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NON-COMMUTATIVE SYMPLECTIC GEOMETRY, QUIVER
VARIETIES, AND OPERADS

Victor Ginzburg

to Liza

Abstract. Quiver varieties have recently appeared in various different areas of
Mathematics such as representation theory of Kac-Moody algebras and quantum
groups, instantons on 4-manifolds, and resolutions of Kleinian singularities. In this
paper, we show that many important affine quiver varieties, e.g., the Calogero-
Moser space, can be imbedded as coadjoint orbits in the dual of an appropriate
infinite dimensional Lie algebra. In particular, there is an infinitesimally transi-
tive action of the Lie algebra in question on the quiver variety. Our construction
is based on an extension of Kontsevich’s formalism of ‘non-commutative sym-
plectic geometry’. We show that this formalism acquires its most adequate and
natural formulation in the much more general framework of P-geometry, a ‘non-
commutative geometry’ for an algebra over an arbitrary cyclic Koszul operad.
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1. Introduction

We first remind the definition of quiver varieties. Let Q be a quiver, that is a
finite oriented graph with vertex set I. Let V = {Vi}i∈I be a collection of finite
dimensional C-vector spaces. By a representation of Q in V we mean an assign-
ment of a linear map: Vi → Vj , for any pair i, j ∈ I and each oriented edge of Q
with tail i and head j. Let R(Q, V ) denote the set of all representations of Q in
V , which is a C-vector space. The group �i∈I GL

C
(Vi) acts naturally on R(Q, V ),

by conjugation. This action clearly factors through G(V ) := (�i GL(Vi)) /C∗,
the quotient by the group C∗ imbedded diagonally, as scalar matrices, into each
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of groups GL(Vi). Let g(V ) = (⊕i gl(Vi)) /C denote the Lie algebra of the group
G(V ).

Let Q be the double of Q, the quiver obtained by adding a reverse arrow
a∗, for every (oriented) arrow a ∈ Q. For any V = {Vi}i∈I , the vector space
R(Q, V ) may be identified naturally with T ∗R(Q, V ) = cotangent bundle on
R(Q, V ). Hence, R(Q, V ) has a canonical symplectic structure. Furthermore,
the G(V )-action on R(Q, V ) is Hamiltonian, and the corresponding moment
map µ : R(Q, V ) −→ g(V )∗ is given by the following formula:

(1.1) � �→ µ(�) =
{
{µ(�)i}i∈I

∈ ⊕
i

gl(Vi)
∣∣∣

µ(�)i =
∑

{
a∈Q

head(a)=i

} �(a) · �(a∗) −
∑

{
a∈Q

tail(a)=i

} �(a∗) · �(a)
}

.

Here and below, we identify g(V )∗ with a subspace in ⊕i gl(Vi) by means of the
trace pairing: x, y �→ ∑

i∈I tr(xi · yi) . Specifically, we have:

g(V )∗ 
 sg(V ) := {x = (xi)i∈I ∈ ⊕i gl(Vi)
∣∣ ∑

i∈I
tr(xi) = 0 } .

Example. Let Q be the quiver consisting of a single vertex and a single edge-
loop at this vertex. Thus Q is the quiver with two edge-loops at the same vertex.
Clearly, giving a representation of Q in the vector space V = Cn amounts to
giving an arbitrary pair of n × n-matrices. Therefore, we have: R(Q, Cn) =
gln ⊕ gln, and hence: G(V ) = PGLn. The moment map (1.1) reduces to the map
µ : gln ⊕ gln −→ g(V )∗ = sln, given by the formula: (x, y) �→ [x, y].

Next, fix O ⊂ sg(V ), a closed AdG(V )-orbit, and assume that the group
G(V ) acts freely on the subvariety µ−1(O) ⊂ R(Q, V ). Then, the orbit space
RO(Q, V ) := µ−1(O)/G(V ) is an affine variety, to be called an affine quiver
variety. Thus, by definition: RO(Q, V ) := Spec

(
C[R(Q, V )]G(V )/IG(V )

)
, where

I ⊂ C[R(Q, V )] stands for the defining ideal of the subvariety µ−1(O), and we
have used that C[R(Q, V )]G(V )/IG(V ) = (C[R(Q, V )]/I)G(V ) , due to reductivity
of G(V ). If µ−1(O) is smooth then RO(Q, V ) is also smooth, and the symplectic
structure on R(Q, V ) induces, via the symplectic reduction construction, see
[GS], a canonical symplectic structure on RO(Q, V ).

