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FIXED POINT FORMULA FOR CHARACTERS OF
AUTOMORPHISM GROUPS ASSOCIATED WITH

KÄHLER CLASSES

Akito Futaki and Kenji Tsuboi

1. Introduction

The existence problem of Kähler-Einstein metrics of positive scalar curvature
has not been settled yet completely. There are known obstructions, among which
there is a character f of the complex Lie algebra h(M) of all holomorphic vector
fields defined in [8]. In our works [11], [10], [13], [21], we studied how this Lie
algebra character lifted to a character of the group of biholomorphic automomor-
phisms. It was shown using Chern-Simons theory that it is lifted to an additive
group character with values in C/Z. The imaginary part was written as an inte-
gral formula, while the R/Z-valued real part was given as a fixed point formula
for automorphisms.

On the other hand the Lie algebra character f can be extended to an obstruc-
tion fΩ for Kähler classes Ω to contain a constant scalar curvature metric [9],
[6]. More precisely, let M be an m−dimensional compact Kähler manifold with
a fixed Kähler class Ω, ω ∈ Ω a Kähler form and sω the scalar curvature of ω.
Then there exists a smooth function Fω uniquely up to constants such that

sω − mµΩ = ∆Fω

where

µΩ =
(Ωm−1 ∪ c1(M))[M ]

Ωm[M ]
.

If we define fΩ : h(M) → C by

fΩ(X) =
1
2π

∫
M

XFω ωm

then the right hand side is independent of the choice of Kähler forms ω ∈ Ω and
therefore invariant under the group of Ω-preserving automorphisms of M . This
last fact implies that fΩ is a Lie algebra character (c.f. [6]). (Bando [3] further
extended fΩ as obstructions for Kähler classes to contain Kähler metrics with
harmonic Chern forms of higher degree ; note that Kähler metrics with constant
scalar curvature are exactly those with harmonic first Chern forms.)

In a more recent work of Nakagawa [18] it is shown that, when the Kähler class
Ω is a Hodge class and a holomorphic line bundle L with c1(L) = Ω admits a
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lifting of the action of a subgroup G in the group of Ω-preserving automorphisms
of M , the Lie algebra character fΩ lifts to a group character f̂Ω of G with values
in C/(Z + µΩZ). In [12] the imaginary part of the group character f̂Ω is given
as an integral formula. As a byproduct we see, when Ω = c1(M), Mabuchi’s
K-energy functional [16] and a functional introduced by Ding [5] are included in
a family of functionals with cocycle conditions. The purpose of the present paper
is to compute the real part of the group character f̂Ω by expressing it in terms of
the fixed point set of the automorphisms. This is done by interpreting the real
part as an eta invariant of a Dirac operator on a mapping torus and applying
results of Atiyah-Patodi-Singer [1], Atiyah-Singer [2], Donnelly [7].

2. Fixed point formula

To begin with we briefly review basic facts about characteristic classes of
foliations. A transeversely holomorphic foliation F of complex codimension m
on a smooth manifold B of real dimension 2m + n is given by a system of local
charts {z1. · · · , zm, x1, · · · , xn} where {x1, · · · , xn} are real coordinates along
the leaves and {z1, · · · , zm} are complex coordinates in the normal directions,
such that for any neighboring local charts {w1. · · · , wm, y1, · · · , yn}, the wi’s are
holomorphic functions of only zi’s. Then there is a subbundle T ∗

1,0 of TB∗ ⊗ C

spanned by {dz1, · · · , dzm} in local charts. Note that the definition of T ∗
1,0 is

independent of the choice of local charts. A section of T ∗
1,0 will be called a

differential form of type (1, 0). Let E → B be a complex vector bundle of rank r
over B. A basic connection or Bott connection of E is a linear connection whose
connection form is of type (1, 0). It is obvious from the dimension reasons that,
for a multi-index α with |α| > m, the Chern form cα(E ,∇) vanishes identically
if ∇ is a basic connection. The Chern-Simons theory tells us that then we have
a Simons class Scm+1

