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INTERSECTING LEGENDRIANS AND BLOW-UPS

Andrew Hassell and András Vasy

Abstract. The purpose of this note is to describe the relationship between two
classes of Legendre distributions. These two classes are distributions associated to
an intersecting pair of Legendre submanifolds, introduced in [2] by analogy with
intersecting Lagrangian distributions of Melrose and Uhlmann [8], and Legendre
distributions associated to a fibred scattering structure introduced in [3]. We prove
that, given appropriate symbolic orders, the first class is a proper subset of the
second. We also give an example in two dimensions, which shows explicitly the
relation between the two spaces in a simple setting.

1. Introduction

The purpose of the present note is to clarify the relationship between two
classes of Legendre distributions. The first class, that of intersecting Legendrians
associated to a pair of Legendre manifolds which intersect cleanly, was defined by
one of us in [2] as an analog of the notion of intersecting Lagrangian distributions
[8] of Melrose and Uhlmann. Just as the latter played an important role in the
study of real principal type operators, the former proved useful in geometric
scattering theory, both in describing the structure of the boundary value of the
resolvent (of a scattering Laplacian) at the real axis [3] and in the study of
three-body scattering [2].

The second class of Legendre distributions, that of Legendrians associated
to a fibred-scattering structure, was defined in [3]. This extends the notion of
Legendre distributions to manifolds with corners that are equipped with certain
boundary fibrations, and it was used to analyze the structure of the resolvent of
scattering differential operators near the the corners of the b-double space.

Our result is that, given appropriate geometry and symbolic orders, the class
of intersecting Legendre distributions is a proper subset of Legendre distributions
associated to a fibred scattering structure — see Theorem 3.2 in Section 3 for the
precise statement. The proper inclusion corresponds to, roughly speaking, half
of the possible terms in a Taylor series expansion of a general fibred-scattering
Legendre distribution not being present in an intersecting Legendre distribution.

Lagrangian distributions on a manifold without boundary, X0, are distribu-
tions on X0 with very special singularities (in the sense of lack of smoothness)
associated to Lagrangian submanifolds of the cotangent bundle of X. The sim-
plest examples are conormal distributions to an embedded submanifold Z ⊂ X0;
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these are distributions whose regularity is maintained under repeated differen-
tiation by vector fields tangent to Z; in particular they are smooth away from
Z. Lagrangian distributions, and their generalizations, play a central role in
modern PDE theory, see e.g. [5].

If X0 is not compact, one can study decay/growth properties of distributions
at ‘infinity’ in addition to studying their smoothness properties. Thus, the lack
of rapid decay at infinity can be considered a ‘singularity’ and studied via mi-
crolocal analysis. Since one needs some structure at infinity, even to make sense
of ‘rapid decay’, it is more natural to work on compact manifolds with boundary
(or corners) which arise by the compactification of such X0 and study singulari-
ties at the boundary. On manifolds with boundary, X, one can either introduce
Legendre distributions from the symplectic (or really contact) point of view, as
traditionally done for Lagrangian distributions, or instead simply write down
such distributions and ‘work backwards’. Since the former point of view, which
is certainly ‘neater’, has been discussed in detail in [9], we follow the second
approach. This should quickly make it clear that many familiar functions fall in
the class of Legendre distributions.

Thus, let X be a compact manifold with boundary, and x a boundary defining
function. Legendre distributions on X are functions which are smooth in the
interior of X and have specific types of singularities at the boundary, which we
shall now describe. Let U be an open subset of ∂X, and consider the space
U × R × R

n−1 with coordinates y, τ, µ. The form χ = dτ + µ · dy is a contact
form on U × R × R

n−1; that is, χ ∧ (dχ)n−1 never vanishes. (Here we work in
local coordinates, but this has an invariant geometric description in terms of
the scattering cotangent bundle; see [9, 3] for a detailed description, and the
next section for a brief summary.) Recall that a Legendre submanifold is a
submanifold of maximal dimension (equal to n − 1) on which the contact form
vanishes.

Any Legendre submanifold L of U × R × R
n−1 has a local parametrization,

that is, a function φ(y, v), where y ∈ U and v ∈ R
p such that locally

L = {(y, τ, µ) | ∃ (y, v) such that τ = −φ(y, v), µ = dyφ(y, v) and dvφ(y, v) = 0},
and

for 1 ≤ i ≤ p, d

(
∂φ

∂vi

)
are linearly independent.(1.1)

Condition (1.1) ensures that the map

{(y, v) | dvφ(y, v) = 0} → {(y, τ, µ) | τ = −φ, µ = dyφ}(1.2)

is a diffeomorphism. The class Im
sc (X, L) of Legendre distributions are defined

as a finite sum of terms of the form

xm+n/4−p/2

∫
Rp

eiφ(y,v)/xa(x, y, v)dv,

where φ locally parametrizes L and a is smooth, with compact support in v.
(We also allow the case that φ is a linear function of v and a is Schwartz in



INTERSECTING LEGENDRIANS AND BLOW-UPS 415

v; these are called ‘extended Legendrian distributions’ in [2].) We assume, of
course, that a is supported in the region where φ parametrizes L.

The microsupport of u is the closed subset of L corresponding, under (1.2),
to the set

{(y, v) | dvφ = 0 and there is no neighbourhood of (0, y, v)

in which a is O(x∞)}.
By a partition of unity we can always write u as a finite sum of terms each
having microsupport as small as desired.