One of the main results of this paper is

Theorem 1.2. In the above setting, the symplectic variety RO(Q, V ) can be
imbedded as a coadjoint orbit in the dual of L(Q), an infinite dimensional Lie
algebra canonically attached to the quiver Q.

It is implicit in the theorem that the symplectic structure on RO(Q, V ) goes,
under the imbedding, into the canonical Kirillov-Kostant symplectic structure
on the coadjoint orbit. Note also that the Lie algebra L(Q) does not depend on
the representation space V .
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Remark. A choice of Hermitian metric on V makes R(Q, V ) a flat hyper-
Kähler space. An equivalence: holomorphic symplectic reduction ⇔ hyper-
Kähler reduction, see [Hi], gives, for many orbits O, a hyper-Kähler structure
on the quiver variety RO(Q, V ). Recall further that by a well-known result of
Kronheimer [Kr], any coadjoint orbit in a complex reductive Lie algebra has a
hyper-Kähler structure. Based on this analogy, N. Hitchin asked if the Calogero-
Moser space (a special case of quiver variety, see below) is a coadjoint orbit of
some infinite dimensional Lie algebra. Hitchin’s question has been motivated by
the recent work of Berest-Wilson [BW], who constructed a transitive action of
Aut(A1), the automorphism group of the Weyl algebra, on the Calogero-Moser
space. Theorem 1.2 gives a positive answer to Hitchin’s question and sheds some
new light on the Berest-Wilson construction.

Strategy of the proof of Theorem 1.2. The symplectic structure on
RO(Q, V ) makes the coordinate ring C

[
RO(Q, V )

]
an infinite dimensional Lie

algebra with respect to the Poisson bracket. We will construct a sequence of Lie
algebra morphisms:

(1.3) L(Q)
ψ−→ C

[
R(Q, V )

]G(V ) pr−→ C
[
R(Q, V )

]G(V )
/IG(V ) =

C
[
RO(Q, V )

]
,

where C
[
RO(Q, V )

]
, the coordinate ring, is viewed as a Lie algebra with respect

to the Poisson bracket arising from the symplectic structure on R(Q, V ), and
the map pr stands for the canonical projection.

Now, for any affine symplectic manifold X and any point x ∈ X, evaluation
at x gives a linear function on C[X], whence induces an evaluation map: X

ev−→
C[X]

�

. Note that the vector space C[X]
�

is an (infinite dimensional) Poisson
manifold with Kirillov-Kostant bracket. It is immediate from the definitions
that the map: X → C[X]

�

is a morphism of Poisson varieties, i.e., the induced
map on polynomial functions is a morphism of Poisson algebras. Since X is
smooth and affine, regular functions on X separate points of X and, moreover,
the differentials of regular functions span tangent spaces at each point of X.
This implies that the evaluation map is injective, and that the infinitesimal
Hamiltonian action of the Lie algebra C[X] (with the Poisson bracket) on the
image of the evaluation map is infinitesimally transitive. Thus, the evaluation
imbedding makes X a coadjoint orbit in C[X]

�

.
Applying the considerations above to the symplectic manifold X = RO(Q, V ),

and dualizing the maps in (1.3), one gets a sequence of Poisson morphisms:

RO(Q, V )
ev
↪→ C

[
RO(Q, V )

]	 pr�

−→
(
C

[
R(Q, V )

]G(V )
)	 ψ�

−→ L(Q)	 .