1
(E) ∈ H2m+1(B; C/Z) which is independent of the choice of

basic connections.
Let M be an m-dimensional connected compact complex manifold, Aut(M)

the complex Lie group consisting of all biholomorphic automorphisms of M .
Consider a holomorphic vector bundle E → M to which the action of a subgroup
G ⊂ Aut(M) lifts. Choose an automophism σ ∈ G. We set Eσ := (R × E)/Z

and Mσ := (R × M)/Z, where Z acts on R × E by

n · (t, v) = (t − n, σn(v)), n ∈ Z

and on R×M similarly. There is a natural transversely holomorphic foliation on
R × M with leaf dimension 1, and it descends to Mσ. It is easy to see that the
complex vector bundle Eσ → Mσ carries basic connections (c.f. [12]).

Hence we can define f̂E : G → C/Z by

f̂E(σ) = Scm+1
1

(Eσ)[Mσ]

where [Mσ] is the fundamental cycle of [Mσ]. One can see that f̂E(σ) defines an
additive group character, i.e. f̂E(στ) = f̂E(σ) + f̂E(τ) (c.f.[11], [18]).
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Suppose, for our purposes, that the subgroup G of Aut(M) preserves a Hodge
class Ω ∈ H1,1(M ; Z) and also that the G-action lifts to an action on a holo-
morphic line bundle L with c1(L) = Ω. On the other hand, there exist natural
G-actions on the canonical bundle K+1

M := KM and the anticanonical bundle
K−1

M . Let µΩ be the rational number defined in the Introduction.

Thorem 2.1 (c.f. [18]). Define a group homomorphism f̂Ω : G −→ C/(Z+µΩZ)
by

f̂Ω(σ) := (m + 1)
m∑

i=0

(−1)i

(
m
i

)
Scm+1

1
((K−1

M ⊗ Lm−2i)σ)[Mσ]

− (m + 1)
m∑

i=0

(−1)i

(
m
i

)
Scm+1

1
((KM ⊗ Lm−2i)σ)[Mσ]

− mµΩ

m+1∑
i=0

(−1)i

(
m + 1

i

)
Scm+1

1
((Lm+1−2i)σ)[Mσ] .

Then this character f̂Ω is a lift of the Lie algebra character fΩ associated with
the given Kähler class Ω mentioned in the Introduction.

We outline the proof of this theorem for the reader’s convenience. First we
take the derivative of f̂Ω(σt) with respect to t where σt is a flow generated by a
holomorphic vector field. If we use (6.3) in [20], we can see that good cancelations
occur and that the derivative coincides with the Lie algebra character which
obstructs the existence of constant curvature metric in Ω.

Now we wish to write f̂Ω(σ) in terms of fixed point set of σ. From now on we
assume that σ ∈ Aut(M) is a periodic element of order p ≥ 2 and let G be the
cyclic subgroup of Aut(M) generated by σ. Put U := D2×M and Y := S1×M ,
and denote by qD : U −→ D2 and qS : Y −→ S1 the first factor projections, and
by qU : U −→ M and qY : Y −→ M the second factor projections. Then the
cyclic group G acts on U and Y as follows:

σ · (reiθ, z) = (rei(θ−2π/p), σ · z)

for (reiθ, z) ∈ U = D2 ×M . Then the G-action on Y is free and Mσ is identified
with Y/G. Note that the fixed point set of the σk-action on U is contained in
M = {0} × M ⊂ U and coincides with that of the σk-action on M .

Assumption 2.2. (a) There exists a compact 2m+2-dimensional almost com-
plex manifold W with boundary Mσ which is isomorphic to U/G near the
boundary as an almost complex manifold.

(b) The line bundle Lσ = (q∗Y L)/G extends to a smooth complex line bundle
LW on W above.

Note that, since the direct sum of the tangent bundle of Mσ and the trivial
real line bundle has a complex structure, it follows from the result of [17] that
the condition (a) is always satisfied, but the authors do not know if the condition
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(b) is always satisfied. Note also that then K+1
W := KW = ∧m+1T ∗W gives an

extension of (q∗Y KM )/G and K−1
W = ∧m+1TW gives an extension of (q∗Y K−1

M )/G.
Assumption 2.2 is satisfied by a wide class of examples as the following lemma

shows.

