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GAUGE INTERPRETATION OF CHARACTERISTIC CLASSES

M. Castrillón López and J. Muñoz Masqué

Abstract. It is proved that characteristic forms generate, over Ω•(M), the alge-
bra of differential forms on the bundle of connections p : C(P ) → M of a principal
G-bundle π : P → M which are invariant under the natural representation of the
gauge algebra of P on connections. The invariance under the Lie algebra of all
infinitesimal automorphisms of P is also analyzed.

1. Introduction

Let p : C(P ) → M be the bundle of connections of a principal G-bundle
π : P → M . Let autP be the Lie algebra of all G-invariant vector fields on
P . We think of autP as being the “infinitesimal autmorphisms” of P . The
gauge algebra of P , denoted by gauP , is the ideal of autP defined by the
π-vertical vector fields. As the automorphisms of P acts on connections by
pulling back conection forms, we obtain a natural Lie algebra homomorphism
autP → X(C(P )), X �→ XC . Then, a differential form Ωr on C(P ) is said to be
autP -invariant (resp. gauge invariant) if LXC

Ωr = 0, for every X ∈ autP (resp.
for every X ∈ gauP ). The group G acts on J1(P ) by setting j1

xs · g = j1
x(Rg ◦ s)

and there is a natural identification J1(P )/G ∼= C(P ) so that the quotient
mapping q : J1(P ) → C(P ) is a principal G-bundle. The canonical contact form
θ on J1(P ) can be considered as a connection form on the principal bundle q
(for the details, for example see [4]). Let Θ be its curvature form. As is well
known (e.g., see [9, XII.Th.1.1.(1)]), for every Weil polynomial f the form f(Θ)
is projectable onto C(P ). We call each of such forms a “characteristic form” as
they induce the characteristic classes of P . In fact, as f(Θ) is a closed 2d-form,
with d = deg f , and p : C(P ) → M is an affine bundle, the form f(Θ) defines
a cohomology class in H2d (C(P ); R) ∼= H2d(M ; R). This argument provides a
simple proof of Weil’s homomorphism theorem [9, Chapter XII, §1], since the
independence of the cohomology class of σ∗

Γf(Θ) with respect to the choice of
Γ, is now evident: This an interesting consequence of working on the bundle of
connections.

The main goal of this paper is to prove the following theorem:
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Theorem 1. If G is connected, for every gauge invariant differential form Ωr on
C(P ) there exists differential forms ω1, . . . , ωk and Weil polynomials f1, . . . , fk

such that Ωr = p∗(ω1) ∧ f1(Θ) + . . . + p∗(ωk) ∧ fk(Θ).

For a Weil polynomial we mean an element of the symmetric algebra of g∗(g being
the Lie algebra of G) which is invariant under the coadjoint representation. As
a consequence of the above theorem we obtain

Corollary 1. With the same assumptions as in Theorem 1, a differential form
on C(P ) is autP -invariant if and only if it is of the form f(Θ) where f is a Weil
polynomial. Hence every autP -invariant differential form on C(P ) is closed.

If the Weil algebra is finitely generated, i.e., S•(g∗)G = R [f1, . . . , fl] (for ex-
ample, this is the case for a complex semisimple Lie algebra according to a result
by Chevalley), then gauge invariant forms are generated by f1(Θ), . . . , fl(Θ) so
that these forms are a natural basis of characteristic forms. The standard ex-
ample is G = U(n) where fi are the coefficients of the characteristic polynomial
and fi(Θ) can be considered as universal Chern forms.

As an example, let us consider a principal SU(2)-bundle π : P → M . In
this case the Weil polynomials are generated by the determinant det : su(2) →
R (e.g. see [9, XII, Theorem 2.5]). We use −i/2 times the Pauli matrices
as a basis B1, B2, B3 of su(2). If P is trivial over U ⊆ M , for every B ∈
su (2) we define a one-parameter group of gauge transformations on U by setting
ϕB

t (x, g) = (x, exp (tB) · g). Let B̃ be the corresponding infinitesimal generator.
Then, B̃1, B̃2, B̃3 is a basis of adπ−1 (U). Let σΓ : M → C(P ) be the section
induced by a connection Γ on P (see §2.2 below). There exist unique functions
Aa

j (Γ) ∈ C∞ (U) such that σΓ(∂/∂xj) = ∂/∂xj − Aa
j (Γ) B̃a, 1 ≤ j ≤ n. The

functions (xj ;Aa
j ), 1 ≤ j ≤ n, 1 ≤ a ≤ 3, induce a natural coordinate system on

