinite
field. By definition, each PAC field is weakly PAC.

Lemma 1.1. Let K be a field and let L be an algebraic extension of K.
(a) If each variety over K of type i has a K-rational point, then each variety

over L of type i has a K-rational point, i = 0, 1.
(b) If K is weakly PAC, then so is L.

Proof. Condition (b) follows from condition (a). In order to prove (a), we may
assume that L is a finite extension of K. Moreover, we may assume that either
L is a separable extension of K or L is a purely inseparable extension of K.
Consider therefore a variety V over L of type i.

If L/K is separable, then Weil’s descent gives an affine variety W over K such
that W̃ ∼= Ṽ d and a morphism α:WL → V [FrJ, Prop. 9.34].

If L/K is purely inseparable, then a theorem of Roquette gives a variety V
over K and a birational morphism α:WL → V [FrJ, Prop. 9.35].

Rules (1a)–(1d) imply that W is of type i. By assumption, W has a K-rational
point. Hence, V has an L-rational point. �

J. Ax observes in [Ax, p. 269, Lemma 2] that if K is a PAC field, then its
Brauer group Br (K) is trivial. The proof uses the fact that the reduced norm of
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a simple central K-algebra is an absolutely irreducible homogeneous polynomial.
As K is PAC, this polynomial has a nontrivial K-rational zero. This implies that
A splits over K.

For weakly PAC field we have to use an alternative proof. It reproves Ax’
result.

Proposition 1.2. Let K be a field. Suppose that each variety over K of type 0
has a K-rational point. Then Br (K) = 0 and G(K) is projective. In particular,
this holds if K is weakly PAC.

Proof. Each simple central K-algebra A of dimension n2 corresponds to a Severi-
Brauer variety V over K of dimension n − 1 [Ser, P. 168]. By definition, Ṽ ∼=
Pn−1. In particular, V is a variety of type 0. By assumption, V has a K-
rational point. Hence, A splits over K [Jac, p. 113, Thm. 3.5.6]. Conclude that
Br (K) = 0.

By Lemma 1.1, each algebraic extension L of K is weakly PAC. By the preced-
ing paragraph, Br (L) = 0. It follows that cd(G(K)) ≤ 1 [Rib, p. 262, Cor. 3.8].
In other words, G(K) is projective. �

Let F be an extension of a field K. A prime divisor of F/K is an equivalence
class of valuations of F which are trivial over K. We denote the set of all prime
divisors of F/K by P(F/K). For each p ∈ P(F/K) we denote the Henselian
closure of F with respect to p by Fp. It is unique up to a K-isomorphism.
Tensoring central simple finite dimensional F -algebras with Fp defines a homo-
morphism resp: Br (F ) → Br (Fp). We consider the direct product of all these
homomorphisms:

(2) res: Br (F ) →
∏

p∈P(F/K)

Br (Fp)

and say that F satisfies the Hasse principle for Brauer groups if res is injective.
Ido Efrat [Efr, Thm. 3.4] proves that if K is a perfect PAC field, then each

extension F of K of transcendence degree 1 satisfies the Hasse principle for
Brauer groups. A careful analysis of Efrat’s proof shows that it works even if K
is perfect and weakly PAC [Efr, Remark 3.5(c)].

Proposition 1.3. Let K be a weakly PAC field. Then

(a) each extension F of Kins of transcendence degree 1 satisfies the Hasse
principle for Brauer groups,

(b) all Henselian closures of K are separably closed, and
(c) K is not formally real.

Proof of (a). By Lemma 1.1, F ∩ K̃ is a perfect weakly PAC field. Replace
K by F ∩ K̃, if necessary, to assume that K is perfect and F/K is a regular
extension. By [Efr, Lemma 3.3], we may assume that F/K is finitely generated.
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In other words, F is a function field of one variable over K. As cd(G(K)) ≤ 1
(Proposition 1.2) there is an exact sequence

(3) 0 → H1(G(K),Pic (FK̃/K̃)) → Br (F ) res−→
⊕

p∈P(F/K)

Br (Fp),

where Pic (FK̃/K̃) is, as usual, the quotient group of all divisors of FK̃/K̃
modulo principal divisors [Efr, Prop. 2.3]. Denote the Jacobian of F/K by J .
By [Efr, Lemma 1.4] there is a natural epimorphism

H1(G(K), J(Ks)) �→ H1(G(K), Pic (FK̃/K̃)).