Lemma 2.3. Suppose that the fixed point set of σk-action on M is indepen-
dent of k and that every connected component of the fixed point set has a cell
decomposition with no codimension one cells. Then Assumption 2.2 is satisfied.

Proof. The singularities of U/G are cyclic quotient singularities in the normal
directions along the fixed point set of G. Let Nj ⊂ M = {0} × M ⊂ U be a
connected component of the fixed point set and Dj the disk bundle of the normal
bundle of Nj in U with sufficiently small radius with respect to a G-invariant
metric such that Dj ’s are mutually disjoint. Note that each Nj is a G-invariant
retract of Dj . Let Σ be the union of Dj , which is a G-invariant subset of U .
Then G acts freely on U −Σ and hence (q∗UL|U−Σ)/G gives an extension of Lσ on
(U−Σ)/G. On the other hand, Σ/G is the disjoint union of the neighborhoods Vi

of the singular points. Let Ṽi be a resolution of Vi for each i which obviously gives
a resolution W of U/G. Then the G-invariant retractions of Dj give retractions
of Ṽi to the exceptional divisors Ei. To show that Lσ extends over W we have
only to show that every smooth complex line bundle over ∂Ṽi extends to Ṽi.
First note that the group of isomorphism classes of smooth complex line bundles
is isomorphic to the 2-dimensional integral cohomology group. From the exact
sequence

· · · −→ H2(Ṽi; Z) −→ H2(∂Ṽi; Z) −→ H3(Ṽi, ∂Ṽi; Z) −→ · · ·
we have only to show that H3(Ṽi, ∂Ṽi; Z) = 0. But

H3(Ṽi, ∂Ṽi; Z) ∼= H2m−1(Ṽi; Z) ∼= H2m−1(Ei; Z) .

Hence it suffices to show that each Ei has a cell decomposition with no codimen-
sion one cells. Ei is a fibration over the fixed point set with fiber isomorphic to
the exceptional divisor of the resolution for an isolated cyclic quotient singularity,
and thus we need only to see that the exceptional divisor for an isolated cyclic
quotient singularity has no codimension one cells. We embed our situation in a
quotient of n-dimensional complex projective space P

n as follows. Let H be a
hyperplane. Then P

n − H ∼= C
n and we may assume the G is a subgroup of the

torus (C∗)n. Then the singularity is embedded as the origin in C
n/G. This cyclic

quotient singularity is a toric singularity and can be resolved equivariantly, see
e.g. Oda [19]. Let P̃ be the equivariant resolution. Then we apply a theorem of
Bialynicki-Birula [4] (see also Kirwan [14] for a moment map proof) to P̃ and see
that the exceptional divisor, which is an invariant subvariety, can be stratified by
strata isomorphic to the total spaces of vector bundles over components of the
fixed point set. Since the fixed point set is a union of complex submanifolds of
complex codimension at least one, it follows that the exceptional divisor has no
codimension one cells. This completes the proof of the lemma.
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Definition 2.4. Let S(k) be the fixed point set of σk consisting of compact
connected complex submanifolds N of M and ν(N, M) the normal bundle of N
in M . Then ν(N, M) is decomposed into the direct sum of subbundles

ν(N, M) = ⊕jν(N, θj)

where σk acts on ν(N, θj) via multiplication by eiθj . We define the characteristic
class Φ(ν(N, M)) by

Φ(ν(N, M)) =
∏
j

rj∏
k=1

1
1 − e−xk−iθj

∈ H∗(N ; C) (rj = rankC(ν(N, θj)))

where
∏

k(1 + xk) is equal to the total Chern class of ν(N, θj).

