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HYPERELLIPTIC JACOBIANS WITHOUT COMPLEX
MULTIPLICATION IN POSITIVE CHARACTERISTIC

Yuri G. Zarhin

1. Introduction

The aim of this note is to prove that in positive characteristic p �= 2 the
jacobian J(C) = J(Cf ) of a hyperelliptic curve

C = Cf : y2 = f(x)

has only trivial endomorphisms over an algebraic closure Ka of the ground field
K if the Galois group Gal(f) of the polynomial f ∈ K[x] of even degree is
“very big”.

More precisely, if f is a polynomial of even degree n ≥ 10 and Gal(f) is either
the symmetric group Sn or the alternating group An then End(J(C)) = Z.
Notice that it is known [14] that in this case (and even for all integers n ≥ 5)
either End(J(C)) = Z or J(C) is a supersingular abelian variety and the real
problem is how to prove that J(C) is not supersingular.

There are some results of this type in the literature. Previously Mori [7], [8]
has constructed explicit examples of hyperelliptic jacobians without nontrivial
endomorphisms. Namely, he proved that if K = k(z) is a field of rational
functions in variable z with constant field k of characteristic p �= 2 then for each
integer g ≥ 2 the g-dimensional jacobian of a hyperelliptic K-curve

y2 = x2g+1 − x + z

has no nontrivial endomorphisms over Ka if p does not divide g(2g + 1).
I am deeply grateful to the referee for helpful suggestions.

2. Main result

Throughout this paper we assume that K is a field of prime characteristic
p different from 2. We fix its algebraic closure Ka and write Gal(K) for the
absolute Galois group Aut(Ka/K).

Theorem 2.1. Let K be a field with p = char(K) > 2, Ka its algebraic closure,
f(x) ∈ K[x] an irreducible separable polynomial of even degree n ≥ 10 such
that the Galois group of f is either Sn or An. Let Cf be the hyperelliptic curve
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y2 = f(x). Let J(Cf ) be its jacobian, End(J(Cf )) the ring of Ka-endomorphisms
of J(Cf ). Then End(J(Cf )) = Z.

Examples 2.2. Let k be a field of odd prime characteristic p. Let k(z) be the
field of rational functions in variable z with constant field k. We write k(z) for
an algebraic closure of k(z).

(i) Suppose Kn = k(z1, · · · , zn) is the field of rational functions in n indepen-
dent variables z1, · · · , zn over k. Then the Galois group of a polynomial
xn − z1x

n−1 + · · · + (−1)nzn over Kn is Sn. Therefore if n ≥ 10 is even
then the jacobian of the curve y2 = xn − z1x

n−1 + · · · + (−1)nzn has no
nontrivial endomorphisms over an algebraic closure of Kn.

(ii) Suppose p does not divide n and h(x) ∈ k[x] is a Morse polynomial of
degree n. This means that the derivative h′(x) of h(x) has n − 1 distinct
roots β1, · · ·βn−1 (in an algebraic closure of k) and h(βi) �= h(βj) while
i �= j. For example, h(x) = xn − x enjoys these properties if and only if p
does not divide n(n − 1).

Then the Galois group of h(x)−z over k(z) is Sn ([10], Th. 4.4.5, p. 41).
Hence if n ≥ 10 is even then the jacobian of the curve y2 = h(x)−z has no
nontrivial endomorphisms over k(z). In particular, for each integer g ≥ 4
the g-dimensional jacobian of a hyperelliptic K-curve y2 = x2g+2−x−z has
no nontrivial endomorphisms over k(z) if p does not divide (g +1)(2g +1).

(iii) Suppose k is algebraically closed. Suppose an integer q > 1 is a power of
p and t is a positive integer not divisible by p. Let us choose a positive
integer s and a non-zero element a of k.
(a) Assume that t > q and let us put n = q + t. The Galois group of

xn − zxt + 1 over k(z) is An ([1], Th. 1, p. 67). Clearly, if t is odd
then n = q + t is even and n > 2q ≥ 6, i.e., n ≥ 8. In addition, n ≥ 10
unless q = 3, t = 5. This implies that if t is odd and (q, t) �= (3, 5)
then the jacobian of the curve y2 = xn − zxt + 1 has no nontrivial
endomorphisms over k(z).

(b) Assume that n = 2pd ≥ 10 for some positive integer d and 1 < t < pd.
Assume, in addition that t and n are relatively prime and s is divisible
by t (e.g., t = s = pd−1 if d is even). The Galois group of xn−axt+zs

over k(z) is An ([2], p. 107). Therefore the jacobian of the hyperelliptic
curve y2 = xn − axt + zs has no nontrivial endomorphisms over k(z).