p−1 (U) = C(π−1U). As a computation shows, the expression of det(Θ) in these
coordinates is

det(Θ) =
1
4
S123

(
dA1

i ∧ dxi ∧ dA1
j ∧ dxj + 2A2

jA
3
kdxj ∧ dxk ∧ dA1

i ∧ dxi
)
,

where S123 denotes cyclic sum with respect to the three indices 1, 2, 3, and
we have Igau P = p∗Ω•(M) [det(Θ)], Iaut P = R [det(Θ)] (see §3 for notations).
Moreover, the cohomology class of det(Θ) in H4 (C (P ) ; R) coincides with −4π2

times p∗ (c2 (P )), where c2 (P ) stands for the second Chern class of P .
Similarly, for a principal U(2)-bundle we have Igau P = p∗Ω•(M) [tr(Θ),

det(Θ)], Iaut P = R [tr(Θ),det(Θ)], as the Weil algebra is generated by the
trace and the determinant in this case.

Let us consider the general case again. For every Weil polynomial f ∈ S•(g∗)G

we have σ∗
Γ (f(Θ)) = f (ΩΓ), where ΩΓ denotes the curvature form of Γ but the

form f(Θ) carries more information than the set of forms f (ΩΓ). For example
if dimM = n ≤ 3 and deg f = d ≥ 2, then the form f (ΩΓ) on M vanishes
identically for every connection Γ. Nevertheless, if d ≤ m + 1, m = dimG, the
form f(Θ) does not vanish in general as it is a differential form of degree 2d
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on a manifold of dimension n(m + 1) ≥ 2(m + 1). In fact, if G = SU(2) and
dimM = n ≤ 3, then σ∗

Γ det(Θ) = 0 for every connection Γ but det(Θ) does not
vanish obviously.

The first motivation for the previous results was the geometric formulation of
Utiyama’s theorem (e.g. see [2], [3], [5]), an outstanding version of the seminal
work by Utiyama on minimal coupling. This version classifies the Lagrangian
densities on the bundle of connections of a principal bundle, which are invariant
under the gauge algebra representation. Because of the role that Utiyama’s result
has played in gauge theories, it seems of interest to ask for invariant differential
forms of arbitrary degree, not only under the gauge group but also under the
group of all automorphisms of the given bundle on a purely geometric setting.

The specific link between Theorem 1 and Utiyama’s classification is as follows.
If Ωn is a gauge invariant n-form on C(P ), then the horizontal n-form that Ωn

induces on J1(C(P )) is a Lagrangian density that remains invariant under the
gauge group in the Utiyama sense.

Moreover, Corollary 1 can be useful in classifying variationally trivial natural
Lagrangians on the bundle of connections. Remark that, unlike gauge group,
invariance under the full Lie algebra of infinitesimal automorphisms leads one
to variationally trivial densities: Its action functional is constant and produces
some characteristic numbers of the bundle.

Finally, we should remark that Theorem 1 and its corollaries can be used as a
general geometric setting in studying characteristic classes from the differential
point of view, and more concretely in dealing with invariant theorems like Atiyah-
Singer index theorem and Gilkey’s results [6] on the subject.

2. Preliminaries

2.1. Principal bundle automorphisms. Let π : P → M be a principal bun-
dle with structure group a Lie group G. An automorphism of π : P → M is
a diffeomorphism Φ: P → P satisfying Φ (u · g) = Φ (u) · g, ∀u ∈ P , ∀g ∈ G.
The set of all automorphisms of P is a group under the composition of maps
which will be denoted by AutP . An automorphism Φ ∈ AutP induces a unique
diffeomorphism φ : M → M such that π ◦ Φ = φ ◦ π. If φ = idM , then Φ is said
to be a gauge transformation (cf. [3, 3.2.1], [7, III.35]). The set of all gauge
transformations is a subgroup GauP ⊂ AutP , which is called the gauge group.
Let Rg : P → P be the right translation by g ∈ G. A vector field X ∈ X (P ) is
said to be G-invariant if Rg · X = X, ∀g ∈ G. If Φt is the flow of X, then X
is G-invariant if and only if Φt ∈ AutP , ∀t ∈ R. Because of this we think of
G-invariant vector fields as being the “Lie algebra” of the automorphism group
AutP and hence we denote the Lie subalgebra of G-invariant vector fields on
P by autP ⊂ X (P ). Each G-invariant vector field on P is π-projectable. A π-
vertical vector field X ∈ X (P ) is G-invariant if and only if Φt ∈ GauP , ∀t ∈ R.
Accordingly, the ideal of all π-vertical G-invariant vector fields on P , called the
gauge algebra of P , is denoted by gauP ⊂ autP .
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2.2. Bundle of connections. The group G acts on T (P ) by setting X · g =
(Rg)∗ (X), ∀X ∈ T (P ), ∀g ∈ G. The quotient T (P )/G exists and is endowed
with a vector bundle structure over M whose global sections can be naturally
identified with autP ; i.e., autP ∼= Γ (M, T (P )/G). The gauge algebra of P
can be identified with the global sections of the adjoint bundle; i.e., the bundle
πg : adP → M associated to P by the adjoint representation of G on its Lie
algebra g (cf. [7, III.35], [9, I.Proposition 5.4]); that is, gauP ∼= Γ(M, adP ).
Hence we obtain an exact sequence of vector bundles over M (the so-called
Atiyah sequence, [1, Theorem 1]),