It will be shown later that the composite map above is injective, and the image
of RO(Q, V ) is a coadjoint orbit in L(Q)	. Thus, a key step in proving Theorem
1.2 is the construction of Lie algebra map ψ in (1.3).
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We now illustrate our construction of ψ in a very special case, where Q is the
quiver consisting of a single vertex and a single edge-loop (see Example above).
To define the Lie algebra L(Q), it is convenient to introduce an auxiliary 2-
dimensional symplectic vector space (E, ω) with basis x, y (corresponding to the
two loops in Q) such that ω(x, y) = 1. For any p, q ≥ 0, we define a C-bilinear
map { , }ω : E⊗p × E⊗q −→ E⊗(p+q−2) by the formula:

(1.4) {u1 ⊗ u2 ⊗ . . . ⊗ up , v1 ⊗ v2 ⊗ . . . ⊗ vq}ω
=

p∑
i=1

q∑
j=1

ω(ui, vj)·ui+1⊗. . .⊗up⊗u1⊗. . .⊗ui−1⊗vj+1⊗. . .⊗vq⊗v1⊗. . .⊗vj−1,

where u1, . . . , up, v1, . . . , vq ∈ E. Assembled together, these maps give a bi-
linear pairing {−,−}ω : TE × TE −→ TE, where TE =

⊕
i≥0 E⊗i is the

tensor algebra of E. Let [TE, TE] ⊂ TE denote the C-linear span of the set
{a · b − b · a}a,b∈TE .

Proposition 1.5. The pairing {, }ω gives rise to a well-defined Lie algebra
structure on the vector space L(Q) := TE/[TE, TE].

Remark. One of the goals of the paper is to give an interpretation of the
Lie algebra (TE/[TE, TE] , {, }ω) as a sort of Poisson algebra associated to an
appropriate ‘non-commutative’ symplectic variety.

To complete our construction we must define a Lie algebra morphism ψ :
L(Q) = TE/[TE, TE] → C[R(Q, V )]G(V ), see (1.3). As we know, for V = Cn

one has: R(Q, V ) 
 gln(C) ⊕ gln(C), and G(V ) 
 PGLn. It is convenient to
identify the tensor algebra TE with the free associative algebra generated by
x, y. We define a C-linear map tr : TE → C[gln ⊕ gln] by assigning to any
non-commutative monomial f = xk1 · yl1 · xk2 · . . . ∈ TE a polynomial function
trf ∈ C[gln ⊕ gln], given by the formula:

trf : (X, Y ) �→ Trace(Xk1 · Y l1 · Xk2 · . . . ) , X, Y ∈ g = gln .(1.6)

It is clear that trf ∈ C[gln ⊕ gln]GLn , and that trf = 0 if f ∈ [TE, TE], by
symmetry of the trace. Thus, the assignment: f �→ trf gives a well-defined
linear map ψ : L(Q) = TE/[TE, TE] −→ C[gln ⊕ gln]GLn . It turns out that
this map is a Lie algebra morphism. This completes our construction, and the
outline of the proof of Theorem 1.2.

Example. Calogero-Moser space. Let Q be the quiver consisting of a
single vertex and a single edge-loop at this vertex, and assume dimV = n, as
above. Then, g(V ) = pgln. We will be concerned with the coadjoint orbit
O ⊂ g(V )∗ = sln, formed by all n × n-matrices of the form: s - Id , where s is
a rank 1 semisimple matrix such that Trace(s) = Trace(Id) = n. Thus, O is a
closed G(V )-conjugacy class in sln, and it has been shown in [W] that

µ−1(O) =
{
(X, Y ) ∈ sln×sln

∣∣ [X, Y ]+Id is a rank one semisimple matrix
}

,
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is a smooth connected algebraic variety and the AdG(V )-diagonal action on
µ−1(O) is free. The reduced space M := µ−1(O)/G(V ) is, according to [KKS]
(see also [W]), nothing but the phase space of the (rational) Calogero-Moser
integrable system. This is a smooth affine algebraic symplectic manifold. Thus,
Theorem 1.2 makes M a coadjoint orbit in (A/[A, A])∗, where A = TE = C〈x, y〉.
This very special case was the starting point of our analysis.

An earlier version of this paper has been greatly motivated by [BW], whose
question led me to the development of non-commutative geometry in the special
case of the Calogero-Moser space. The results presented in §3 below form a
natural generalization of the Calogero-Moser case. This generalization has been
found simultaneously and independently by L. Le Bruyn [LB1] and the author.