Each element of H1(G(K), J(Ks)) may be represented by a variety V over K

such that Ṽ ∼= J̃ . Since K is weakly-PAC, V has a K-rational point. Hence,
V represents the trivial element of H1(G(K), J(Ks)) [LaT, Prop. 4]. It follows
that H1(G(K), J(Ks)) = 0. Hence, H1(G(K), Pic (FK̃/K̃) = 0. Conclude from
(3) that res: Br (F ) →

∏
p∈P(F/K) Br (Fp)) is injective.

Proof of (b). Let v be a valuation of K. Denote the unique extension of v to Kins

by vins. Let vs be an extension of v to Ks and let ṽ be the unique extension of
vs to K̃. Then the isomorphism res:G(Kins) → G(K) maps the decomposition
group D(ṽ) = {σ ∈ G(Kins) | ṽ ◦ σ = ṽ} of ṽ onto the decomposition group
D(vs) = {σ ∈ G(K) | vs ◦ σ = vs} of v. So, if we denote the fixed field of D(vs)
by Kv, we find that the fixed field of D(ṽ) is KvKins, which is (Kv)ins. So, Kv

is a Henselian closure of (K, v) and KvKins is a Henselian closure of (Kins, vins).
By Lemma 1.1, Kins is weakly PAC. Hence, replacing K by Kins, if necessary,
we may assume that K is perfect.

Since the Henselian closure of K with respect to v is also weakly PAC (Lemma
1.1), we may as well assume that (K, v) is Henselian. By (a) and by [Efr,
Thm. 4.1] the residue field K̄v is separably closed and the value group Γv is
divisible. As [Efr, Thm. 4.1] points out, if char(K̄v) = 0, this implies that
char(K) = 0 and that K is algebraically closed. We prove that for an arbitrary
v, K is separably closed.

Suppose first that rank (v) = 1. Then v is in the terminology of [Fre], a real
non-Archimedean valuation. If K were not separably closed we could choose a
nontrivial element σ of G(K) and use Lemma 1.1 again to replace K by the fixed
field of σ in Ks. Thus, we could assume without loss that G(K) is procyclic.
But then, by [Fre, p. 205, Lemma], there would exist a curve E over K of genus
1 without K-rational points. As Ẽ is an elliptic curve, that is, an abelian variety
of dimension 1, this would contradict the assumption that K is a weakly PAC
field.

In the general case we consider the set of all nontrivial valuation rings that
contain Ov. It is indexed by a totally ordered set I such that if i ≤ j, then
Oj ⊆ Oi and mi ⊆ mj , where mi is the maximal ideal of Oi [Rib, Chap. C]. By
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[Rib, p. 210, Prop. 9], each Oi is a Henselian valuation ring. Hence, by Efrat’s
result mentioned in the second paragraph, its residue field K̄i is separably closed.

The ring O =
⋃

i∈I Oi is either a valuation ring or O = K. If O is a valuation
ring, then it is a maximal one. In other words, O has rank 1. By Frey’s lemma,
K is separably closed.

Assume therefore that O = K. Let f ∈ K[X] be a monic irreducible separable
polynomial. Then its discriminant d is nonzero. Also, there exists j such that
f ∈ Oj [X]. Hence, f ∈ Oi[X] and d ∈ Oi for all i ≤ j. Since in our case,⋂

i≤j mi = 0, there exists k ≤ i such that d /∈ mk. Then the residue of d modulo
mk is not zero. This means that f has no multiple roots modulo mk. As Ok/mk

is separably closed (by the first paragraph), f has a simple zero modulo mk.
Since Ok is Henselian, this zero can be lifted to a zero of f in Ok. Conclude that
K is separably closed.

Proof of (c). Assume without loss that char(K) = 0. Consider the conic C

defined over K by the equation X2 + Y 2 + 1 = 0. Its extension C̃ to K̃ is a
rational curve [Art, p. 304]. Hence C is of type 0 and therefore has a K-rational
point. It follows that K has no ordering. In other words, K is not formally real
(Indeed, its level is at most 2.) �

2. Examples

We construct weakly PAC fields which are not PAC. By Proposition 1.3(b,c),
this gives a negative answer to Problem C. By Proposition 1.3(d), this also
solves Problem A. The construction depends on a lemma which handles vari-
eties of somewhat more general types than those of Section 1. We say that a
variety V over a field K is of type i′, i = 1, 2, if the following conditions hold.

(Type 0′) There exists a dominating rational map α: An → Ṽ , for some posi-
tive integer n. That is, Ṽ is unirational.

(Type 1′) There exists an algebraic group H over K̃ and a dominating rational
map α:H → Ṽ .

In particular, if V is of type i, then it is of type i′. The following lemma
justifies the terminology.