0 → adP → T (P )/G
π∗−→ TM → 0.(2.1)

The bundle of splittings of the sequence (2.1) is denoted by p : C (P ) → M and it
is called the bundle of connections of P (cf. [5, Definition 4.5]), as connections on
P can be identified with the global sections of p : C (P ) → M . If Γ is a connection
on P and X∗ ∈ X (P ) is the horizontal lift (with respect to Γ) of X ∈ X (M)
(cf. [9, Ch.II,§1]), then the corresponding splitting is given by TM → T (P )/G,
X �→ X∗. We denote by σΓ : M → C (P ) the section of the bundle of connections
tautologically induced by a connection Γ. We recall that C (P ) is an affine bundle
modelled over the vector bundle Hom (TM, adP ) � T ∗M ⊗ adP .

2.3. Another construction of C(P ). Let π1 : J1P → M be the 1-jet bundle
of local sections of π : P → M . The group structure G acts (on the right) on J1P
by the formula j1

xs · g = j1
x (Rg ◦ s), j1

xs ∈ J1P , g ∈ G. The quotient
(
J1P

)
/G

exists as a fibred differentiable manifold over M and can be identified with the
bundle of connections. This fact is also used in order to define C (P ) (e.g., see
[2], [8]). This identification is as follows. Each local section s defines a retract
Γs(x) : Ts(x)P → Vs(x)P = ker (π∗)s(x) of the inclusion Vs(x)P ⊂ Ts(x)P by setting
Γs(x) (X) = X−s∗π∗ (X). For every u ∈ π−1(x) there exists a unique g ∈ G such
that u = s(x) · g and we define Γu : TuP → VuP as Γu = (Rg)∗ ◦Γs(x) ◦ (Rg−1)∗.
In this way we obtain an “element of connection Γ at x”; that is, an element of
C (P ) which only depends on j1

xs. Hence we define

q : J1P → C (P ) , q(j1
xs) = Γ.(2.2)

It is not difficult to prove that q is a surjective submersion whose fibres are the
orbits of G; in other words, q : J1P → C (P ) is a principal G-bundle.

3. Invariance on C(P )

The group AutP acts (on the left) on connections by Γ �→ Γ′ = Φ (Γ) for
every Φ ∈ AutP , where Γ′ is the connection corresponding to the connection
form ωΓ′ = (Φ−1)∗ωΓ (cf. [9, II.Proposition 6.2-(b)]). If Ψ ∈ AutP , then
(Ψ ◦ Φ) (Γ) = Ψ (Φ (Γ)). Furthermore, for every Φ ∈ AutP there exists a unique
diffeomorphism ΦC : C (P ) → C (P ) such that p◦ΦC = φ◦p, where φ : M → M
is the diffeomorphism induced from Φ, and ΦC ◦σΓ = σΦ(Γ), for every connection
Γ on P . In this way we obtain a group homomorphism AutP → Diff C (P ). If



GAUGE INTERPRETATION OF CHARACTERISTIC CLASSES 461

Φt is the flow of a G-invariant vector field X ∈ autP , then (Φt)C is a one-
parameter group on C (P ) and the corresponding infinitesimal generator will be
denoted by XC . In this way we obtain a Lie algebra homomorphism

autP → X (C (P )) , X �→ XC .(3.1)

Notice that X and XC both are projectable onto the same vector field of M .
A differential form ωr on C (P ) of degree r = 0, . . . , n(m + 1) = dimC (P ),

with n = dimM , m = dimG, is said to be gauP -invariant (resp. autP -
invariant) if for every X ∈ gauP (resp. for every X ∈ autP ) we have LXC

ωr =
0. Usually, gauP -invariant differential forms are called gauge invariant forms.
We denote by Igau P (resp. by Iaut P ) the set of gauP -invariant differential
forms (resp. autP -invariant differential forms). Notice that Igau P is a Z-graded
algebra over Ω•(M) and Iaut P ⊂ Igau P is a subalgebra.