Let us give two examples. The simplest example is a function of the form

u1 = xqeiφ(x,y)/xa(x, y), with φ, a smooth on X.(1.3)

Here (x, y) are coordinates on X, where y = (y1, . . . , yn−1) restrict to coordinates
on ∂X. There is no loss of generality in assuming that φ depends only on y.
The Legendre submanifold associated with u1 in (1.3) is

G1 = {(y, τ = −φ(y), µ = dyφ(y))}.
The submanifold G1 is essentially the 1-jet of φ. For each m ∈ R, the class
Im
sc (X, G1) is the class of functions u1 of the form (1.3) with q = m + n/4 and

a ∈ C∞(X) arbitrary.
Another example is a function

xqV (x,
y

x
),

where V (x, w) is smooth in x and Schwartz in w ∈ R
n−1. More generally, if

y = (y′, y′′) is a splitting of the coordinates then a function of the form

u2 = xqV (x,
y′

x
, y′′)(1.4)

with V (x, w′, y′′) smooth and Schwartz in w′, is a Legendre distribution. The
function u2 can be written in terms of the Fourier transform in the w variable
as

u2 = xq

∫
eiy′·η′/xV̂ (x, η′, y′′)dη′.(1.5)

The Legendre submanifold associated with u2 is

G2 = {(y, τ, µ) | y′ = 0, τ = 0, µ′′ = 0},(1.6)

and it is easy to check that the function y′ · η parametrizes G2, which is a sort
of ‘conormal bundle’ to C; we call it the scattering conormal bundle and denote
it scN(C;X). If dim y′ = k then the class Im

sc (X, G2) is the class of functions
of the form (1.5) with q = m + n/4 − k/2 and with V̂ Schwartz in the second
variable.

Such distributions turn up naturally in scattering theory. For example, let
X be the radial compactifiction of R

n, and let z be a linear coordinate on R
n.
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Consider the function e−iz·k, k ∈ R
n which is a generalized eigenfunction of ∆

with eigenvalue |k|2. In inverted polar coordinates (x, ẑ), x = |z|−1, z = ẑ/x,
this function takes the form eiẑ·k/x, which is a Legendre distribution of the first
type. An example of a Legendre distribution of the second type is a function of
some subset of the z variables: let z = (z′, z′′) and let V be a Schwartz function
of z′. Then

V (z′) = (2π)−k

∫
eiẑ′·ζ′/xV̂ (ζ ′)dζ ′

is a Legendre distribution of the second type. Such functions appear naturally
in the quantum N -body problem for example.

However, very frequently one comes across functions which are more compli-
cated, and associated to more than one Legendre submanifold. For example,
consider the kernel of the outgoing resolvent R(σ + i0) of the Laplacian on R

3.
This is

G(σ, z, z′) =
1
4π

eiλ|z−z′|

|z − z′| , λ =
√

σ > 0, z, z′ ∈ R
3.(1.7)

Let us multiply by a function χ(|z−z′|) which is smooth, vanishes near |z−z′| = 0
and is ≡ 1 for |z− z′| > c to get rid of the interior singularity. (The difference is
the kernel of a pseudodifferential operator, which is well understood.) Consider
the resulting function χG, for fixed λ > 0, as a function on the radial compact-
ification X̃ of R

6. Let C ⊂ ∂X̃ be the boundary of the diagonal z = z′. Let us
use coordinates w = z − z′ and w′ = (z + z′)/2, and let x = |w′|−1. Then x is a
boundary defining function for X̃ near C, and local coordinates on ∂X̃ near C
are y = (y′, y′′) where y′ = xw ∈ R

3 and y′′ = xw′ ∈ S2 (more precisely, y′′ are
local coordinates on S2). This defines C as {x = 0, y′ = 0}.

Away from C, we have |z − z′| = φ(y)/x where φ(y) = |y′|. Thus away from
C, φ is a smooth function and (1.7) is a Legendre distribution of the first type,
associated to L1 = {(y,−φ, dyφ)}. On the other hand, near the diagonal, χG is
a function of the form V (y′/x), which is a Legendre distribution of the second
type, associated to L2 = scN(C;X) = {y′ = 0, τ = 0, µ′′ = 0}. Clearly it is
simultaneously associated to both of these Legendrian submanifolds.

Near C, φ is not a smooth function. Nevertheless, L1 is a smooth Legendre
submanifold, but with boundary. The boundary of L1 is given by

∂L1 = {y′ = 0, y′′, τ = 0, |µ′| = λ, µ′′ = 0},
which lies entirely over C — in fact, it is contained in L2. Also note that at
(0, y′′, 0, µ′, 0) ∈ ∂L1, we have

µ′ · dy′ = d(µ′ · y′) = −dτ = dφ �= 0 in L1,

which implies that L1 intersects L2 cleanly at L1 ∩ L2 = ∂L1.
Now suppose that L1 and L2 are any two Legendre submanifolds, L1 with

boundary, such that L1 intersects L2 cleanly at L1 ∩ L2 = ∂L1. There are (at
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least) two ways of looking at distributions associated to (L2, L1), and corre-
spondingly, two classes of distributions that may be defined. The first way is
to define intersecting Legendre distributions as was done in [2] (which is a rou-
tine generalization of the class of intersecting Lagrangian distributions to the
Legendre setting). One defines a local parametrization of (L2, L1) near a point
q ∈ L1 ∩ L2 to be a function φ(y, v, s), where v ∈ R

p and s ∈ [0,∞), such that
φ parametrizes L1 in the sense analogous to (1.2) with both v and s taken as
parameters, while φ(y, v, 0) parametrizes L2. The nondegeneracy condition (1.1)
is replaced by

d

(
∂φ

∂s

)
, d

(
∂φ

∂vi

)
and ds are linearly independent.(1.8)