Lemma 2.1. Let C be a curve over a field K and let V be a variety over K.
Denote the function field of V over K by F . Suppose that C(F ) �= C(K).

(a) If V is of type 0′, then genus (C̃) = 0.
(b) If Ṽ of type 1′, then genus (C̃) ≤ 1.

Proof. We choose a point p ∈ C(F ) � C(K). It is a generic point of C over K.
The rest of the proof breaks up into two parts.

Proof of (a). Suppose that Ṽ is unirational. Then FK̃ is contained in a purely
transcendental extension K̃(x1, . . . , xn) of K̃. Hence K̃(p) ⊆ K̃(x1, . . . , xn).
Since trans.deg (K̃(p)/K̃) = 1, a theorem of Lüroth-Gordan-Igusa implies that



NON PAC FIELDS 515

K̃(p) = K̃(t), with t transcendental over K [Sch, p. 9]. Hence it follows that
genus (C̃) = 0.

Proof of (b). Suppose there exists an algebraic group H and a dominating ratio-
nal map α:H → Ṽ . The inclusion K(p) ⊆ F defines a dominating rational map
β:V → C over K. Assume that genus (C̃) > 0 and let γ: C̃ → J be an embed-
ding of C̃ into its Jacobian J . Then θ = γ ◦ β̃ ◦α is a rational map from H into J
which is defined over K̃. By [Lan1, p. 24, Thm. 4], J has an abelian subvariety
Γ and there is a ∈ A(K̃) such that θ(H(K̃)) = a + Γ(K̃). On the other hand, γ

is a birational map between C̃ and θ(H). It follows that dim(Γ) = 1. Conclude
that genus (C̃) = genus (Γ) = 1. �
Corollary 2.2. Let V = V1 × V2 × · · · × Vn be a direct product of varieties
over a field K. Suppose that each Vi is either of type 0′ or of type 1′. Denote
the function field of V over K by F . Then C(FL) = C(L) for each algebraic
extension L of K and for each curve C over L with genus (C̃) ≥ 2.

Proof. If L is an algebraic extension of K, then FL is the function field of C×KL.
So, without loss, we may consider a curve C over K such that genus (C̃) ≥ 2
and prove that C(F ) = C(K).

Indeed, F = K(x1,x2, . . . ,xn), where xi is a generic point of Vi over K,
i = 1, . . . , n and K(x1), K(x2), . . . , K(xn) are algebraically independent (i.e,
free) over K. For each m between 0 and n let Fm = K(x1, . . . ,xm). Let m < n
and inductively assume that C(Fm) = C(K). Then Fm+1 = Fm(xm+1) is the
function field of the variety Vm+1 ×K Fm which is either of type 0′ of type 1′.
Hence, by Lemma 2.1, C(Fm+1) = C(Fm). So, C(Fm+1) = C(K). Conclude by
induction that C(F ) = C(K). �
Lemma 2.3. Let K0 ⊆ K1 ⊆ K2 ⊆ · · · be an ascending sequence of fields
such that Kj is (separably) Hilbertian and Kj+1 is a regular extension of Kj,
j = 1, 2, 3, . . . . Then K =

⋃∞
j=0 Kj is a (separably) Hilbertian field.

Proof. Consider irreducible (separable) polynomials f1, . . . , fm ∈ K[T, X]. Then
there exists j ≥ 1 such that f1, . . . , fm ∈ Kj [T, X]. Hence, there exists a ∈ Kj

such that for each i the polynomial fi(a, X) is irreducible over Kj . Let xi be a
root of fi(a, X). By assumption K is a regular extension of Kj . In particular, K
is linearly disjoint from Kj(x1, . . . , xm) over Kj . Hence, fi(a, X) is irreducible
over K, i = 1, . . . , m. Conclude that K is (separably) Hilbertian. �

A finite embedding problem over a field K is an epimorphism

(1) β:B → G(L/K),

where L/K is a finite Galois extension and B is a finite group. If K ′ is a regular
extension of K and L′ = LK ′, then restriction ρ = resL′/L:G(L′/K ′) → G(L/K)
is an isomorphism. So, ρ−1 ◦ β:B → G(L′/K ′) is an embedding problem over
K ′. A solution of β over K ′ is an isomorphism γ:G(M ′/K ′) → B, where M ′ is
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a Galois extension of K ′ which contains L′ such that β ◦ γ = resM ′/L. We call
M ′ a solution field of β over K ′.