2. Non-commutative symplectic geometry

Throughout this paper we will be working over a ground field k of character-
istic zero, and write ⊗ = ⊗k. We fix a commutative unital k-algebra B, and for
any B-bimodule M , write T j

BM = M ⊗
B

. . . ⊗
B

M (j factors M), which is a
B-bimodule again.

Let A be a unital associative k-algebra containing the commutative algebra
B as a subalgebra. Recall that the free differential envelope of A over B is
a graded vector space Ω•

B
A =

⊕
j≥0 Ωj

B
A, where Ωj

B
A = A

⊗
B T j

B(A/B) is
the B-bimodule formed by linear combinations of expressions a0 · da1 . . . daj ∈
A⊗T j

B(A/B). Moreover, it is known, cf. [L], that there is a B-bimodule isomor-
phism: Ω•

B
A 
 ⊕

j≥0 T j
B(Ω1

B
A) , and there is a B-bimodule super-differential

d : Ω•
B
A → Ω•+1

B
A, making Ω•

B
A an associative differential graded algebra.

Given α ∈ Ωi
B
A , β ∈ Ωj

B
A, we put: [α, β] = α · β − (−1)ijβ · α , and write

[Ω•
B
A , Ω•

B
A] for the B-linear span of all such super-commutators. Following

Karoubi [Ka], see also [L, §2.6], define the relative non-commutative de Rham
complex of the pair (A, B) as the differential graded vector space:

DR•
B
A = Ω•

B
A/[Ω•

B
A , Ω•

B
A] , DR•

B
A =

⊕
j≥0

DRj
B
A ,

where the differential and the grading are induced from those on Ω•
B
A. Abusing

the notation we will write: a0 · da1 . . . daj ∈ DRj
B
A, meaning the corresponding

class modulo commutators. We have: DR0
B
A = A/[A, A], and H0(DR•

B
A) =

ker(DR0
B
A → DR1

B
A) = B .

Let Der
B
A denote the Lie algebra of all B-linear derivations of A. Given

θ ∈ Der
B
A one introduces, following [K2], a Lie operator Lθ : Ω•

B
A → Ω•

B
A,

resp. a contraction operator iθ : Ω•
B
A → Ω•−1

B
A, as a derivation, resp. a super-

derivation, of the associative algebra Ω•
B
A defined on generators by the formulas:

Lθ(a0) = θ(a0) , Lθ(da) = d(θ(a)) and iθ(a0) = 0 , iθ(da) = θ(a) ,

∀a0, a ∈ A.
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It is straightforward to verify that the induced operators on DR•
B
A, satisfy the

following standard commutation relations:

(2.1) Lθ = iθ◦d + d◦iθ , [Lθ, iγ ] = i[θ,γ] , [Lθ, Lγ ] = L[θ,γ] ,

iθ◦iγ = −iγ◦iθ,

where all the commutation relations but the last one hold already in Ω•
B
A.

Fix ω ∈ DR2
B
A, and set Der

B
(A, ω) = {θ ∈ Der

B
A | Lθω = 0} . Clearly,

Der
B
(A, ω) is a Lie subalgebra in Der

B
A. The assignment: θ �→ iθω gives a

linear map i : Der
B
A → DR1

B
A. The 2-form ω ∈ DR2

B
A is called non-degenerate

provided the map i is bijective.

Lemma 2.2. Let ω ∈ DR2
B
A be a non-degenerate 2-form such that

dω = 0 in DR3
B
A. Then the map: θ �→ iθω induces a bijection

i: Der
B
(A, ω) ∼−→ (DR1

B
A)closed , that is: θ ∈ Der

B
(A, ω) ⇐⇒ d(iθω) = 0

in DR2
B
A.

Proof. Since, dω = 0, we have: Lθω = iθdω + diθω = diθω . Hence,
θ ∈ Der

B
(A, ω) ⇐⇒ 0 = Lθω = d(iθω).