Thorem 2.5. Suppose that G is a cyclic group generated by an automorphism
σ of order p and that Assumption 2.2 is satisfied. Then the character f̂Ω(σ) can
be written in terms of the fixed point set of σk as follows. Let α be the primitive
p-th root of unity and assume that σk acts on KM |N via multiplication by αβ

and acts on L|N via multiplication by αγ for β, γ ∈ Z. Then for any integer n
we have

Scm+1
1

((K±1
M ⊗ Ln)σ)[Mσ] =

1
p

p−1∑
k=1

∑
N⊂S(k)

1
1 − αk

(α±β+nγec1(K
±1
M |N)+n(Ω|N)−1)m+1 Td(TN)Φ(ν(N, M))[N ]

Scm+1
1

((Ln)σ)[Mσ] =

1
p

p−1∑
k=1

∑
N⊂S(k)

1
1 − αk

(αnγen(Ω|N) − 1)m+1 Td(TN)Φ(ν(N, M))[N ]

where Td(TN) is the Todd class of TN and [N ] is the fundamental cycle of N .

Proof. We regard U := D2 × M, Y := S1 × M as the spinc-manifolds with
the spinc-structures defined by the U(m)-structure of M and the trivial spinc-
structures of D2, S1 respectively. If we choose G-invariant Hermitian metrics h
and hL of TM and L, then we have the unique G-invariant Hermitian connections,
i.e. type (1, 0) metric connections, ∇ and ∇L of TM and L respectively. We
also give a rotationally symmetric Hermitian metric hD on the complex manifold
D2 such that it is a product metric of S1 × [0, δ) near ∂D2 = S1. Let ∇D be
the G-invariant Hermitian connection of TD2. Then the G-invariant Hermitian
metric hU on U is defined by h and hD. Let ∇U be the G-invariant hU -preserving
type (1, 0) connection of TU , which is the direct sum connection of ∇ and ∇D.
Now let E± be virtual complex line bundles with G-invariant metric connections
defined by

E± = ⊗m+1(K±1
M ⊗ Ln − ε)
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where ε is the trivial complex line bundle with the trivial connection and the
trivial G-action. Then using the spinc-structures, the metrics and the connec-
tions of E±, TU and TY , we can define the spinc-Dirac operators (or Dolbeault
operators)

DU : Γ(S+
U⊗q∗UE±) −→ Γ(S−

U ⊗q∗UE±) , DY : Γ(SY ⊗q∗Y E±) −→ Γ(SY ⊗q∗Y E±)

where S±
U is the half spinor bundles over U and SY = S+

U |Y = S−
U |Y is the

spinor bundle over Y . Then the G-equivariant operator DY naturally defines
a self-adjoint elliptic operator Dσ on Mσ, which is the q∗Y E±/G-valued spinc-
Dirac operator on Mσ. Let η(Dσ) be the eta invariant of Dσ, η(DY , σk) the eta
invariant of DY evaluated at σk and set

ξ(Dσ) :=
η(Dσ) + dim ker(Dσ)

2
, ξ(DY , σk) :=

η(DY , σk) + Tr(σk| ker(DY ))
2

.

Then since DU is expressed as

DU = τ

(
∂

∂u
+ DY

)

on the collar Y × [0, δ) ⊂ U where u is the coordinate of [0, δ) and τ is a bundle
isomorphism, it follows from Theorem(3.10) in [1], Theorem 1.2 in [7], Theo-
rem(4.3), (4.6) in [2] that

ξ(DY ) = ξ(DY , 1) =
∫

U

Ch(q∗UE±) Td(TU) − Index(DU , 1) ,(1)

ξ(DY , σk) =
∑

N⊂S(k)

Ch(E±|N , σk) Td(TN)Φ(ν(N, U))[N ] − Index(DU , σk)(2)

for 1 ≤ k ≤ p−1 where Ch(q∗UE±) is the Chern character form of q∗UE±, Td(TU)
is the Todd form of TU , Ch(E±|N , σk) is the Chern character of E±|N evaluated
at σk and Index(DU , σk) is the index of DU with a certain global boundary
condition evaluated at σk. Then since the connection of q∗UE± is induced from
that of E±, it follows that

