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INFINITE TOWERS OF TREE LATTICES
LisaA CARBONE AND GABRIEL ROSENBERG

0. Introduction

Let X be a locally finite tree and let G = Aut(X). Then G is naturally a
locally compact group ([BL], Ch.3). A discrete subgroup I' < G is called an
X -lattice if

(1) VolMW\X) = Y Flz|

zeV(I\X)

is finite, and a uniform X -lattice if '\ X is a finite graph, non-uniform otherwise
([BL], Ch.3). Bass and Kulkarni have shown ([BK], (4.10)) that G = Aut(X)
contains a uniform X-lattice if and only if X is the universal covering of a finite
connected graph, or equivalently, that G is unimodular and G\ X is finite. In
this case, we call X a uniform tree.

Following ([BL], (3.5)) we call X rigid if G itself is discrete, and we call
X minimal if G acts minimally on X, that is, there is no proper G-invariant
subtree. If X is uniform then there is always a unique minimal G-invariant
subtree Xg C X ([BL] (5.7), (5.11), (9.7)). We call X wirtually rigid if Xg is
rigid (¢f. ([BL], (3.6)).

Let X be a locally finite tree, and let I' < I be an inclusion of X-lattices.
Then by ([BL], (1.7)) we have:

Vol (T\\ X)
2 Vol (I"\\ X _
2) ol (I"\\X) i
We call an infinite ascending chain
(3) N <Iy<I'g<...

of X-lattices an infinite tower of X -lattices. By (0.2), the lattice inclusions of
(0.3) are of finite index, and Vol (I';\\X) — 0 as i — oc.

The Kazhdan-Margulis property for lattices in Lie groups ([KM]) states that
the covolume of a lattice is bounded away from zero. Hence the existence of
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infinite towers of X-lattices in G = Aut(X) shows that the Kazhdan-Margulis
property is violated for X-lattices.

Bass and Kulkarni have given ([BK], (Sec.7)) several examples of uniform
trees such that G = Aut(X) contains infinite towers of uniform X-lattices. The
second author has extended the results and techniques of Bass-Kulkarni to all
uniform trees that are not rigid ([R]).

Here our main result is that, with one exception (see §5), if G = Aut(X)
contains a non-uniform X-lattice, then G contains an infinite tower of non-
uniform X-lattices.

The authors would like to thank H. Bass for many helpful discussions and
suggestions.

1. The setting

An edge-indexed graph (A,i) consists of an underlying graph A, and an
assignment of a positive integer i(e) > 0 to each oriented edge e € EA. Our
underlying graph A will always be understood to be locally finite. In [BK] and
[BL] one allows i(e) to be any positive cardinal, but our interest here is only in
finite i(e). If i(e) > 1, we call e ramified and unramified otherwise.

Let A = (A, A) be a graph of groups, with underlying graph A, vertex groups
(Ag)aev a, edge groups (A. = Ag)ccpa and monomorphisms ae: Ae — Agye. A
graph of groups A naturally gives rise to an edge-indexed graph I(A) = (A,1)
whose indices are the indices of the edge groups as subgroups of the adjacent
vertex groups: that is, i(e) = [Agye : @eAe), which we assume to be finite, for
all e € FA.

Given an edge-indexed graph (A, i), a graph of groups A such that I(A) =
(A,7) is called a grouping of (A,i). We call A a finite grouping if the vertex
groups A, are finite and a faithful groupilz_g\i A is a faithful graph of groups,
that is, if m1 (A, a) acts faithfully on X = (A, a).

Let A’ and A be groupings of (A,4). Then A’ = (A, A’) is called a full graph
of subgroups of A = (A, A) (as in ([B], (1.14)) if A, < A, for a € A, and for
e € BFA', A, < Ac, and a; = acla,. We further assume that for e € FA’,
with dpe = a, A, N acAe = a AL, that is Al Ja AL — A, /A, is injective,
and hence bijective. This assumption implies that I(A’) = (A4,4), and that
m (A a") <7 (Aa) ([B], (1.14)).

Let (A, i) be an edge-indexed graph. A tower of groupings on (A, 1) is a semi-
infinite sequence (A;);cz., of groupings of (A, i) such that each A, is a full graph
of proper subgroups of A;;;. A tower of faithful groupings induces an infinite
ascending chain of fundamental groups:

(1) 71 (A1, a0) < m1(Ag,a0) < m1(As,a0) <

For an edge e € F'A, define:

(2) Ale) = @
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If v =(eq,...,e,) is a path, set:
A(y) = Aler)...Aleyn).