4. Invariance on J1(P )

4.1. Infinitesimal contact transformations. Let X be a π-projectable vec-
tor field on P and let X ′ be its projection onto M . If we denote by Φt, φt the
flows of X, X ′, respectively, then a flow Φ(1)

t can be defined on J1P by setting

Φ(1)
t

(
j1
xs

)
= j1

φt(x) (Φt ◦ s ◦ φ−t) .

If X is π-vertical (i.e., X ′ = 0 or even φt = idM ) then Φ(1)
t = J1(Φt). We

denote by X(1) the infinitesimal generator of the flow Φ(1)
t which is called the

infinitesimal contact transformation associated to X. We remark that the map-
ping X �→ X(1) is a Lie algebra monomorphism and that X(1) is π10-projectable
onto X, where π10 : J1P → P is the canonical projection.

Proposition 1. For every Φ ∈ AutP we have q ◦ Φ(1) = ΦC ◦ q (cf. (2.2)).
Accordingly, for every X ∈ autP the vector field X(1) is q-projectable and its
projection is XC (cf. (3.1)).

4.2. The connection form on J1P . We define a g-valued 1-form θ on J1P
as follows. If B∗ ∈ X(P ) is the fundamental vector field associated to B ∈ g (cf.
[9, I.5]) we have an isomorphism P × g → V P given by (u, B) �→ B∗

u. For every
Y ∈ Tj1

xs(J1P ) we have q(j1
xs)((π10)∗Y ) ∈ Vs(x)P (cf. (2.2)). Accordingly, there

exists a unique B ∈ g such that q(j1
xs)((π10)∗Y ) = B∗

s(x). We set θ(Y ) = B.
Then, we have θ = θa⊗Ba, where θa, 1 ≤ a ≤ m, are global ordinary 1-forms on
J1P and B1, . . . , Bm is a basis of g. Let (xj , ya, ya

j ) be the coordinates on J1P

induced from a fibred coordinate system (xj , ya) for the projection π : P → M .
It is not difficult to see that the forms θ1, . . . , θm span the same differential
system than the standard contact forms ϑa = dya −ya

j dxj , a = 1, . . . , m. Hence
(j1s)∗θa = 0 for every local section s.

Proposition 2. The g-valued 1-form θ enjoys the following properties:
(1) For every Φ ∈ GauP , we have J1(Φ)∗θ = θ.
(2) For every g ∈ G, we have R∗

gθ = Adg−1 ◦ θ.
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(3) For every B ∈ g, let B• be the fundamental vector field associated to B
under the action of G on J1P . Then LB•θ = [θ, B].

(4) For every B ∈ g, we have θ(B•) = B. Hence θ is a connection form on
the principal G-bundle q : J1P → C (P ).

Proof. (1) For every Y ∈ Tj1
xs

(
J1P

)
we have

(
J1(Φ)∗θ

)
(Y ) = θ

(
J1(Φ)∗Y

)
and

(π10)∗
(
J1(Φ)

)
∗ Y =

(
π10 ◦ J1(Φ)

)
∗ Y = (Φ ◦ π10)∗ Y = Φ∗ ((π10)∗ Y ). Hence

θ
(
J1(Φ)∗Y

)
= C, where C ∈ g is the element determined by the condition

Φ∗ [(π10)∗ Y − s∗π∗ (π10)∗ Y ] = C∗
Φ(s(x)).

Let B ∈ g be the vector defined by B∗
s(x) = (π10)∗ Y − s∗π∗ (π10)∗ Y . Hence

θ(Y ) = B, and we have C∗
Φ(s(x)) = Φ∗B∗

s(x) = B∗
Φ(s(x)).

(2) We have

(π10)∗ J1(Rg)∗Y − (Rg ◦ s)∗π∗ (π10)∗ J1(Rg)∗Y = (Rg)∗ (π10)∗ Y

− (Rg ◦ s)∗π∗(Rg)∗ (π10)∗ Y = (Rg)∗ [(π10)∗ Y − s∗π∗ (π10)∗ Y ] = (Rg)∗B∗
s(x)

=
(
Adg−1B

)∗
.