Then an expression of the form

xm+n/4−(p+1)/2

∫ ∫ ∞

0

eiφ(y,v,s)/xa(x, y, v, s) ds dv,(1.9)

where a is smooth, with compact support in (s, v) and supported in the region
where φ parametrizes (L2, L1), is a Legendre distribution of order m associated
to L1 away from L2 (e.g. when a is supported in s ≥ ε > 0) and of order m+1/2
at L2 \L1 (to see this, multiply and divide by dsφ/x and then integrate by parts
in s to get a boundary term at s = 0). The class Im

sc (X, (L2, L1)) is defined to
be those functions u = u1 + u2 + u′, where u1 ∈ Im

sc (X, L1), u2 ∈ I
m+1/2
sc (X, L2)

and u′ given by a finite sum of terms of the form (1.9).
In the example (1.7) above, one can easily verify that

w · v − (|v|2 − λ2)s, v ∈ R
3, s ≥ 0,(1.10)

parametrizes the pair (L2, L1) associated with χG. It would be a good exercise
for the reader to verify that χG can indeed be written as an integral of the form
(1.9), using the phase function (1.10).

The second way, when L2 arises from an embedded submanifold C ⊂ ∂X as
above, involves blowing up the submanifold C and defining fibred Legendrian
distributions. Suppose L1 is a Legendrian with boundary meeting L2 cleanly at
∂L1 = L1 ∩ L2, and let L̃1 be an extension of L1 across the boundary to an
open Legendre submanifold. Let (y′, y′′) be coordinates on ∂X which define C
as {x = 0, y′ = 0}, where y′ = (y1, . . . , y

′
k). If we assume that L1 ∩ L2 has full

rank projection to C, then this implies that near q ∈ ∂L1, there must be one
of the y′ coordinates, say y′

k, whose differential restricted to L1 does not vanish
at q (this is shown in Section 5). Thus, on L1, y′

k is a local boundary defining
function near q. Since we have assumed that ∂L1 has full rank projection to
C, the span of the pull-back of the differentials dy′

j to L1 at q is exactly one-
dimensional. By a linear change of the y′ coordinates we may assume that
dy′

1, . . . , dy′
k−1 pull back to 0 at q. Then standard contact arguments show that

y′
k, y′′ and v = (µ′

1, . . . , µ′
k−1) give local coordinates on L̃1 near q, and that

L2 ∩L1 is defined by y′
k = 0 in these coordinates. By switching the sign of y′

k if
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mf

ff.
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X Y

Figure 1. Blowing up C ⊂ ∂X to produce Y .

necessary, we may also assume that microlocally L1 lies in y′
k ≥ 0. Expressing

ỹ = (y1, . . . , yk−1) as ỹ = Ỹ (y′
k, y′′, v), τ as τ = T ′(y′

k, y′′, v) on L̃1, it follows
from general principles (see [5], volume 3, Theorem 21.2.18, or [9], section 6)
that a local nondegenerate parameterization of L̃1 is given by

φ(y, v) = −T ′ + v · (ỹ − Ỹ ), v ∈ R
k−1.(1.11)

Since T ′ = 0 and Ỹ = 0 at ∂L1, and since y′
k is a boundary defining function

for L1, it follows that φ can be written in the form y′
kφ̃(y′/y′

k, y′
k, y′′, v), with

φ̃(z, y′
k, y′′, v) smooth near z = y′

k = 0.
We now interpret this in terms of blowing up the submanifold C ⊂ X. Let

Y = [X;C]

be the manifold with codimension 2 corners obtained by real blowup of C. Y has
two boundary hypersurfaces: one which is the lift of ∂X, which we call the ‘main
face’, and a new hypersurface arising from the blowup of C which we call the
‘front face’. These will be abbreviated mf and ff, respectively. Boundary defining
functions are given by ρff = (x2+ |y′|2)1/2 and ρmf = x/ρff . Then I

m+1/2
sc (X, L2)

is identical with the set of functions of the form xm+1/2−k/2+n/4c, where c is
smooth on Y and vanishes to infinite order at mf, and k is the codimension of
C in ∂X.

Let us define L to be the closure of the lift of (L1\∂L1) ⊂ X×R×R
n−1 to Y ×

R×R
n−1. It is a submanifold with boundary, contained in mf ×R×R

n−1, with
∂L ⊂ (mf ∩ff)×R×R

n−1. The submanifold L is then a Legendre submanifold,
and the function φ = y′

kφ̃ a local parametrization of L, in the sense of [3]; note
that φ̃ is a smooth function near the corner of Y , since y′

j/y′
k is smooth on Y in

the region of interest.
For the purposes of this paper, we define the class of fibred Legendrians of

order (m, r) associated to L, denoted Im,r
sΦ (Y, L), to be those functions u =

u1 +u2 +u′, where u1 ∈ Im
sc (X, L1) and supported away from C, u2 ∈ Ir

sc(X, L2)
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and u′ given by a finite sum of terms of the form

(1.12) y′
k

r+ n
4 − k

2

(
x

y′
k

)m+ n
4 − p

2
∫

e
iy′

kφ̃( y′
y′

k
,y′

k,y′′,v)/x
a(y′

k,
y′

y′
k

,
x

y′
k

, y′′, v) dv,

v ∈ R
p

in local coordinates. Here we assume that y′
kφ̃ locally parametrizes L as above,

a is smooth on Y and compactly supported, and that a is supported near the
corner of Y (e.g. in y′

k ≤ c, 0 ≤ x/y′
k ≤ c).

Notice that in the interior of ff, say for c < y′
k/x < C, y′

k/x is a smooth
function on Y , so (1.12) gives something in xr+n/4−k/2C∞(Y ) in this region,
which is consistent with the u2 term being in Ir

sc(X, L2).
One of the simplest examples of such a Legendre submanifold L (though it

does not arise from a Legendrian with boundary as in the setting above) is the
zero section in mf ×R×R

n−1. This is parametrized by φ = 0, no v variables are
required, and Im,r

sΦ (Y, L) is identical with ρ
r+n/4−k/2
ff ρ

m+n/4−(k−1)/2
mf C∞(Y ). In

the case that r = m + 1/2, this is the same as xm+1/2+n/4−k/2C∞(Y ).