Ch(q∗UE±) = q∗UCh(⊗m+1(K±1
M ⊗Ln − ε)) = q∗U (exp(c1(K±1

M ⊗Ln))− 1)m+1 = 0

from the dimension reasons and hence it follows from (1) that

ξ(DY , 1) = −Index(DU , 1) .(3)

Since
∑p

k=1 Tr(σk|V ) ≡ 0 (mod p) for any complex G-module V , we have

p∑
k=1

Index(DU , σk) ≡ 0 (mod p)
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and therefore it follows from (2) , (3) that

(4)
p∑

k=1

ξ(DY , σk) ≡

p−1∑
k=1

∑
N⊂S(k)

Ch(E±|N , σk) Td(TN)Φ(ν(N, U))[N ] (mod p) .

Set U0 := (D2−{0})×M and let qU0 : U0 −→ M be the second factor projection.
Then the connections ∇ and ∇U naturally define connections q∗Y ∇/G of TMσ and
∇U/G of T (U0/G). Moreover the connection ∇L defines connections q∗Y ∇L/G of
Lσ and q∗U0

∇L/G of q∗U0
L/G. Note that the connections q∗Y ∇/G, q∗Y ∇L/G define

a type (1, 0) connections of the line bundles (K±1
M ⊗ Ln)σ = q∗Y (K±1

M ⊗ Ln)/G
for any integer n. The connection q∗Y ∇/G extends to a metric connection of
TW which coincides with ∇U/G near Mσ, and the connection q∗Y ∇L/G extends
to a metric connection of LW which coincides with q∗U0

∇L/G near Mσ. The
connection of TW defines metric connections of K±1

W and the half spinor bundles
S±

W over W with respect to the natural spinc-structure of W . Let

DW : Γ(S+
W ⊗ (⊗m+1(K±1

W ⊗ Ln
W − ε))) −→ Γ(S−

W ⊗ (⊗m+1(K±1
W ⊗ Ln

W − ε)))

be the ⊗m+1(K±1
W ⊗Ln

W − ε)-valued spinc-Dirac operator on W defined by using
the connections defined above. Then as in (1) we have

ξ(Dσ) =
∫

W

Ch(⊗m+1(K±1
W ⊗ Ln

W − ε)) Td(TW ) − Index(DW , 1) .(5)

Now the Dirac operators Dσ, DY split into Dσ = D+
σ ⊕ (D+

σ )∗, DY = D+
Y ⊕

(D+
Y )∗ because the spinc(2m + 1)-structures of Mσ and Y come from the U(m)-

structure of M . Since the dimensions of Mσ and Y are odd and σk (1 ≤ k ≤ p−1)
acts freely on Y , it follows from the result in [2] that

Index(D+
σ ) = dim ker(D+

σ ) − dim ker((D+
σ )∗) = 0 ,

Index(DY , σk) = Tr(σk| ker(D+
Y )) − Tr(σk| ker((D+

Y )∗)) = 0

for any k. Therefore it follows that

1
2

dim ker(Dσ) = dim ker(D+
σ ) ≡ 0 (mod Z) ,

1
p

p∑
k=1

1
2
Tr(σk| ker(DY )) =

1
p

p∑
k=1

Tr(σk| ker(D+
Y )) ≡ 0 (mod Z) .

Hence it follows from (3.6) in [7] that

ξ(Dσ) ≡ 1
2
η(Dσ) =

1
p

p∑
k=1

1
2
η(DY , σk) ≡ 1

p

p∑
k=1

ξ(DY , σk) (mod Z),
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and therefore it follows from (4) , (5) that

Scm+1
1

((K±1
M ⊗ Ln)σ)[Mσ]

= Scm+1
1

(q∗Y (K±1
M ⊗ Ln)/G)[Mσ] = Scm+1

1
((K±1

W ⊗ Ln
W )|∂W )[∂W ]

≡
∫

W

c1(K±1
W ⊗ Ln

W )m+1 =
∫

W

Ch(⊗m+1(K±1
W ⊗ Ln

W − ε)) Td(TW )