Hence
(
J1(Rg)∗θ

)
(Y ) =

(
Adg−1 ◦ θ

)
(Y ).

(3) It follows from (2) taking into account that the flow of B• is J1
(
Rexp(tB)

)
.

(4) It follows from the very definition of θ, taking into account that B• is π10-
projectable onto B∗.

4.3. Gauge forms on J1P . A differential form ωr on J1P is said to be gauge
invariant if LX(1)ωr = 0 for all X ∈ gauP .

Remark 1. From Proposition 2–(1) it follows that the forms θa are gauge in-
variant. Hence the components of the curvature form Θ = Θa ⊗ Ba of θ, are
also gauge invariant as Θa = dθa + 1

2ca
ijθ

i ∧ θj .

Theorem 2. The algebra of gauge invariant forms on J1P is generated by the
forms (θa,Θa), 1 ≤ a ≤ m = dimG, over π∗

1Ω•(M).

Proof. Set A′(U) = π∗
1Ω•(U)[θa,Θa], 1 ≤ a ≤ m, for every open subset U ⊆ M .

Let A(U) be the algebra of gauge invariant forms on J1(π−1U). From Remark
1, we have A′(U) ⊆ A(U). As A′ and A are sheaves of algebras over M , it
suffices to prove that A′(U) = A(U) for every small enough U . Hence we can
assume that P is trivial, i.e., P = M × G.

Lemma 1. Let Ωr be a gauge invariant form on J1P and let s0 : M → P be
the unit section: s0(x) = (x, 1), ∀x ∈ M . If (Ωr)j1

xs0 ∈ A′
j1
xs0

,∀x ∈ M , then
(Ωr)j1

xs ∈ A′
j1
xs, for every local section s ofP .

Proof of Lemma 1. Set s(x) = (x, ψ(x)), ψ : M → G being a differentiable
mapping and let Φ be the gauge transformation given by Φ(x, g) = (x, ψ(x)g).
We have Φ ◦ s0 = s, and since G is connected there exists a one parameter
group of gauge transformations Φt such that Φ1 = Φ. Let X be the infinitesimal
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generator of Φt. As LX(1)Ωr = 0, we have J1(Φt)∗Ωr = Ωr, ∀t ∈ R; in particular
for t = 1. Then we have

(Ωr)j1
xs = J1(Φ−1)∗((Ωr)j1

xs0
),(4.1)

and it suffices to take into account that J1(Φ−1)∗A′
j1
xs0

= A′
j1
xs, in order to finish

the proof of the lemma.

According to the lemma, we only need to prove that every gauge invariant
form Ωr belongs to A′ along the section j1s0.

Let
(
y1, . . . , ym

)
be the normal coordinates on a neighbourhood of the unit

in G associated with the basis B1, . . . , Bm of g and let (xj , yi; yi
j), 1 ≤ i ≤ m,

1 ≤ j ≤ n, be the coordinate system induced from (xj , yi) on J1(M, G); i.e.,
yi

j(j
1
xs) = (∂(yi ◦ s)/∂xj)(x). Let us compute the local expression of the forms

θa, 1 ≤ a ≤ m. As they are contact forms we have θa = fa
i

(
dyi − yi

jdxj
)
, where

the functions fa
i are seen to be given by fa

i = (F−1)a
i , F = (F a

i ) being the
matrix defined by

F a
i =

∑
α∈Nm

Ca
α(i)(y

1)α1 · · · (ym)αm ,

with α = (α1, . . . , αm) ∈ Nm, (i) = (0, . . . , 0,
(i

1, 0, . . . , 0), and Ca
αβ are the

coefficients in the Baker-Campbell-Hausdorff formula relative to the normal co-
ordinates chosen (cf. [11, 2.15]). Furthermore, we have

fa
i (j1

xs0) = δa
i ,

(
∂fa

i /∂yj
)
(j1

xs0) =
1
2
ca
ij , [Bi, Bj ] = ca

ijBa.