Definition. An edge-indexed graph (A,i) is called unimodular if A(vy) =1 for
all closed paths v in A.

Now assume that (A, ) is unimodular. Pick a base point ag € V' A, and define,
for a € VA,

Aa

(3) Ny, (a) == A—(: A(7) for any path v from ag to a) € Q.
ao
For e € FA, put
. Nay(9(e))
Noo(e) = TORE

Following ([BL], (2.6)), we say that (A, ) has bounded denominators if
{Ng,(e) | e € EA}

has bounded denominators, that is, if for some integer D > 0, D - N,, takes only
integer values on edges. Since
Aao

Na = —Na )
1 Aay 0

this condition is independant of ag € V A.

Theorem ([BK], (2.4)). An indexed graph (A,i) admits a finite grouping if
and only if (A,1) is unimodular and has bounded demominators. The grouping
can further be taken to be faithful.

As in ([BL], Ch.2) we define the wvolume of an indexed graph (A,i) at a
basepoint ag € VA:

(@ Vol (A1) = 3 a = 3 ()
aEVA(A—aO) ac€VA
Then | Adg |
Vol,, (A,i) = A—alVOIGO(A,z),

([BL], Ch.2) We write Vol (A,i) < oo if Vol,(A,i) < oo for some, and hence
every a € VA.
If A is a finite grouping of (A, %), then we have ([BL], (2.6.15)):

(5) Vol (A) = ’A—1(1|Vola(A, 0,
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which is automatically finite if Vol (A4,7) < oo.

We now describe a method for constructing X-lattices which follows naturally
from the fundamental theory of Bass-Serre ([B], [S]), and was first suggested in
([BK]). We begin with an edge-indexed graph (A,i). Then (A,i) determines
X = (A,1,ap) up to isomorphism ([BL], Ch.2).

We say that (A,7) admits a lattice if (A,i) admits a grouping A such that
m1 (A, ap) is an X-lattice. This happens if and only if (A, ) satisfies:

(U) (A,14) is unimodular, and

(BD) (A,i) has bounded denominators, and
(FV) (A,i) has finite volume.

Assume that (A, ) is unimodular and has bounded denominators (which is
automatic if A if finite). By ([BK], (2.4)) we can find a finite faithful grouping
A of (A,i) and a group I' = 71 (A, ap) acting faithfully on X. Then

(a) T is discrete, since A is a graph of finite groups.
(b) I'is a uniform X -lattice if and only if A is finite.
(c) T is a non-uniform X -lattice if and only if A is infinite, and

(6) Vol (M\\X) = Vol (A)(:= > VL' = |ja|Vola(A,i)) < o0.

Our task is the following: given an edge-indexed graph (A,i) of finite volume,
construct an infinite tower of finite faithful groupings of (A,4). This induces an
infinite tower

<< I'g<...
of X-lattices in Aut(X), for X = (A4,4), with T;)\X =A4,i=1,2,....

An edge e € EA is called separating if A—{e, €} has two connected components
Ap(e) and Aq(e), where Ag(e) and Aj(e) contain dy(e) and 94 (e) respectively.

Let (A,i) be any connected edge-indexed graph. A subset 3 C FA of n > 2
(oriented) edges is called an arithmetic bridge for (A,17) (as in ([C1], Sec. 4)) if:

(1) BNB =@, A— (BUP) has two connected components, Ay and Ay,
(2) For every e € 3, dpe € Ag and Ore € Ay,
(3) There exists an integer d > 1 such that d | i(e) for every e € 3.

Following [BT] we say that (A,1) is discretely ramified if for e € EA
i(e) >1 = i(e) = 2, e is separating, and (Ag(e),) is an unramified tree.

We call (4, 1) a dominant-rooted edge-indexed tree if A is a tree and if there exists
an a € VA such that i(e) = 1 for all edges e € F'A directed towards a. Let (A4,1)
be an edge-indexed graph. We say that (A, 1) is restricted if (A, 1) satisfies any
one of the following conditions:

(DR) (A,4) is discretely ramified, or

(F) (A,14) is a dominant-rooted edge-indexed tree, or
(GS) Ais a tree, and (A, ) contains a prime-prime interval (see [R]) and no
other ramified edges.
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We say that (A,i) is permissible if (A,7) admits a lattice and if (A,d) is not
restricted. We note that an infinite edge-indexed graph (A, ¢) with finite volume
is automatically non-discretely ramified, is not a dominant-rooted tree ([CR2]),
is obviously not (GS) as above, and hence is not restricted.