The purpose of this paper is to clarify the relation between these two spaces
Im
sc (X, (L2, L1)) and I

m,m+1/2
sΦ (Y, L) when L2 = scN(C;X), Y = [X;C], and L

is obtained from L1 as described above.

2. Invariant description

To describe the situation more invariantly, let X be a manifold with boundary,
n = dimX, and x a boundary defining function for X. We denote the interior of
X by X◦. Then X is naturally equipped with its scattering cotangent bundle,
scT ∗X. One way to describe scT ∗X is that its smooth sections are spanned, over
C∞(X), by one-forms of the form d(φ/x), φ ∈ C∞(X). In particular, scT ∗

X◦X
is naturally identified with T ∗X◦. Let p ∈ ∂X and let (x, y) = (x, y1, . . . , yn−1)
be local coordinates near p. A local basis for scT ∗X near p is given by dx/x2 =
−d(1/x) and dyi/x. Thus, a point q ∈ scT ∗X may be written

q = τ
dx

x2
+

∑
i

µi
dyi

x
,(2.1)

and this gives local coordinates (x, y, τ, µ) on scT ∗X, where (τ, µ) are linear co-
ordinates on each fibre. Moreover, scT ∗

∂XX is naturally equipped with a contact
structure via a contact form χ induced by the symplectic structure of T ∗X◦, in
a similar way to that in which a contact form is induced on the cosphere bundle
S∗X = (T ∗X \0)/R

+. In the local coordinates given by (2.1), this form is equal
to χ = dτ + µ · dy, as in the previous section.

Let C be a closed embedded submanifold of ∂X. Suppose that p ∈ C, and
that coordinates are chosen so that C = {x = 0, y′ = 0} near p; here y′ =
(y1, . . . , y

′
k). There is a well-defined ‘scattering conormal bundle’ over C, denoted

scN∗(C;X), which is defined as the span of d(φ/x) (inside scT ∗
CX) for all φ ∈
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C∞(X) which vanish on C. In the local coordinates (x, y′, y′′), φ can be written
as φ =

∑
j y′

jaj + xa0, so scN∗(C;X) is spanned by the dy′
j/x, i.e. as a vector

bundle over C the dimension of each fibre is is the codimension of C in ∂X. In
local coordinates it is given by (1.6). It is easy to see that scN∗(C;X) is in fact
a Legendre submanifold of scT ∗

∂XX. Note that dx/x2 = −d(1/x) does not lie
in scN∗(C;X). Morally speaking this is so because we are studying scattering
one forms, and these are the differentials of functions that are singular at ∂X,
so their behavior is quite different from that of the ordinary conormal bundle of
C, spanned (inside T ∗

CX) by the differentials of functions vanishing at C.
Let Y = [X;C] be the blow-up of X at C, and let β : Y → X be the

blow-down map. Let mf denote the lift of ∂X to Y , and let ff denote the
front face of the blow-up, i.e. the lift of C. Then ff has a natural fibration
over C given by the blow-down map: β|ff : ff → C. As discussed in [3], this
defines a structure algebra VsΦ(Y ) of vector fields, and more importantly for
us, a corresponding replacement of the standard cotangent bundle, namely the
scattering fibred cotangent bundle sΦT ∗Y . Sections of sΦT ∗Y are spanned, over
C∞(Y ), by d(φ/x) where φ ∈ C∞(Y ) is constant on the fibers of the fibration.
Such a setting is a natural generalization (to manifolds with corners) of the fibred
cusp Lie algebra introduced by Mazzeo and Melrose on manifolds with a fibred
boundary [7]. Then sΦT ∗

mfY has a natural contact form which degenerates at
the corner sΦT ∗

mf ∩ffY . In this setting, sΦT ∗Y is just the pull-back of scT ∗X by
the blow-down map β, and we denote the induced map by β̃ : sΦT ∗Y → scT ∗X.
Thus, local coordinates on sΦT ∗Y near the boundary consist of local coordinates
on Y together with the functions τ and µ lifted from scT ∗X. Moreover, the
contact form on sΦT ∗

mfY is just the pull-back of dτ + µ · dy by β̃. Given a
Legendre submanifold L ⊂ sΦT ∗

mfY which is transversal to the corner mf ∩ff
and satisfies a compatibility condition with the fibration, the class of Legendre
distributions associated to L was defined in [3]; in the case of interest here, the
definition (1.12) above suffices.

3. Main results

To describe our main results, we let L2 be the scattering conormal bundle
scN∗(C;X) as above, and suppose that L1 ⊂ scT ∗X is a Legendre submanifold
with boundary which intersects L2 cleanly in ∂L1 = L2 ∩ L1. In addition, we
assume that L2 ∩ L1 has full rank projection to C. Thus, in local coordinates
in scT ∗

∂XX, L2 = {y′ = 0, τ = 0, µ′′ = 0}. We shall prove in Lemma 5.1 that
these assumptions imply that L1 also intersects scT ∗

CX cleanly, with intersection
L2∩L1, and in particular that at any q ∈ L1, the pull-back of dy′

j to L1 does not
vanish for some j. Without loss of generality we may assume that the restriction
of dy′

k to L1 does not vanish at q; thus, near q, we may assume that y′
k ≥ 0 is

a boundary defining function for L1. This implies that under the blow-down
map β∗ : sΦT ∗

mfY → scT ∗
∂XX, L1 lifts to a Legendre submanifold L which is

transversal to sΦT ∗
mf ∩ffY and has full rank projection to C.
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Let L̃1 be an extension of L1 across its boundary to an (open) Legendre
submanifold. Our first result is a characterization of Im

sc (X, (L2, L1)) in terms
of Im(X, L̃1).