By Lemma 2.2, one may invert the isomorphism i to obtain a linear bijection
i−1 : (DR1

B
A)closed

∼−→ Der
B
(A, ω). Let: f �→ θf denote the map given by the

composition:

A/[A, A] = DR0
B
A

d−→ (DR1
B
A)exact ↪→ (DR1

B
A)closed

i−1

−→ Der
B
(A, ω) .

(2.3)

Using the map: f �→ θf , we define a Poisson bracket on A/[A, A] by any of the
following equivalent expressions:

{f, g}ω
:= i

θf
(i

θg
ω) = i

θf
(dg) = −i

θg
(df) = L

θf
g = −L

θg
f .(2.4)

Here, in the first expression for {f, g}
ω we have used the composite map: i

θf
◦i

θg
:

DR2
B
A → DR1

B
A → DR0

B
A. Other equalities, e.g.: i

θf
(i

θg
ω) = L

θf
g, follow from

the equation i
θg

ω = dg (which is the definition of θg), the obvious identity:
i

θf
(dg) = L

θf
g, and the last equation in (2.1).

Theorem 2.5. (i) The bracket (2.4) makes A/[A, A] into a Lie algebra.
(ii) The map: f �→ θf gives a Lie algebra homomorphism: A/[A, A] −→

Der
B
(A, ω) .

Proof. We prove (ii) first. To this end, observe that for any θ, γ ∈ Der
B
A, using

the first two identities in (2.1) we get:

i[θ,γ] = Lθ◦iγ − iγ◦Lθ = d◦iθ◦iγ + iθ◦d◦iγ − iγ◦d◦iθ − iγ◦iθ◦d .(2.6)
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Now, take θ = θf and γ = θg, for some f, g ∈ A/[A, A]. Then, iθω = df ,
and iγω = dg. Applying both sides of (2.6) to ω and using that dω = 0 and
d2f = 0 = d2g, we find

i[θf ,θg]ω = d◦iθf
(dg) + iθf

◦d(dg) − iθg
◦d(df) = d◦iθf

(dg) + 0 − 0 = d{f, g}ω .

The latter equation means, by definition, that θ{f,g}ω
= [θf , θg], and part (ii)

follows.
We now prove (i). Skew-symmetry of the bracket {−,−}ω is clear. To prove

Jacobi identity, for any f , g , h ∈ DR0
B

A , we write:

(θf ◦θg − θg◦θf )h = [θf , θg]h = θ{f,g}h = {{f, g} , h} .

The leftmost commutator here equals: {f, {g, h}} − {g, {f, h}} . Therefore, we
get: {f, {g, h}} − {g, {f, h}} = {{f, g}, h} , and the Theorem is proved.

Assume that B = k⊕k⊕ . . .⊕k (direct sum of p copies of the ground field).
For each i ∈ {1, . . . , p}, let 1i ∈ B denote the idempotent corresponding to the
i-th direct summand k.

Further, let V be a finite dimensional left B-module. Clearly, giving such a V
amounts to giving a collection of finite dimensional k-vector spaces {Vi} 1≤i≤p,
one for each i, such that V =

⊕
i Vi, and such that 1i ∈ B acts as the projector

onto the i-th direct summand. We consider the algebra EndV := EndkV of
k-linear endomorphisms of V . The action of B on V makes V ∗ := Homk(V, k)
a right B-module, and gives an algebra imbedding: B ↪→ EndV . Hence, left
and right multiplication by B make EndV a B-bimodule which is canonically
isomorphic to the B-bimodule V ⊗

k
V ∗. Further, the assignment:

f �→ (
tr(11 ·f ·11) , tr(12 ·f ·12) , . . . , tr(1p ·f ·1p)

) ∈ k ⊕ k ⊕ . . . ⊕ k = B

gives a canonical B-bimodule trace map tr : EndV −→ B.