2. Rooted products of graphs of groups

Given rooted graphs of groups A = (4, A, ag), ag € VA, and B = (B, B, by),
by € VB, we construct a rooted graph of groups C = (C,C,¢cp) = A Xq,—p, B as
follows: we set

c = AUB/(GOZbOZCO).

For a e VA, e € EA, we set
Co :=Au X By, Ce:=Ac X By,
and if a, : A — Ag,e, we set
Ye = Qe X IdeO.
Similarly, for b€ VB, e € EB, we set
Cp = Agy X By, Ce:= Ay, X Be,
and if 3. : Be — Bg,e, We set
Ye = Ida, X [Pe.

If we set (A,i4) = I(A) and (B,i?) = I(B), then we have the ‘rooted union of
edge-indexed graphs’:

(C,i%) = (AU (B,i%)/(ap = by = co),

for ¢y € VC, and clearly C is a grouping of (C,i).
(2.1) Remarks.

(1) The graph of groups C is faithful if and only if A and B are faithful.
In fact, if Ny is the maximal normal subgroup of A, and Np is the
maximal normal subgroup of B, then the maximal normal subgroup of
Cis N, A X NE.

(2) We have

7T1(C,CO) = (Wl(A,aO) X Bbo) *(AaOXBbO) (-Aao X Wl(B,bo)).

(3) If A and B are graphs of finite groups, then so also is C, and

1

1 1

‘Bbo‘ |Aao|
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(2.2) Functoriality.

Suppose that we have groupings A < A’ of an edge-indexed graph (4,44) and
B < B’ of an edge-indexed graph (B,i?), then we get groupings

C=A X ap=bo B < C =A X ao=bg B’
for ag € VA, by € VB of the edge-indexed graph
(C,i€) = (4,i) U (B, i) /(ag = by = co),

for ¢y € VC. In particular, for an edge e € VA with initial vertex a € VA,

’
anIdB/

I / bo / /
Ae X Bbo - Aa x Bbo
< < < <

anIdeO

Ae X Bbo — Aa X Bbo
commutes, and similarly in B.

(2.3) Corollary. A tower Ay < Ay < Az < ... yields a tower
Al Xa():bo ]B S AQ Xa():bo ]B S AS XaQ:bO B S

Since a unimodular edge-indexed graph with bounded denominators admits
a finite faithful grouping, we can apply the above corollary repeatedly to obtain
the following lemma.

(2.4) Lemma. Let (A,i) be an edge-indexed graph and let (Ag,i) be a core
subgraph such that (A, 1) is obtained from (Ag,1) by attaching to finitely many
vertices ay,...,a, € VAy, rooted edge-indexed graphs (A;,ij,a;), j =1,...,n
respectively. Suppose that (Ag,i) admits an infinite ascending chain of finite
faithful groupings of finite volume. Suppose that each of the (A;,4;), j=1,...,n
are unimodular, have finite volume and bounded denominators. Then (A,i) ad-
mits an infinite tower of finite faithful groupings of finite volume.

3. Infinite towers of uniform tree lattices

In [R], the second author proved the following:

(3.1) Theorem ([R]). Let (A,i) be a finite permissible edge-indexed graph.
Then (A, i) admits an infinite tower of finite faithful groupings.

The proof of Theorem (3.1) generalizes the techniques of Bass-Kulkarni ([BK])
for constructing towers of groupings on certain fundamental examples, and uses
certain constructions with edge-indexed graphs to extend to a more general
setting.

Theorem (3.1) yields the following:
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(3.2) Theorem ([R]). Let X be a locally finite tree. The following conditions
are equivalent:

(a) X is uniform and not rigid.
(b) X is the universal cover of a finite permissible edge-indexed graph.
(c¢) Aut(X) contains an infinite ascending chain

I <Ig<I'g<---

of uniform X -lattices.
(d) The set of uniform covolumes

{Vol(T\\X) | T is a uniform X -lattice} C Qsq
18 not bounded away from zero.

This generalizes Theorem 7.1(a) of [BK] which states the result for homoge-
neous trees.