M ′ M ′′

L L′ L′′

K K ′ K ′′

G(M ′/K ′)

γ

����
��

��
��

��
��

��
��

�

��

G(M ′′/K ′′)��

��
G(L′/K ′)

ρ

��

G(L′′/K ′′)��

��
B

β �� G(L/K) G(L/K)

If K ′′ is a regular extension of K ′, L′′ = LK ′′, and M ′′ = M ′K ′′, then
γ ◦ resM ′′/M ′ is a solution of β over K ′′.

Finally, let βi:Bi → G(Li/K), i = 1, . . . , n be finite embedding problems over
K. Construct the compositum L = L1 · · ·Ln and the fiber product

B = {(b1, . . . , bn, σ) ∈ B1×· · ·×Bn×G(L/K)| βi(bi) = resL/Li
σ, i = 1, . . . , n}.

Let β:B → G(L/K) be the projection on the last coordinate and for each i
between 1 and n let πi:B → Bi be the projection on the ith coordinate. Observe
that both πi and β are surjective. So, β is an embedding problem over K which
dominates each of the problems βi. Let γ:G(M/K) → B be a solution of β.
Let Mi be the fixed field in M of Ker (πi ◦ γ) and let γi:G(Mi/K) → Bi be the
isomorphism induced by πi ◦ γ. Then γi is a solution of βi, i = 1, . . . , n.

Lemma 2.4. Let β:B → G(L/K) be a finite embedding problem over K. Then
K has a finitely generated regular extension K ′ over which β has a solution
γ:G(M ′/K ′) → B such that M ′ is a finitely generated purely transcendental
extension of L.

Proof. Choose a set {xb | b ∈ B} of algebraically independent elements over K
labeled by the elements of B. Construct the purely transcendental extension
M ′ = L(xb | b ∈ B) of L. Let B act on M ′ by the following rule: ab′ = aβ(b′)

and (xb)b′ = xbb′ for a ∈ L and b, b′ ∈ B. Denote the fixed field of B under this
action by K ′. Let L′ = LK ′. By Galois theory, M ′/K ′ is a Galois extension
with Galois group B. Moreover, the identification of G(M ′/K ′) with B is a
solution of β over K. In particular, L∩K ′ = K. Since L′/L is a subextension of
a purely transcendental extension, it is regular. Hence, K ′/K is also a regular
extension. Finally, by [Lan2, p. 64], K ′/K is finitely generated. �

Denote the free profinite group of rank ℵ0 by F̂ω. If K is a countable field over
which every finite embedding problem is solvable, then, by Iwasawa’s criterion,
G(K) ∼= F̂ω [FrJ, Cor. 24.2].
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Lemma 2.5. Every countable field K0 has a regular countable extension K with
the following properties:

(a) K is weakly PAC.
(b) C(K) = C(K0) for each curve C over K0 with genus (C̃) ≥ 2.
(c) K is Hilbertian.
(d) G(K) ∼= F̂ω.

Proof. By induction we construct an ascending sequence K0 = F0 ⊂ F1 ⊂ F2 ⊂
· · · of countable fields. For each m we list the varieties over Fm which are either
of type 0 or of type 1 as Vm1, Vm2, Vm3, . . . . Also, we list the finite embedding
problems over Fm as βm1, βm2, βm3, . . . . These objects should have the following
properties:

(2a) Fm+1 is the function field over Fm of a direct product of varieties which
are defined over Fm and are either of type 0′ or of type 1.

(2b) Vij(Fm+1) �= ∅ for 1 ≤ i, j ≤ m.
(2c) βij has a solution over Fm+1 for 1 ≤ i, j ≤ m.

Indeed, if Fm has already been constructed, we choose an embedding problem
β over Fm which dominates βij for 1 ≤ i, j ≤ m. Lemma 2.4 gives a finitely
generated regular extension F ′

m of Fm over which β is solvable. Moreover, F ′
m is

contained in a finitely generated purely transcendental extension of F̃m. Thus,
F ′

m is the function field of a variety U of type 0′ over Fm.
Next let V =

∏m
i,j=1 Vij ×Fi Fm, choose a generic point x for V ×Fm F ′

m

and let Fm+1 = Fm(x). Then Fm+1 is a finitely generated regular extension
of F ′

m, therefore also of Fm. Moreover, Fm+1 is the function field of U × V .
The projection of x on the ijth coordinate is an Fm+1-rational point of Vij ,
1 ≤ i, j ≤ m. Finally, βij has a solution over Fm for 1 ≤ i, j ≤ m.

The union K of all Fi is a countable regular extension of K0. If W is a variety
of type 0 or of type 1 over K, then there exist i and j such that W ∼= Vij ×Fi K.
Let m = max(i, j). By (2b), Vij(Fm+1) �= ∅. Hence, W (K) �= ∅. Conclude that
K is weakly PAC.