As was already pointed out, in light of Th. 2.1 of [14], our Theorem 2.1 is an
immediate corollary of the following auxiliary statement.

Theorem 2.3. Suppose n = 2g + 2 is an even integer which is greater than or
equal to 10. Suppose f(x) ∈ K[x] is a separable polynomial of degree n, whose
Galois group is either An or Sn. Suppose C is the hyperelliptic curve y2 = f(x)
of genus g over K and J(C) is the jacobian of C.

Then J(C) is not a supersingular abelian variety.
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Remark 2.4. Replacing (in the case of Gal(f) = Sn) K by its proper qua-
dratic extension, we may assume in the course of the proof of Theorem 2.3 that
Gal(f) = An. Also, replacing K by its abelian extension obtained by adjoining
to K all 2-power roots of unity, we may assume that K contains all 2-power
roots of unity.

We prove Theorem 2.3 in the next Section.

3. Proof of Theorem 2.3

So, we assume that K contains all 2-power roots of unity, f(x) ∈ K[x] is an
irreducible separable polynomial of even degree n = 2g + 2 ≥ 10 and Gal(f) =
An. Therefore J(C) is a g-dimensional abelian variety defined over K. The
group J(C)2 of its points of order 2 is a 2g-dimensional F2-vector space provided
with the natural action of Gal(K). It is well-known (see for instance [15], Sect.
5) that the image of Gal(K) in Aut(J(C)2) is canonically isomorphic to Gal(f).

Now Theorem 2.3 becomes an immediate corollary of the following two asser-
tions.

Lemma 3.1. Let F be a field, whose characteristic is not 2 and assume that F
contains all 2-power roots of unity. Let g be a positive integer and G be a finite
simple non-abelian group enjoying the following properties:

(a) Each nontrivial representation of G in characteristic 0 has dimension > 2g;
(b) If G′ → G is a surjective group homomorphism, whose kernel is a central

subgroup of order 2 then each faithful absolutely irreducible representation
of G′ in characteristic zero has dimension �= 2g.

(c) Each nontrivial representation of G in characteristic 2 has dimension ≥ 2g.
If X is a g-dimensional abelian variety over F such that the image of Gal(F )

in Aut(X2) is isomorphic to G then X is not supersingular.

In order to state the second assertion we need to recall the following definition
([13], p. 584). If V is a finite-dimensional vector space over an algebraically
closed field then a projective representation ρ : G → PGL(V ) is called proper
if there is no a linear representation ρ′ : G → GL(V ) such that ρ = πρ′ where
π : GL(V ) � PGL(V ) is the natural surjection.

Lemma 3.2. Suppose n = 2g + 2 ≥ 10 is an even integer. Let us put G = An.
Then:

(a) Each nontrivial representation of G in characteristic 0 has dimension ≥
n − 1 > 2g;

(b) Each proper projective representation of G in characteristic 0 has dimen-
sion �= 2g;

(c) Each nontrivial representation of G in characteristic 2 has dimension ≥ 2g.

Lemma 3.1 will be proven in the next Section. We prove Lemma 3.2 in Section
5.
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4. Not supersingularity

We keep all the notations of Lemma 3.1. Assume that X is supersingular.
Our goal is to get a contradiction. We write T2(X) for the 2-adic Tate module
of X and

ρ2,X : Gal(F ) → AutZ2(T2(X))

for the corresponding 2-adic representation. It is well-known that T2(X) is a
free Z2-module of rank 2dim(X) = 2g and

X2 = T2(X)/2T2(X)

(the equality of Galois modules). Let us put

H = ρ2,X(Gal(F )) ⊂ AutZ2(T2(X)).

Clearly, the natural homomorphism

ρ̄2,X : Gal(F ) → Aut(X2)

defining the Galois action on the points of order 2 is the composition of ρ2,X

and (surjective) reduction map modulo 2

AutZ2(T2(X)) → Aut(X2).

This gives us a natural (continuous) surjection

π : H → ρ̄2,X(Gal(F )) ∼= G,

whose kernel consists of elements of 1 + 2EndZ2(T2(X)). It follows from the
property 3.1(c) and equality dimF2(X2) = 2g that the G-module X2 is abso-
lutely simple and therefore the H-module X2 is also absolutely simple. Here the
structure of H-module is defined on X2 via

H ⊂ AutZ2(T2(X)) → Aut(X2).