Hence

(θa)j1
xs0 =

(
dyi

)
j1
xs0

, (dθa)j1
xs0 =

(
dxj ∧ dya

j +
1
2
ca
ijdyj ∧ dyi

)
j1
xs0

,(4.2)

as ya(j1
xs0) = ya

j (j1
xs0) = 0. Taking into account that Θa = dθa + 1

2ca
ijθ

i ∧ θj ,
we obtain

(Θa)j1
xs0

=
(
dxj ∧ dya

j

)
j1
xs0

.(4.3)

Accordingly, we only need to prove that a gauge invariant form Ωr can be written
as a polynomial in θa,Θa with coefficients in π∗

1Ω•(M) along the unit section.
First, we calculate the local expression of X(1) for a given gauge field

X = Ci
(b)αλb

(
y1

)α1 · · · (ym)αm
∂

∂yi
,

infinitesimal generator of the flow Φt(x, g) = (x, exp(tB(x))·g), where B = λiBi,
λi ∈ C∞(U). As standard jet prolongation formulas show (e.g. see [10, §4.4]),
by setting yα =

(
y1

)α1 · · · (ym)αm , we have

X(1) = Ci
(b)αλbyα ∂

∂yi
+ Ci

(b)α

(
∂λb

∂xj
yα + λbαhyα−(h)yh

j

)
∂

∂yi
j

.
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Moreover, we have

Ωr = fHIJdxH ∧ dyI ∧
(
dy1

1

)j1
1 ∧ . . . ∧ (dym

n )jm
n , fHIJ ∈ C∞ (

J1
(
π−1U

))
,

with

dxH =
(
dx1

)h1 ∧ . . . ∧ (dxn)hn , dyI =
(
dy1

)i1 ∧ . . . ∧ (dym)im ,

where H = (h1, . . . , hn) ∈ {0, 1}n, I = (i1, . . . , im) ∈ {0, 1}m, J = (j1
1 , . . . , jm

n )
∈ {0, 1}mn are Boolean indices such that |H| + |I| + |J | = r, |H| being the sum
h1 + . . . + hn taken in N, and similarly for |I|, |J |.

Let us fix an arbitrary point x0 ∈ U and an index d = 1, . . . , n. The invariance
condition (i.e., (LX(1)Ωr)j1

x0
s0

= 0) for

λb =
1
2
δ1
b (xd − xd(x0))2,(4.4)

yields

0 =
(
fHIJdxH ∧ dyI ∧

(
dy1

1

)j1
1 ∧ . . . ∧

(
dy1

d−1

)j1
d−1 ∧ (dxd)j1

d∧
(
dy1

d+1

)j1
d+1 ∧ . . . ∧ (dym

n )jm
n

)
j1
x0

s0

.

Hence if hd = 0 and j1
d = 1, then fHIJ(j1

x0
s0) = 0. As x0 is arbitrary, we

conclude that fHIJ |j1s0 = 0 whenever an index d exists such that hd = 0,
j1
d = 1. Similarly, for

λb = δ1
b (x1 − x1(x0))(xd − xd(x0)), 2 ≤ d ≤ n,(4.5)

we obtain

0 =
(

fHIJdxH ∧ dyI ∧
(
dxd

)j1
1 ∧

(
dy1

2

)j1
2 ∧ . . . ∧

(
dy1

d−1

)jm
n +

fHIJdxH ∧ dyI ∧
(
dy1

1

)j1
1 ∧ . . . ∧

(
dy1

d−1

)j1
d−1 ∧ (dx1)j1

d ∧
(
dy1

d+1

)j1
d+1 ∧

. . . ∧ (dym
n )jm

n

)
j1
x0

s0

.

Hence if J = (1, j1
2 , . . . , j1

d−1, 0, j1
d+1, . . . , jm

n ), J̃ = (0, j1
2 , . . . , j1

d−1, 1,

j1
d+1, . . . , jm

n ) then fHIJ(j1
x0

s0) = fHIJ̃(j1
x0

s0). Accordingly, if (Ωr)|j1s0 con-
tains a summand of the form (ωr−2∧dxd∧dy1

d)|j1s0 , where d = 1, . . . , n is an ar-
bitrary fixed index, then (Ωr)|j1s0 contains the summand (ωr−2∧dxj ∧dy1

j )|j1s0 .
Substituting i = 2, . . . , m succesively for the index 1 in (4.4), (4.5) and recalling
the formulas (4.2), (4.3) we have

(Ωr)|j1s0 =(
fHIj1,... ,jmdxH ∧ (θ1)i1 ∧ . . . ∧ (θm)im ∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm

)
|j1s0 .
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5. Proof of Theorem 1

According to Proposition 1, a differential form Ωr on C(P ) is gauge invariant
if and only if q∗Ωr is gauge invariant on J1P . Moreover, as G is connected a
differential form Ξr on J1P is q-projectable onto C(P ) if and only if