Theorem 3.1. Suppose L1 and L2 are as above, and let α ∈ C∞(R) be such
that α(t) is identically 1 for t > 1, and identically 0 for t < 0. Let U be a
neighborhood of q ∈ L2 ∩ L1 in scT ∗

∂XX such that y′
k is a defining function

for ∂L1 in L1 ∩ U . Intersecting Legendre distributions u ∈ Im
sc (X, (L2, L1))

microsupported in U may be represented as

α
(y′

k

x

)
u1 + u0,(3.1)

where u1 ∈ Im
sc (X, L̃1) and u0 ∈ I

m+1/2
sc (X, L2). Conversely, any such function

is in Im
sc (X, (L2, L1)).

Note that α can be replaced by any other C∞ function on R which is 1 on
[T, +∞), 0 on (−∞,−T ], T > 0 sufficiently large, since the difference between
the corresponding first terms in (3.1) can be absorbed in u0.

Given this theorem we can rather easily understand the relation between the
spaces Im

sc (X, (L2, L1)) and I
m,m+1/2
sΦ (Y, L), where Y = [X;C] and L is obtained

from L1 as described in Section 1.

Theorem 3.2. The space Im
sc (X, (L2, L1)) is a proper subset of I

m,m+1/2
sΦ (Y, L).

In particular, I
m,m+1/2
sΦ (Y, L) is invariant under multiplication by C∞(Y ) func-

tions, while Im
sc (X, (L2, L1)) is not.

Remark. One can show that the algebraic C∞(Y ) module generated by the
space Im

sc (X, (L2, L1)) is dense in I
m,m+1/2
sΦ (Y, L). Hence, one could say that the

space I
m,m+1/2
sΦ (Y, L) is generated over C∞(Y ) by Im

sc (X, (L2, L1)).
Remark. Guillemin and Uhlmann [1] and Joshi [6] have defined paired La-
grangian distributions of independent orders (m, r) associated to a pair (L1, L2)
with the geometry as described above. Using the Fourier transform and a local
identification of neighbourhoods of p ∈ ∂X with cones in R

n, one can define
spaces of paired Legendre distributions Ir,m

sc (X, (L2, L1)). In our setting these
are defined microlocally near ∂L1 by replacing (1.9) by

xm+n/4−(p+1)/2

∫ ∫ ∞

−∞
s

r−(m+1/2)
+ eiφ(y,v,s)/xa(x, y, v, s) ds dv,(3.2)

i.e. the distribution s
r−(m+1/2)
+ replaces the Heaviside step function H(s) =

s0
+. Then when r − (m + 1

2 ) is a nonnegative integer, Theorem 3.2 generalizes
directly, that is, distributions of the form (3.2) form a proper subset of the class
Im,r
sΦ (Y, L). However, when r − (m + 1

2 ) is not an integer, then the two spaces
coincide:

Ir,m
sc (X, (L2, L1)) = Im,r

sΦ (Y, L), r − (m +
1
2
) /∈ Z.(3.3)
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We prove (3.3) in a model case only, in the next section.

Remark. It is very natural to assume that L1 ∩ L2 is codimension one in L2

and in L1 since this appears in real principal type propagation. However, one
can also consider the case of higher codimension intersections. In the case of La-
grangian manifolds, such intersections were studied by Guillemin and Uhlmann
[1]. They essentially define the associated class of distributions by blowing up
the intersection L2 ∩ L1. Note that if the intersection has codimension one,
the blow-up divides L1 into two manifolds with boundary, each with boundary
L2 ∩L1, hence resulting exactly in the setting discussed above. In our case thus
the most natural definition of such intersecting Legendre distributions associated
to an intersecting pair (L2, L1) with L2∩L1 having codimension greater than one
is via the fibred scattering structure rather than directly by oscillatory integrals.
In particular, if L2 = scN∗(C;X), L1 is the zero section of scT ∗

∂XX, the codimen-
sion of the intersection L2∩L1 (in L2 and in L1) is given by the dimension of the
fibers of scN∗(C;X) → C, namely by the codimension of C in ∂X. The natural
definition of the class Im

sc (X, (L2, L1)) of distributions associated to the inter-
secting Legendre pair (L2, L1) is functions of the form xm+dim X/4α(|y′|/x)f +g,
f ∈ C∞(X), g ∈ C∞([X;C]) with infinite order vanishing on mf.

4. An example

Although the general case is hardly more complicated, for the sake of clarity
we first consider the case when dim X = 2, and C ⊂ ∂X is a point x = 0, y = 0,
and L1 is the zero section of scT ∗X in y ≥ 0. The lift L of L1 to sΦT ∗

mfY is the
zero section then. Thus, fibred Legendrians in I

m,m+1/2
sΦ (Y, L) are C∞ functions

on Y = [X;C], multiplied by powers of the boundary defining function, i.e.
functions of the form xm+1/2c, c ∈ C∞(Y ). Let us show that elements u of
Im
sc (X, (L2, L1)) satisfy

u ∈ Im
sc (X, (L2, L1)) ⇔ u = xm+1/2c, where c = α

(y

x

)
f(x, y) + g

(
x,

y

x

)
.(4.1)

Here f is smooth, α is as in Theorem 3.1, and g(x, Z) is a smooth function of x
taking values in Schwartz functions of Z. Away from the corner of Y , c in (4.1)
is an arbitrary element of C∞(Y ). However, at the corner, its Taylor series is
restricted so that it only has terms of the form yj(x/y)k with j ≥ k. (To see
this, note that g is zero to all orders in Taylor series at the corner, while α is
equal to the constant function 1 to all orders at the corner. As for f , it has an
arbitrary Taylor series in powers of x and y, which amounts to a Taylor series
in x/y and y subject to the constraint above.) Establishing (4.1) thus proves
Theorems 3.1 and 3.2 in this case.