≡ ξ(Dσ) ≡ 1
p

p∑
k=1

ξ(DY , σk)

≡ 1
p

p−1∑
k=1

∑
N⊂S(k)

Ch(E±|N , σk) Td(TN)Φ(ν(N, U))[N ]

=
1
p

p−1∑
k=1

∑
N⊂S(k)

(Ch((K±1
M |N ) ⊗ (L|N )n, σk) − 1)m+1 Td(TN)

1
1 − αk

Φ(ν(N, M))[N ]

=
1
p

p−1∑
k=1

∑
N⊂S(k)

1
1 − αk

(α±β+nγec1(K
±1
M |N )+n(Ω|N ) − 1)m+1 Td(TN)Φ(ν(N, M))[N ]

where ≡ denotes the equivalence mod Z. The remaining equality is proved simi-
larly. This completes the proof of Theorem 2.5.

Remark 2.6. Let D : Γ(S+ ⊗E±) −→ Γ(S− ⊗E±) be the spinc-Dirac operator
on M , which is a G-equivariant operator. Then since

Index(D) = Ch(E±) Td(TM)[M ] = c1(K±1
M ⊗ Ln)m+1 Td(TM)[M ] = 0 ,

it follows from the same argument as in [22] that

det(σ|ker(D))/ det(σ|ker(D∗)) = exp
2πi

p

p−1∑
k=1

1
1 − αk

Index(D, σk)

= exp
2πi

p

p−1∑
k=1

∑
N⊂S(k)

1
1 − αk

(α±β+nγec1(K
±1
M |N )+n(Ω|N ) − 1)m+1 Td(TN)Φ(ν(N, M))[N ] .

Hence we can see that

σ → 1
p

p−1∑
k=1

∑
N⊂S(k)

1
1 − αk

(α±β+nγec1(K
±1
M |N )+n(Ω|N ) − 1)m+1 Td(TN)Φ(ν(N, M))[N ]
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defines an additive group character G → C/Z.

3. Example

In this section we compute an example. Notice that our example below satisfies
Assumption 2.2 by virtue of Lemma 2.3. Let M := CP

2 be the 2-dimensional
complex projective space and Ω the positive generator of H2(M ; Z) ∼= Z. Then
Ω = c1(L) where L is the hyperplane bundle over M . For any natural number
p ≥ 2, an automorphism σ of M is defined by

σ : [z0 : z1 : z2] −→ [αz0 : z1 : z2]

where α is the primitive p-th root of unity. This action has a finite order p and
lifts to an action on L. Since σ = expX for the holomorphic vector field X on
M represented by the diagonal matrix with diagonal entries 2πi/p, 0, 0 and Ω
contains a Kähler metric with constant scalar curvature, it follows from Theorem
2.1 that f̂Ω(σ) must vanish. This is also verified by using Theorem 2.5 as follows.

It is clear that the fixed point set N of σk-action is independent of k and
coincides with the disjoint union of the point q = [1 : 0 : 0] and the hyperplane
H = {z0 = 0} , which have cell decomposions with no codimension one cells.
Then σk acts on the normal bundle ν(q, M) via multiplication by α−k and acts
on the normal bundle ν(H, M) = L|H via multiplication by αk. Moreover we
have

σk|(K−1
M |q) = α−2k , σk|(K−1

M |H) = αk , σk|(L|q) = α−k ,

σk|(L|H) = αk , c1(K−1
M |q) = c1(L|q) = 0 , c1(K−1

M |H) = c1(TM |H) = 3x

where x := c1(L|H) is the positive generator of H2(H; Z) = H2(CP
1; Z). Set

ψ(u) = us

(
1 − ut

1 − u

)"

for any integer s, t and any natural number ;. Then since ψ(1) = t ", we have

1
p

p−1∑
k=1

αsk

(
1 − αtk

1 − αk

)"

≡ 1
p

p−1∑
k=1

αsk

(
1 − α−tk

1 − α−k

)"

≡ −t "

p
(mod Z)

because
∑p−1

k=1 αrk ≡ −1 (mod p) for any integer r.