4. Infinite towers of non-uniform X-lattices with quotient a tree

The techniques described in §3 extend to certain infinite edge-indexed graphs.
We have the following;:

(4.1) Theorem. Let (A,i) be an edge-indexed graph that admits a lattice, and
which is infinite, hence permissible. Assume that (A,i) is a tree, but is not
dominant-end-rooted. Then (A,i) admits an infinite tower of finite faithful
groupings.

Except for the case that (A,i) is a dominant-end-rooted edge-indexed tree
(similar to a dominant-rooted edge-indexed tree as defined on page 4, except
that an end takes the role given to the root vertex before, that is, i(e)=1 for
all edges directed towards that end as opposed to the root vertex (see [CR2] for
more details)), the assumption that (A,7) is an infinite permissible tree implies
the existence of a finite permissible ‘core’ graph (A, ) which is an edge-indexed
path of length n > 1. By Theorem (3.1), (Ao, ¢) admits an infinite tower of finite
faithful groupings, and we may then apply Lemma (2.4) to extend the tower of
groupings to (A,1).

If (A,i) is a dominant-end-rooted edge-indexed tree, then (A,7) does not
contain a finite permissible core. We know that in this case, the set of covolumes

—~

of non-uniform lattices in Aut(X), X = (A,1), is not bounded away from zero,
however our techniques do not suffice to produce a tower of groupings on (A, ).

—

(4.2) Theorem. Let (A,i) be as in Theorem (4.1). Let X = (A,i). Then there
s an infinite ascending chain

F1<F2<F3<"’
of non-uniform X -lattices in Aut(X). Hence Vol(T;\\X) — 0 as i — co.

—_~—

In Theorems (4.1), and (4.2), the covering tree X = (A, 7) may be uniform or
not.
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5. Infinite towers of non-uniform X-lattices

We have the following:

(5.1) Theorem ([R]). Let (A,i) be a permissible edge-indexed graph. Suppose
(A,i) contains an arithmetic bridge with n > 2 edges. Then (A,i) admits an
infinite tower of finite faithful groupings.

Concerning existence of arithmetic bridges, we have the following:
(5.2) Theorem ([C1], [CR1]). Let (A,i) be a unimodular edge-indexed graph.

Let e € EA be a ramified edge such that A(e) is not an integer. If e is not
separating, then e is contained in an arithmetic bridge with n > 2 edges.

Combining the results of §2, §4 and the above, we have:

(5.3) Theorem. Let (A,i) be a permissible edge-indexed graph that is not a
dominant-end-rooted edge-indexed tree. Then (A,i) admits an infinite tower of
finite faithful groupings.

A corollary of Theorem (5.3) is the following:
(5.4) Theorem. Let X be a locally finite tree. If Aut(X) contains a non-

uniform X -lattice I', and X is not the universal cover of a dominant-end-rooted
edge-indexed tree, then Aut(X) contains an infinite tower

' <Iy<Ig <

of non-uniform X -lattices. Hence Vol(I';\\X) — 0 as i — 0.

6. Existence of non-uniform X-lattices

By Theorem (5.4), the question of existence of infinite towers of non-uniform
X-lattices reduces to the question of existence of non-uniform X-lattices.

To outline the results on existence of non-uniform X-lattices, we make the
following definition. Let X be a locally finite tree, G = Aut(X), and let pu be
a (left) Haar measure on G. Suppose that G is unimodular. Then u(G,) is
constant on G-orbits, so we can define ([BL], (1.5)):

WX = Y

2EV(G\X) wGa)

We have the ‘Lattice existence theorem’:

(6.1) Theorem ([BCR], (0.2)). Let X be a locally finite tree, let G = Aut(X),
and let p be a (left) Haar measure on G. The following conditions are equiva-
lent:

(a) G contains an X -lattice T.
(b) (U) G is unimodular, and
(FV) w(G\\X) < oo,

In particular, we have the following theorem, which together with
Bass-Kulkarni’s ‘Uniform existence theorem’ ([BK], (4.10)) gives Theorem (6.1):
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(6.2) Theorem ([BCR], (0.5)). Let X be a locally finite tree, let G = Aut(X),
and let u be a (left) Haar measure on G. Assume that:

(U) G is unimodular,

(FV) pu(G\\X) < oo, and

(INF) G\X is infinite.
Then G contains a (necessarily non-uniform) X -lattice T'.

For uniform trees, we have the following;:

(6.3) Theorem ([C1], [C2]). If X is uniform and not virtually rigid then G
contains a non-uniform X -lattice I'.

(B]
[BCR]

[CR1]
[CR2]
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