A parametrization of (L2, L1) in this case is given by ζ(y − ȳ), where ζ plays
the role of v, and ȳ that of s, in (1.9). Therefore, an intersecting Legendre
distribution, u ∈ Im

sc (X, (L2, L1)), associated to these Legendrians is one which
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can be written as u = u0 + u1 + u′,with u0 ∈ I
m+1/2
sc (X, L2), u1 ∈ Im

sc (X, L1),
microsupported away from ∂L1 and u′ of the form

xm−1/2

∫ ∞

0

∫
eiζ·(y−ȳ)/xa(x, y, ζ, ȳ) dζ dȳ,(4.2)

where a has compact support in x, y, ȳ, and is Schwartz in ζ. Directly from the
definition, u1 is of the form xm+1/2f(x, y), where f is rapidly decreasing at the
boundary wherever y < 0. On the other hand, it is easy to see that u0 is in
xm+1/2C∞(Y ), vanishing to infinite order at the main face. Indeed, by definition,
u0 can be written as

xm+1/2

∫
eiζy/xa(x, y, ζ) dζ,

with a compactly supported in x, y, rapidly decreasing in ζ. But this is just
Fourier transform in ζ, hence the result is of the form xm+1/2b(x, y, y/x), with
compact support in x, y and rapid decay in y/x, which implies infinite order
vanishing at the main face. Hence the real question is whether functions as in
(4.2) are of the form (4.1), and conversely, whether such functions supported
near the corner can be written as in (4.2) modulo I

m+1/2
sc (X, L2) + Im

sc (X, L1).
Start with the former, i.e. consider an oscillatory integral of the form (4.2).

Since by assumption a is compactly supported in y and ȳ, we may suppose that
a is supported in y, ȳ ≤ c. Let ψ(ȳ) be a compactly supported function which is
equal to 1 for 0 ≤ y ≤ 2c, so that a = aψ(ȳ).

First we claim that we may, modulo an O(x∞) error, assume that a is of the
form

a(x, y, ζ, ȳ) = a1(x, y, ζ)ψ(ȳ).

The reason is that we can expand a as a Taylor series around y = ȳ:

a(x, y, ȳ, ζ) = a(x, y, y, ζ) + (y − ȳ)ã(x, y, ȳ, ζ).

Since (y − ȳ) = ∂ζφ, we gain a power of x by integrating by parts in ζ so as
to get rid of this factor. Doing this repeatedly and asymptotically summing the
series so obtained we obtain, modulo an O(x∞) error, a function a1 independent
of ȳ.

Thus performing the ȳ integral followed by the ζ integral, we get

xm−1/2

∫ ∞

−∞

∫ ∞

−∞
eiζ·(y−ȳ)/xa1(x, y, ζ)H(ȳ)ψ(ȳ) dζ dȳ

= xm−1/2

∫ ∞

∞
eiζ·y/xa1(x, y, ζ)Ĥψ(ζ/x) dζ

= xm−1/2

∫ ∞

−∞
H(y − s)ψ(y − s)ǎ1(x, y,

s

x
) ds.

(4.3)

Here H is the Heaviside function and we have written ǎ1 for the inverse Fourier
transform in the third variable; ǎ1 is a Schwartz function in its third variable
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(since it is the Fourier transform of a Schwartz function in that variable). We
may write

ǎ1(x, y, Z) = d(x, y)α′(Z) + b(x, y, Z),

where α is as in Theorem 3.1, d is smooth, b is Schwartz in Z, d and b are
both supported in y ≤ c, and

∫
b dZ = 0. (To do this, we take d(x, y) =∫

ǎ1(x, y, Z ′) dZ ′.) Thus, the integral

g(x, y, Z) =
∫ Z

−∞
b(x, y, Z ′)dZ ′

is a Schwartz function of Z. Substituting this into (4.3), and writing Z = y/x,
we get

(4.2) = xm+1/2

∫ Z

−∞
ψ(y − xZ ′)

(
d(x, y)α′(Z ′) + b(x, y, Z ′)

)
dZ ′.

Since d and b are both supported in y ≤ c, ψ = 1 on [0, 2c], and α′ and b are
Schwartz in Z ′, we may, modulo O(x∞), replace ψ by 1 in this equation. This
yields

xm+1/2
(
d(x, y)α(

y

x
) + g(x, y,

y

x
)
)
.

Expanding g as a Taylor series in the second variable we see that we have ex-
pressed (4.2) in the form (4.1).

Conversely, let u be of the form (4.1). The g term is Legendrian with respect
to L2, so we only need deal with the first term. In fact, it is clear that the class
Im
sc (X, (L2, L1)) is invariant under multiplication by smooth functions on X, so

we need only treat the α function. We may localize near x = 0, y = 0 by multi-
plying α(y/x) by χ(x, y), where χ ∈ C∞

c (R2), χ(x, y) ≡ 1 in a neighbourhood of
(0, 0) and is supported in |y| ≤ c, |x| ≤ c say. Then for ψ ∈ C∞

c (R), identically 1
on [−2c, 2c], the identity χ(x, y)α′((y − ȳ)/x) = ψ(ȳ)χ(x, y)α′((y − ȳ)/x) holds.
Indeed, on suppα′, |y − ȳ| ≤ x ≤ c, hence on supp(χα′), |ȳ| ≤ 2c. Thus,

χ(x, y)α(
y

x
) = x−1χ(x, y)

∫ ∞

0

α′(y − ȳ

x

)
dȳ

= x−1χ(x, y)
∫ ∞

0

ψ(ȳ)α′(y − ȳ

x

)
dȳ.