Representation functor. Given a finitely generated associative B-algebra A,
let Hom

B-alg(A, EndV ) denote the affine algebraic variety of all associative alge-
bra homomorphisms ρ : A → EndV , such that ρ

∣∣
B

= IdB . Let Rep(A, V ) :=
k[Hom

B-alg(A, EndV )] denote the coordinate ring of Hom
B-alg(A, EndV ). The natu-

ral action on EndV of the group G(V ) = GL
B
(V ) (of B-linear automorphisms

of V ) by conjugation induces a G(V )-action on Hom
B-alg(A, EndV ). This gives a

G(V )-action on Rep(A, V ) by algebra automorphisms.
The tautological evaluation map: A×Hom

B-alg(A, EndV ) −→ EndV assigns to
any element a ∈ A an EndV -valued function â on Hom

B-alg(A, EndV ). Equivalently,

this function may be viewed as an element â ∈ (
Rep(A, V )

⊗
B
EndV

)G(V ). Tak-
ing the trace on the second tensor factor, one obtains a G(V )-invariant k-valued
function tr(â) ∈ (

Rep(A, V )
⊗

B
B

)G(V ) = Rep(A, V )G(V )
. The assignment:

a �→ tr(â) clearly vanishes on [A, A] due to the cyclic symmetry of the trace
map. Thus, it descends to a well-defined B-linear map

t̂r : DR0
B
A = A/[A, A] −→ Rep(A, V )G(V )

, a �→ tr(â) .(2.7)
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Remark. More generally, for any p ≥ 0, the assignment: a0 · da1 . . . dap �→
tr(â0 · dâ1 . . . dâp) gives a well-defined map from DRp

B
A to the space of G(V )-

invariant regular p-forms (in the ordinary sense) on the algebraic variety
Hom

B-alg(A, EndV ).

3. Lie algebra associated to a quiver

Fix B, a commutative k-algebra and E, a finite rank projective B-bimodule,
i.e. a projective B ⊗ Bop-module. The space E∨ := Hom

leftB-mod
(E, B) has a

canonical B-bimodule structure given by: (b1ϕb2)(e) = ϕ(e · b1) · b2 , where
b1, b2 ∈ B , e ∈ E, and ϕ ∈ E∨.

A B-bimodule map ω : E ⊗
B

E → B will be referred to as a B-bilinear form
on E. For such an ω, the assignment: e �→ ω(− ⊗ e) gives a B-bimodule map
E → E∨. We call ω non-degenerate if the latter map is an isomorphism. If,
furthermore, ω is skew-symmetric, i.e. ω(x, y) + ω(y, x) = 0, for any x, y ∈ E,
we will say that ω is a symplectic B-form on E. For example, for any finite
rank projective B-bimodule V , the bimodule E = V

⊕
V ∨ carries a canonical

symplectic B-form.
Fix a finite dimensional B-bimodule E, and let A = T

B
E :=

⊕
i≥0 T i

B
E be

the tensor algebra, a graded associative algebra such that T 0
B

E = B. For each
i > 0, let (T i

B
E)

cyclic
denote the quotient of T i

B
E by the B-sub-bimodule generated

by the elements:

x1 ⊗
B

x2 ⊗
B

. . . ⊗
B

xi − xi ⊗
B

x1 ⊗
B

. . . ⊗
B

xi−1 , ∀x1, . . . , xi ∈ E .

The following result was obtained independently by L. Le Bruyn [LB1] and
the author.

Lemma 3.1. (i) The de Rham complex of A = T
B
E is acyclic, i.e.,

Hk(DR•
B
A) = 0, for all k ≥ 1. Furthermore, H0(DR•

B
A) = B.

(ii) We have: DR0
B
(T

B
E) = (T

B
E)

cyclic
, and DR1

B
(T

B
E) = (T

B
E)

⊗
B E .

Proof. To prove (i), we imitate, following Kontsevich [K2], the classical proof
of the Poincaré lemma. To this end, introduce a (B-linear) Euler derivation
eu : T

B
E → T

B
E by letting it act on generators x ∈ E = T 1

B
E by: eu(x) = x.

The induced map Leu : DR•
B
A −→ DR•

B
A is diagonalizable and has non-negative

integral eigenvalues. Cartan’s homotopy formula: Leu = d◦ieu + ieu◦d shows that
the de Rham complex is quasi-isomorphic to the zero eigen-space of the operator
Leu, which is the subspace B sitting in degree 0. Part (i) follows. Part (ii) is
straightforward.