If β:B → G(L/K) is a finite embedding problem, then it is induced by βij

for some i and j. Again, let m = max(i, j). By (2c), βij is solvable over Fm+1.
Hence, βij and therefore β is solvable over K. Conclude from Iwasawa’s criterion
that G(K) ∼= F̂ω.

By (2a) and by [FrJ, Thm. 12.10] each Fm is Hilbertian. Conclude from
Lemma 2.3 that K is Hilbertian.

Finally, let C be a curve over K0 with genus (C̃) ≥ 2. By (2a) and by Corollary
2.2, C(Fm+1) = C(Fm) for m = 1, 2, 3 . . . . Conclude that C(K) = C(K0). �

Recall that a field K is ample if every curve C over K with a simple K-
rational point has infinitely many K-rational points. In particular every PAC
field is ample. (For more about ample fields see [HaJ, §6].)

Theorem 2.6. Let K0 be a finite field or a finitely generated extension of Q.
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Then K0 has a countable regular extension K with the following properties:

(a) K is weakly-PAC.
(b) C(K) is finite for each curve C over K0 of genus at least 2.
(c) K is not PAC and even not ample; Kins is not ample.
(d) Each extension of Kins of transcendence degree 1 satisfies the Hasse prin-

ciple for Brauer groups.
(e) All Henselian closures of K are separably closed.
(f) K is not formally real.
(g) K is Hilbertian.
(h) G(K) ∼= F̂ω.

Proof. Let K be the extension of K0 which Lemma 2.5 provides. In particular,
K satisfies (g) and (h). Consider a curve C over K0 of genus at least 2. Since
K0 is perfect, genus (C̃) = genus (C) ≥ 2. If K0 is finite, then C(K0) is also
finite. If K0 is a finitely generated extension of Q, then by Faltings [FaW, p. 205,
Thm. 3], C(K0) is finite. As C(K) = C(K0) (by (b) of Lemma 2.5), C(K) is
finite. This proves (b). In particular, K is not PAC [FrJ, Prop. 10.1].

Moreover, if char(K0) �= 2, 5, the hyperelliptic curve H defined over K0 by
the equation Y 2 = X5 − 1 has genus 2 [Art, p. 317]. For char(K0) = 5 take
Y 2 = X5 − X, for char(K0) = 2 take Y 2 + Y = X5 − 1. By (b), H(K) is finite
although it has a simple K-rational point, namely (1, 0). Conclude that K is
not ample.

If K0 is a finite field and (a, b) ∈ H(Kins), then there exists a power q of
char(K) such that aq, bq ∈ K. Hence (aq, bq) ∈ H(K) = H(K0). As K0 is
perfect, a, b ∈ K0. It follows that H(Kins) is finite. Conclude that Kins is not
ample.

Finally statements (d), (e), and (f) are consequences of (a), by Proposition
1.3. �

Remark 2.7. (a) The proof of Proposition 1.3(b) shows that if K is a field and
all Henselizations of Kins are separably closed, then so are all Henselizations of
K. In particular, this is the case when Kins is PAC. This situation may indeed
occur without that K is PAC as Hrushovsky proved in [Hru]. We have therefore
been careful in Theorem 2.6 to construct K such that Kins is not PAC.

(b) An arbitrary countable field K0 has a countable extension K which sat-
isfies (a) and (c)–(h) of Theorem 2.6. Indeed, choose a transcendental element
t over K0. Then use Lemma 2.5 to find a countably generated extension K of
K0(t) such that K is weakly PAC, Hilbertian, and C(K) = C(K0(t)) for each
curve C over K0(t) with genus (C̃) ≥ 2. Next choose a curve C over K0(t) with
genus (C̃) ≥ 2 such that C(K0(t)) is finite and has a simple point. Then (c) of
Theorem 2.6 holds. Statements (d)–(h) of Theorem 2.6 hold as in the proof of
that theorem.

(c) If in the proof of Lemma 2.5 we construct the field K out of K0 by
adjoining only generic points of varieties of type 0 and omit the construction
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of F ′
m, then G(K) will be projective, C(K) = C(K0) for each curve C over K0

with genus (C̃) ≥ 1, and K will be Hilbertian and not formally real.

In view of Theorem 2.6 we may reformulate Problem 10.16(b) of [FrJ] in the
following way:

Problem 2.8. Find an infinite field K of a finite transcendence degree over its
prime field such that K is not PAC but each Henselian closure of K is separably
closed and K is not formally real.
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