(4.4)

We can write this as

x−1χ(x, y)
∫ ∞

−∞
dζ

∫ ∞

0

ei(y−ȳ)ζ/xψ(ȳ)α̂′(ζ) dȳ

which is of the right form since α′, and therefore also its Fourier transform, is
Schwartz.

We now discuss the spaces Ir,m
sc (X, (L2, L1)) in our model situation. A func-

tion u ∈ Ir,m
sc (X, (L2, L1)) can be written u = u0 + u1 + u′,with u0 ∈ Ir

sc(X, L2),
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u1 ∈ Im
sc (X, L1), microsupported away from ∂L1 and u′ of the form

xm−1/2

∫ ∞

0

∫
ȳr−m−1/2eiζ·(y−ȳ)/xa(x, y, ζ, ȳ) dζ dȳ,(4.5)

where a has compact support in x, y, ȳ, and is Schwartz in ζ. There is no
difficulty in dealing with the u0 and u1 pieces, so we focus on the integral (4.5).
Let q = r − (m + 1

2 ).
Let us first show that Ir,m

sc (X, (L2, L1)) ⊂ Im,r
sΦ (Y, L). We start with (4.5) and

apply the argument between (4.2) and (4.3), obtaining

xm−1/2

∫ ∞

−∞
(y − s)q

+ψ(y − s)ǎ1(x, y,
s

x
) ds

instead of the last line of (4.3). This can be written

xm+q+1/2

∫ ∞

−∞
(
y

x
− Z ′)q

+ψ(y − xZ ′)ǎ1(x, y, Z ′) dZ ′.

It is straightforward to check that this is in xm+1/2ρq
ffC∞(Y ) away from the

corner of Y . To see how this behaves near the corner, where x/y = 0, we write

(
y

x
− Z ′)q = (

y

x
)q

(
1 + Z ′x

y

)q
,

and expand the second term in a Taylor series at x/y = 0. This can be done to
any order, in spite of the factor Z ′, since ǎ1(x, y, Z ′) is Schwartz in Z ′. Also, as
before, we may replace ψ by 1 at the cost of an O(x∞) error. Integration in Z ′

then yields a function of the form

xm+1/2yqc(x, y,
x

y
),(4.6)

where c is smooth near the corner. Hence this term is in xm+1/2ρq
ffC∞(Y ) ≡

Im,r
sΦ (Y, L).

Here we can see that something different happens when q is a nonnegative
integer. Namely, in the integral case the Taylor series expansion has only a finite
number of terms, so c has only a finite Taylor series in x/y then, reflecting the
restriction on the Taylor series at the corner mentioned earlier.

Finally we show, when q is not an integer, that every element of Im,r
sΦ (Y, L) is

in Ir,m
sc (X, (L2, L1)). To do this, it is enough to find an expression (4.5) such that

the corresponding c(x, y, x/y) as in (4.6) above has an arbitrary Taylor series in
x/y at x = y = 0. The coefficient of (x/y)j in this series is given by(

q

j

) ∫ ∞

−∞
Z ′j ǎ1(0, 0, Z ′)dZ ′ =

(
q

j

)
Dj

ζa1(0, 0, ζ) � ζ = 0.

If q is nonintegral, then the combinatorial factor is nonzero, and it is clear that
a1 may be chosen so that these coefficients are arbitrary.
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5. The general case

Let X, n, C, Y , L2, L1, L̃1, and L be as in section 3, and let q ∈ ∂L1. Let
L̃1 be a Legendrian extension of L1 to a submanifold without boundary across
L2. In local coordinates, C = {x = 0, y′ = 0} and L2 = {x = 0, y′ = 0, µ′′ = 0}.
First we prove a statement asserted just before the main results from section 3.

Lemma 5.1. There is a y′ coordinate, which may be taken to be y′
k without loss

of generality, whose differential restricted to L1 does not vanish at q.

Proof. Let q ∈ L2 ∩ L1, and let W = Tq(L2 ∩ L1) ⊂ Z = Tq
scT ∗

∂XX. Moreover,
let Vj = TqLj ⊂ Z. The fact that a subspace V of Z is Legendre means that both
χ and dχ vanish on it identically, i.e. χ(v) = 0, dχ(v, v′) = 0 for all v, v′ ∈ V ,
and dimV = n − 1. Note that dχ is non-degenerate on Kerχ ⊂ Z, i.e. it is a
symplectic form on this vector space.

Now, both χ and dχ vanish on W since W ⊂ V2. Let W ′ denote the subspace
of Kerχ which annihilates W , i.e. W ′ = {w′ ∈ Z : χ(w′) = 0, dχ(w′, w) =
0 for all w ∈ W}. Then any Legendre subspace V ⊃ W of Z satisfies V ⊂ W ′

since V ⊂ Ker χ and dχ(v, w) = 0 for all w ∈ W ⊂ V . Note that W has
codimension 2 in W ′ (since W has codimension 1 in the Legendre subspace V2).
Thus, W ′/W is a 2-dimensional vector space, and dχ descends to a symplectic
form on it. The image V ′ of a Legendre subspace V ⊃ W in W ′/W is Lagrangian
with respect to this form. There is a one-dimensional family of such Lagrangian
subspaces; the image of V2 is one of them. Indeed, given any non-zero element
u of W ′/W , there is a unique Lagrangian subspace of W ′/W which includes u,
namely the span of u. This then determines a unique Legendre subspace V of
W ′ with W ⊂ V .