1) iB•Ξr = 0, 2) LB•Ξr = 0, ∀B ∈ g.(5.1)

Hence by virtue of Theorem 2, Igau P is identified with the subalgebra of q-
projectable forms in the algebra spanned by {θa,Θa}1≤a≤m over π∗

1Ω•(M). Let

Ξr = ωI,j1,... ,jm
∧ (θ1)i1 ∧ . . . ∧ (θm)im ∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm ,

be a gauge invariant form on J1P , with ωI,j1,... ,jm
∈ π∗

1Ωr−|I|−2j(M), j =
j1 + . . . + jm. By imposing condition 1) in the formula (5.1) and taking into
account item (4) in Proposition 2 and that iB•Θ = 0 as Θ is a horizontal form,
we obtain

0 = iB•
h
Ξr = (−1)r−|I|−2j+i1+...+ih−1ωI,j1,... ,jm

∧ (θ1)i1 ∧ . . . ∧ (̂θh)ih ∧ . . .

∧ (θm)im ∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm .

Hence ωI,j1,... ,jm
= 0 for |I| > 0. Therefore we can rewrite Ξr as follows:

Ξr = ω0,j1,... ,jm
∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm .

Let π∗
1Ω•(M) [Θ] =π∗

1Ω•(M)
[
Θ1, . . . ,Θm

]
be the algebra of polynomials in the

components of the curvature form with coefficients in π∗
1Ω•(M) and let

E : π∗
1Ω•(M) ⊗ S• (g∗) → π∗

1Ω•(M) [Θ]

be the unique R-linear mapping such that E (ω ⊗ f) = ω ∧ f(Θ) for all ω ∈
π∗

1Ω•(M), f ∈ S• (g∗), where S• (g∗) denotes the symmetric algebra of g∗. The
group G acts on the right on π∗

1Ω•(M) ⊗ S• (g∗) and π∗
1Ω•(M) [Θ] by setting

respectively,

(ω ⊗ f) · g = ω ⊗ fg, ∀ω ∈ π∗
1Ω•(M), ∀f ∈ Sk (g∗) ,

where fg ∈ Sk (g∗) is the polynomial defined by

fg(v1, . . . , vk) = f (Adgv1, . . . ,Adgvk) , v1, . . . , vk ∈ g,

and

Ξ · g =
(
Rg−1

)∗ Ξ, ∀Ξ ∈ π∗
1Ω•(M) [Θ] .

Remark that Ξ · g ∈ π∗
1Ω•(M) [Θ] as Θ is a differential form of the adjoint type.

It is easily checked that E is a G-equivariant homogeneous Z-graded algebra
epimorphism of degree zero. Set K = ⊕l≥0K

l = kerE. Assume for the moment
the following

Lemma 2. The ideal K is generated by the elements of the form ωr ⊗ fk with
ωr ∈ π∗

1Ωr(M), fk ∈ Sk (g∗) and r + k > n = dimM .
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First, we remark that, as G is connected, the condition 2) in formula (5.1) is
equivalent to saying that (Rg)

∗ Ξr = Ξr, ∀g ∈ G. Hence

Igau P
∼= π∗

1Ω•(M) [Θ]G = {Ξ ∈ π∗
1Ω•(M) [Θ] : Ξ · g = Ξ,∀g ∈ G} .

Given a homogeneous element Ξr ∈ Igau P , according to Lemma 2, we can write
it as

Ξr = ω0,j1,... ,jm ∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm , deg ω0,j1,... ,jm + j1 + . . . + jm ≤ n.

Note that r = deg ω0,j1,... ,jm
+ 2(j1 + . . . + jm). Let ζr ∈ π∗

1Ω•(M)⊗ S• (g∗) be
the element defined by

ζr = ω0,j1,... ,jm
⊗ (B∗

1)j1 ∨ . . . ∨ (B∗
m)jm ,

where (B∗
i ) is the dual basis of (Bi) and ∨ stands for the symmetric product.

Hence E(ζr) = Ξr. Then, ζr − ζr · g ∈ K for every g ∈ G and by virtue of
Lemma 2 we conclude that ζr − ζr · g = 0. Taking into account that G operates
trivially on π∗

1Ω•(M), we have (π∗
1Ω•(M)⊗ S• (g∗))G = π∗

1Ω•(M)⊗ (S• (g∗))G,
thus finishing the proof.