From now until the end of the section assume that B = kI , where I is a
finite set, and put A := T

B
E, where (E, ω) is a symplectic B-bimodule. Using

the isomorphism: E
∼−→ E∨ = Hom

leftB-mod
(E, B), provided by ω, one transports

the symplectic structure from E to E∨. Let ω∨ =
∑

r φr ⊗ ψr ∈ E ⊗ E
be the resulting symplectic B-form on E∨. It is straightforward to see that∑

r dφr ⊗ dψr ∈ Ω2
B
A gives a well-defined closed and non-degenerate class in
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DR2
B
A , to be dented ω

DR
. Thus, the general construction (2.4) yields a Lie

bracket { , }ω
DR

on A/[A, A].

Example. For each i ∈ I, let 1i ∈ B = kI denote the idempotent corre-
sponding to the i-th direct summand. Clearly, giving a finite rank B-bimodule
amounts to giving a finite dimensional k-vector space E equipped with a direct
sum decomposition: E =

⊕
i,j∈I Ei,j , where Ei,j = 1i · E · 1j . Thus, one may

think of the data (B, E) as an oriented graph with vertex set I and with dimEi,j

edges going from the vertex i to the vertex j.
Conversely, let Q denote an oriented quiver with vertex set I. Set B = kI ,

and let EQ be the k-vector space with basis formed by the set of edges {a ∈ Q} .
Then EQ has an obvious B-bimodule structure, and T

B
(EQ) is known as the

path algebra of Q. Further, the B-bimodule EQ associated with Q, the double of
Q, has a natural symplectic B-form. The corresponding class in DR2

B

(
T

B
(EQ)

)
is given by the formula: ω

DR
=

∑
a∈Q da ⊗ da∗ .

In the special case B = k, the Lie bracket { , }ω
DR

on A/[A, A] has been
introduced by Kontsevich [K2] in a somewhat different way as follows. Let
x1, . . . , xn , y1, . . . , yn be a symplectic basis of the vector space E, i.e. a k-basis
such that: ω(xi, yj) = δij , and ω(xi, xj) = ω(yi, yj) = 0. By Lemma 3.1(ii) ,
one has: DR1

kA 
 A ⊗ E. Kontsevich exploits this isomorphism to write any
1-form α ∈ DR1

kA as: α =
∑n

i=1 Fxi
(α) ⊗ xi +

∑n
j=1 Fyj

(α) ⊗ yj , for certain
uniquely determined elements Fxi(α) , Fyj (α) ∈ A. He then introduces , for any
i = 1, . . . n, the following k-linear maps:

∂

∂xi
,

∂

∂yi
: DR0

kA −→ A , given by
∂f

∂xi
:= Fxi(df) and

∂f

∂yi
:= Fyi(df) .

For instance, let n = 2 so that A = k〈x, y〉, and DR0
kA = k〈x, y〉

cyclic
, see Lemma

3.1(ii). Then, given a monomial a1a2 . . . ap ∈ k〈x, y〉
cyclic

, where each ai equals
either x or y, we have an explicit formula:

∂(a1a2 . . . ap)
∂x

=
∑

{i∈[1,p]
∣∣ ai=x} ai+1 · . . . · ap · a1 · a2 · . . . · ai−1 ,

and a similar formula holds for ∂(a1a2...ap)
∂y .

Using the maps ∂
∂xi

, ∂
∂yi

, Kontsevich defines (put another way: gives a coor-
dinate expression for) the Lie bracket {−,−}ω by the familiar formula:

(3.2) {f, g}ω :=
n∑

i=1

( ∂f

∂xi
· ∂g

∂yi
− ∂f

∂yi
· ∂g

∂xi

)
mod [A, A] ∈ A/[A, A] = DR0

kA ,

where ”dot” stands for the product in A. We leave to the reader to check that
formulas (2.4), and (1.4) give rise to the same bracket on DR0

kA = A/[A, A] as
formula (3.2).
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In the general case of an arbitrary quiver Q, the analogue of Kontsevich’s
formula (3.2) for the Poisson bracket associated with the algebra A = TB(EQ),
in obvious notation, cf. (1.1), is:

(3.3) {f, g}ω =
∑
a∈Q

(∂f

∂a
· ∂g

∂a∗ − ∂f

∂a∗ · ∂g

∂a

)
mod [A, A] ∈ A/[A, A] = DR0

B
A .