We claim that W ′ is not a subspace of Tq
scT ∗

CX. Indeed, suppose otherwise,
i.e. that W ′ ⊂ Tq

scT ∗
CX. The hypothesis on the full rank projection of L2 ∩ L1

means that dy′′
j are independent on W . The corresponding Hamilton vectors ∂µ′′

j

under dχ in Kerχ are tangent to scT ∗
CX, hence in Tq

scT ∗
CX ∩Kerχ. Thus, they

span a (dimC)-dimensional subspace T of this space. If f is a nonzero linear
combination of the functions y′′

j , then df does not vanish on W , which implies
that dχ(Hf , ·) does not vanish on W . Hence Hf /∈ W ′, which means that T and
W ′ have trivial intersection. But this is a contradiction: by dimension counting,
the codimension of W ′ in Tq

scT ∗
CX ∩ Ker χ is dimC − 1. Hence W ′ is not a

subspace of Tq
scT ∗

CX.
Thus dy′

j cannot all vanish identically on W ′. Since they all vanish identically
on V2, this is the only Legendre subspace with this property. By the clean
intersection assumption, V2 ∩ V1 = W , i.e. V2 and V1 are not the same. Hence
the dy′

j do not all vanish on V1, i.e. the pull-back of dy′
j to L1 at q is non-zero for

some j. By relabelling the coordinates, we may assume that dy′
k is non-zero.

As discussed in Section 1, L̃1 has a local parametrization of the form (1.11).
This is also a local parametrization of L. A local nondegenerate parametrization
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of (L2, L1) is given by

ψ(y, v, ζ, ȳ) = −T ′ + v · (ỹ − Ỹ ) + ζ(y′
k − ȳ), ȳ ≥ 0,(5.1)

where ζ plays the role of v, and ȳ that of s, in (1.9).
We are now ready to prove Theorems 3.1 and 3.2.

Proof of Theorem 3.1. Write u ∈ Im
sc (X, (L2, L1)) in terms of the phase function

ψ from (5.1). We may then run the argument in the example of the previous
section in the variables (x, y′

k, ȳ, ζ) to show that u can be written in the form
(3.1). To prove the converse, write u1 with respect to the phase (1.11) and
express α as in (4.3) to obtain an expression involving the phase function ψ
from (5.1), which is manifestly an element of Im

sc (X, (L2, L1)).

Proof of Theorem 3.2. First we show that Im
sc (X, (L2, L1)) is contained in

I
m,m+1/2
sΦ (Y, L). Using Theorem 3.1 we may write u ∈ Im

sc (X, (L2, L1)) in the
form (3.1). In terms of this representation, u0 is xm+n/4−(k−1)/2 times an ele-
ment of C∞(Y ) which vanishes to all orders at the main face, so this is certainly
an element of I

m,m+1/2
sΦ (Y, L) (in fact, I

r,m+1/2
sΦ (Y, L) for any r). On the other

hand, u1 is in Im
sc (X, L̃1) so can be written with respect to the phase function φ

from (1.11). But this is also a phase function for L, and multiplication by a suit-
able α means it is now supported in y′

k/x > C, so α ·u1 is also in I
m,m+1/2
sΦ (Y, L).

To show that the inclusion is proper, we write u in terms of a reduced symbol
and show that its Taylor series is restricted at x/y′

k = y′
k = 0, that is, at the

intersection of the front face and the main face on Y . Using standard arguments,
we can write u in the form (1.12) using the parametrization from (5.1), where
a only depends on y′

k, x/y′
k, y′′ and v = (µ′

1, . . . , µ′
k−1). (To reduce a so as to

depend on only these variables we repeatedly integrate by parts as done in the
previous section for example.) Note that when r = m + 1/2 and p = k − 1, then
the power of y′

k outside the integral in (1.12) vanishes. By the symbol calculus
of [4], the reduced symbol is determined to all orders in Taylor series at mf ∩ff
by u. Using the description given by Theorem 3.1, we see that the u0 term has
trivial Taylor series at x/y′

k = y′
k = 0. The α ·u1 term has the property that the

symbol for u1 is smooth in the variables x and y′
k, so the Taylor series of a as a

function of x/y′
k and y′

k has the property

The coefficient of (x/y′
k)jy′

k
l vanishes whenever l < j.(5.2)

Thus, the sum of the two terms u0 and α · u1 has property (5.2). It is clear that
this property is not invariant under multiplication by smooth functions of y′

k

and x/y′
k. However, the space I

m,m+1/2
sΦ (Y, L) is by its definition invariant under

C∞(Y ). So Im
sc (X, (L2, L1)) is a strictly smaller space than I

m,m+1/2
sΦ (Y, L). This

completes the proof of the Theorem.

Remark. The absence of terms (5.2) in the symbol of Im
sc (X, (L2, L1)) is re-

flected in the symbol calculus for u ∈ Im
sc (X, (L2, L1)). That is, if the symbol

σm
L1

(u) of u on L1 vanishes, then u ∈ Im+1
sc (X, (L2, L1)) + I

m+1/2
sc (X, L2) (see



428 ANDREW HASSELL AND ANDRÁS VASY

[8], equation (5.2)). On the other hand, if the symbol of u ∈ I
m,m+1/2
sΦ (Y, L)

at L vanishes, then u ∈ I
m+1,m+1/2
sΦ (Y, L) (as opposed to I

m+1,m+3/2
sΦ (Y, L) +

I
∞,m+1/2
sΦ (Y, L)). This better vanishing property of intersecting Legendre distri-

butions makes them more useful for analyzing principal type propagation.
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