504 AKITO FUTAKI AND KENJI TSUBOI

Now, for any integer n, the following equalities follows from Theorem 2.5.

Sc3
1
((K−1

M ⊗ Ln)σ)[Mσ]

=
1
p

p−1∑
k=1

1
1 − αk

(αk+nke3x+nx − 1)3(1 + x)
1

1 − α−ke−x
[H]

+
1
p

p−1∑
k=1

1
1 − αk

(α−2k−nk − 1)3
(

1
1 − αk

)2

[q]

=
1
p

p−1∑
k=1

(
(α(n+1)k − 1)3 + 3(n + 3)α(n+1)k(α(n+1)k − 1)2x

)

(1 + x)
(
− αk

(αk − 1)2
+

αk

(αk − 1)3
x

)
[H]

+
1
p

p−1∑
k=1

α−3k

(
1 − α−(n+2)k

1 − α−k

)3

= −1
p

p−1∑
k=1

αk(α(n+1)k − 1)
(

1 − α(n+1)k

1 − αk

)2

+
1
p

p−1∑
k=1

αk

(
1 − α(n+1)k

1 − αk

)3

− 1
p

p−1∑
k=1

3(n + 3)α(n+2)k

(
1 − α(n+1)k

1 − αk

)2

+
1
p

p−1∑
k=1

α−3k

(
1 − α−(n+2)k

1 − α−k

)3

≡ 1
p

{
(1 − 1)(n + 1)2 − (n + 1)3 + 3(n + 3)(n + 1)2 − (n + 2)3

}
=

1
p

(n3 + 6n2 + 6n) (mod Z).

Now since KM
∼= (K−1

M )∗ , a similar calculation shows that

Sc3
1
((KM ⊗ Ln)σ)[Mσ]

=
1
p

p−1∑
k=1

1
1 − αk

(α−k+nke−3x+nx − 1)3(1 + x)
1

1 − α−ke−x
[H]

+
1
p

p−1∑
k=1

1
1 − αk

(α2k−nk − 1)3
(

1
1 − αk

)2

[q]

=
1
p

(n3 − 6n2 + 6n) (mod Z) ,
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Sc3
1
((Ln)σ)[Mσ]

=
1
p

p−1∑
k=1

1
1 − αk

(αnkenx − 1)3(1 + x)
1

1 − α−ke−x
[H]

+
1
p

p−1∑
k=1

1
1 − αk

(α−nk−)3
(

1
1 − αk

)2

[q]

=
1
p

n3 (mod Z) .

Hence we have
2∑

i=0

(−1)i

(
2
i

) {
Sc3

1
((K−1

M ⊗ L2−2i)σ)[Mσ] − Sc3
1
((KM ⊗ L2−2i)σ)[Mσ]

}

=
1
p

2∑
i=0

(−1)i

(
2
i

)
12(2 − 2i)2 = 96/p ,

3∑
i=0

(−1)i

(
3
i

) {
Sc3

1
((L3−2i)σ)[Mσ]

}

=
1
p

3∑
i=0

(−1)i

(
3
i

)
(3 − 2i)3 = 48/p .

Now since Ω2 = c1(L)2 is the positive generator of H4(M ; Z), we have

µΩ =
Ω2−1 ∪ c1(M)[M ]

Ω2[M ]
=

Ω2−1 ∪ (3Ω)[M ]
Ω2[M ]

= 3 .

Hence we have

f̂Ω(σ) := 3
2∑

i=0

(−1)i

(
2
i

)
{

Sc3
1
((K−1

M ⊗ L2−2i)σ)[Mσ] − Sc3
1
((KM ⊗ L2−2i)σ)[Mσ]

}

− 2 · 3
3∑

i=0

(−1)i

(
3
i

)
Sc3

1
((L3−2i)σ)[Mσ]

= {3 · 96 − 2 · 3 · 48} /p = 0 .

One can find many examples of computations for the Lie algebra character fΩ

in [15] and could try similar computations for our group character f̂Ω.
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