The absolute simplicity of the H-module X2 means that the natural homomor-
phism

F2[H] → EndF2(X2)

is surjective ([4], Th. 9.2 on p. 145). By Nakayama’s Lemma, this implies that
another natural homomorphism

Z2[H] → EndZ2(T2(X))

is also surjective (see [6], p. 252).
Let V2(X) = T2(X) ⊗Z2 Q2 be the Q2-Tate module of X. It is well-known

that V2(X) is the 2g-dimensional Q2-vector space and T2(X) is a Z2-lattice in
V2(X). Clearly, the Q2[H]-module V2(X) is also absolutely simple.

The choice of polarization on X gives rise to a non-degenerate alternating
bilinear form (Riemann form) [9]

e : V2(X) × V2(X) → Q2(1) ∼= Q2.
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Since F contains all 2-power roots of unity, e is Gal(F )-invariant and therefore
is H-invariant. In particular,

H ⊂ SL(V2(X)).

There exists a finite Galois extension L of F such that all endomorphisms
of X are defined over L. We write End0(X) for the Q-algebra End(X) ⊗ Q of
endomorphisms of X. Since X is supersingular,

dimQEnd0(X) = (2dim(X))2 = (2g)2.

Recall ([9]) that the natural map

End0(X) ⊗Q Q2 → EndQ2V2(X)

is an embedding. Dimension arguments imply that

End0(X) ⊗Q Q2 = EndQ2V2(X).

Since all endomorphisms of X are defined over L, the image

ρ2,X(Gal(L)) ⊂ ρ2,X(Gal(F )) ⊂ AutZ2(T2(X)) ⊂ AutQ2(V2(X))

commutes with End0(X). This implies that ρ2,X(Gal(L)) commutes with
EndQ2V2(X) and therefore consists of scalars. Since

ρ2,X(Gal(L)) ⊂ ρ2,X(Gal(F )) ⊂ SL(V2(X)),

ρ2,X(Gal(L)) is a finite group. Since Gal(L) is a subgroup of finite index in
Gal(F ), the group H = ρ2,X(Gal(F )) is also finite. In particular, the kernel of
the reduction map modulo 2

AutZ2T2(X) ⊃ H → G ⊂ Aut(X2)

consists of periodic elements and, thanks to Minkowski-Serre Lemma [11],
Z := ker(H → G) has exponent 1 or 2. In particular, Z is commutative. Since

Z ⊂ H ⊂ SL(V2(X)),

Z is a F2-vector space of dimension d < 2g. This implies that the adjoint action

H → H/Z = G → Aut(Z) ∼= GLd(F2)

is trivial, in light of property 3.1(c). This means that Z lies in the center of
H. Since the Q2[H]-module V2(X) is faithful absolutely simple, Z consists of
scalars. This implies that either Z = {1} or Z = {±1}. If Z = {1} then
H ∼= G and V2(X) is a faithful Q2[G]-module of dimension 2g which contradicts
the property 3.1(a). Therefore Z = {±1} and H → G is a surjective group
homomorphism, whose kernel is a central subgroup of order 2. But V2(X) is a
faithful absolutely simple Q2[H]-module of dimension 2g which contradicts the
property 3.1(b). This ends the proof of Lemma 3.1.
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5. Representation theory

Proof of Lemma 3.2. The property (a) follows easily from Th. 2.5.15 on p. 71
of [5]. The property (c) follows readily from Th. 1.1 on p. 127 of [12]. The rest
of this Section is devoted to the proof of the property (b). First, notice that the
case n = 10 follows from Tables in [3]. So, further we assume that n ≥ 12.

We start with an elementary discussion of the dyadic expansion n = 2w1 +
· · · + 2ws of n. Here wi’s are distinct nonnegative integers with w1 < · · · < ws

and s is the exact number of terms (non-zero digits) in the dyadic expansion
of n. Since n is even, w1 ≥ 1 and therefore each wi ≥ i. This implies that
n ≥ 2(2s − 1) = 2s+1 − 2.

By a theorem of Wagner (Th. 1.3(ii) on pp. 583–584 of [13]), each proper
projective representation of An in characteristic �= 2 has dimension divisible by
N := 2�

n−s−1
2 �. So, in order to prove (b), it suffices to check that n − 2 is not

divisible by N for all even n ≥ 12.
If n = 12, it is verified immediately. If n ≥ 14 then 2n−2 > (n + 1)(n − 2)2.

Then 2n−log2(n+1)−2 > (n − 2)2. It is easy to see that s ≤ log2(n + 1), so
2n−s−2 > (n − 2)2. Taking square roots at both sides, we get 2

n−s−2
2 > n − 2.

Then we see easily that 2�
n−s−1

2 � > n − 2. This finishes the proof of (b).

6. Corrigendum to [15]

Page 475, Remarks 2.2, last line: read “absolutely simple” instead of “also
very simple”.

Page 478, line -5: read “Gal(K)” instead of “G(K)”.
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