5.1. Proof of Lemma 2. We only need to consider the case of an open subset
U ⊆ M trivializing P . If ζl ∈ π∗

1Ω•(M)⊗ S• (g∗) is an element of degree l, then

ζl = ωj1,... ,jm ⊗ (B∗
1)j1 ∨ . . . ∨ (B∗

m)jm , ωj1,... ,jm ∈ π∗
1Ωl−(j1+...+jm)(M),

and we have E(ζl) = ωj1,... ,jm
∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm . From the formula (4.3)

we obtain

(E(ζl)) |j1s0 = ωj1,... ,jm
∧

((
dxi ∧ dy1

i

)j1 ∧ . . . ∧
(
dxi ∧ dym

i

)jm
)
|j1s0 ,(5.2)

where s0 : U → U × G is the unit section. By virtue of the formula (4.1) in the
proof of Lemma 1, a differential form in π∗

1Ω•(M) [Θ] vanishes if and only if it
vanishes along j1s0. Hence from the formula (5.2) it follows E(ζl) = 0 for l > n.
Assume E(ζl) = 0 and l ≤ n. In this case, from (5.2) we conclude that for every
multi-index j1, . . . , jm we have

ωj1,... ,jm
∧

((
dxi ∧ dy1

i

)j1 ∧ . . . ∧
(
dxi ∧ dym

i

)jm
)
|j1s0 = 0

(no summation on j’s).

Set ωj1,... ,jm
= λj1,... ,jm

h1,... ,hj
dxh1∧. . .∧dxhj , with j = l−(j1+. . .+jm), h1 < . . . < hj ,

and λj1,... ,jm

h1,... ,hj
∈ C∞(U). Hence

λj1,... ,jm

h1,... ,hj
dxh1 ∧ . . . ∧ dxhj ∧

((
dxi ∧ dy1

i

)j1 ∧ . . . ∧
(
dxi ∧ dym

i

)jm
)
|j1s0 = 0.

Once the indices h1 < . . . < hj have been fixed, as l ≤ n, the expansion of the
above formula includes a unique summand of the form

λj1,... ,jm

h1,... ,hj
dxh1 ∧ . . . ∧ dxhj ∧

(
dxi1 ∧ dya1

i1
∧ . . . ∧ dxil−j ∧ dy

al−j

il−j

)
|j1s0 ,

where i1 < . . . < il−j is contained in {1, . . . , n} − {h1, . . . , hj} and the indices
a1, . . . , al−j run from 1 to m. Therefore λj1,... ,jm

h1,... ,hj
= 0 and thus ζl = 0.
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5.2. Proof of Corollary 1. It suffices to prove that the subalgebra of autP -
invariant forms in π∗

1Ω•(M)[Θ] is R[Θ] = R[Θ1
, . . . ,Θm] as in this case, with the

above notations, we have Iaut P = R[Θ]G = E
(
S•(g∗)G

)
. We prove below that

θ1, . . . , θm (and hence Θ1, . . . ,Θm) are autP -invariant. If Ξr = π∗
1ωj1,... ,jm ∧

(Θ1)j1 ∧ . . . ∧ (Θm)jm , with deg ωj1,... ,jm + j1 + . . . + jm ≤ n (cf. Lemma 2), is
autP -invariant, then for every X ∈ autP we have

LXC
Ξr = π∗

1(LX′ωj1,... ,jm) ∧ (Θ1)j1 ∧ . . . ∧ (Θm)jm = 0,

where X ′ is the projection of X onto the base manifold M . Hence
π∗

1(LX′ωj1,... ,jm
)⊗ (B∗

1)j1 ∨ . . .∨ (B∗
m)jm ∈ ker E and again by virtue of Lemma

2 we conclude that LX′ωj1,... ,jm
= 0 for all X ′ ∈ X(M), so that each ωj1,... ,jm

is a constant.
In order to prove that θa is autP -invariant we first remark that we only need

to prove that LXC
θa = 0 for every X ∈ X(U), U ⊆ M being a coordinate open

subset such that π−1U ∼= U × G, where we have identified

X = f i ∂

∂xi
, f i ∈ C∞(U),

to the vector field (X, 0) on U ×G. By considering a normal coordinate system
on G as in the proof of Theorem 2, it is not difficult to check that the local
expression for X(1) is the following:

X(1) = f i ∂

∂xi
− yh

i

∂f i

∂xj

∂

∂yh
j

.

According to the formula obtained in the proof of Theorem 2, we have θa =
fa

i

(
dyi − yi

jdxj
)

where fa
i ∈ C∞(G) and the result follows taking into account

that LX(1)

(
dyi − yi

jdxj
)

= 0.
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