The next Proposition gives a non-commutative analogue of the classical Lie
algebra exact sequence:

0 → constant functions → regular functions → symplectic vector fields → 0 ,

associated with a connected and simply-connected symplectic manifold.

Proposition 3.4. Given a B-symplectic structure on E, for A = T
B
E, there is

a natural Lie algebra central extension:

0 −→ B −→ A/[A, A] −→ Der
B
(A, ω) −→ 0 .

Proof. It is immediate from formula (2.3) that for the map: f �→ θf we have:
Ker{A/[A, A] −→ Der

B
(A, ω)} = Ker d. By Lemma 3.1(i) we get: Ker d =

B. Further, Lemma 3.1(i) insures that every closed element in DR1
B
A is exact.

This yields surjectivity of the map: A/[A, A] −→ Der
B
(A, ω). Theorem 2.5(ii)

completes the proof.

Representations. We now fix a finite dimensional left B-module V , as at
the end of §2. Observe that if Q is a quiver, and E = EQ is the symplectic
B-bimodule attached, as has been explained earlier, to the double of Q, then for
A = T

B
(EQ), in the notation of the Introduction we have: Hom

B-alg(A, EndV ) =
R(Q, V ). In general, let E be a finite dimensional symplectic B-bimodule.
Then, for A = T

B
E, one has: Hom

B-alg(A, EndV ) = Hom
B-bimod(E, EndV ) . The

latter space can be naturally identified with E∨ ⊗
B
EndV . Note that we have

the symplectic B-form ω∨ on E∨, and a non-degenerate symmetric bilinear
form tr : EndV ⊗

B
EndV −→ B, given by: (F1, F2) �→ tr(F1◦F2) . By stan-

dard Linear Algebra, the tensor product of a skew-symmetric and symmetric
non-degenerate forms gives the skew-symmetric non-degenerate bilinear form:
ω

Rep
:= ω∨ ⊗ tr. The 2-form ω

Rep
makes E∨ ⊗

B
EndV , hence, Hom

B-alg(A, EndV ), a
symplectic B-bimodule, therefore gives rise to a G(V )-invariant Poisson bracket
{ , }ω

Rep
on the coordinate ring k[Hom

B-alg(A, EndV )] = Rep(A, V ). The invariants,

Rep(A, V )G(V )
, clearly form a Poisson subalgebra in Rep(A, V ), and we have:

Proposition 3.5. The map t̂r : A/[A, A] −→ Rep(A, V )G(V ) defined in (2.7)
is a Lie algebra homomorphism, that is, for any f, g ∈ A, one has:

{t̂rf , t̂rg}ω
Rep

= t̂r({f, g}ω
DR

) .

Proof. Straightforward calculation for f, g taken to be non-commutative mono-
mials.
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We can now complete the proof of Theorem 1.2. As we have mentioned in
the Introduction, the G(V )-action on Hom

B-alg(A, EndV ) = E∨⊗
B
EndV turns out

to be Hamiltonian, and the corresponding moment map µ : E∨ ⊗
B
EndV −→

g(V )∗ = sg(V ), cf. (1.1), is given by the following formula:∑
i

φi ⊗ Fi �→
∑
j<k

ω∨(φj , φk) · [Fj , Fk] ∈ sg(V ) , φi ∈ E∨ , Fi ∈ EndV.(3.6)

Fix O ⊂ sg(V ), a closed AdG(V )-orbit, and assume that the group G(V )
acts freely on the subvariety µ−1(O) ⊂ E∨ ⊗

B
EndV . Then, the orbit space

µ−1(O)/G(V ) is a smooth affine subvariety in Spec(Rep(A, V )G(V )).

Proposition 3.7. The composite map:

µ−1(O)/G(V ) ↪→ Spec
(
Rep(A, V )G(V ))
evaluation−−−−−−→ (

Rep(A, V )G(V ))∗ tr∗−→ (A/[A, A])∗

is injective and makes µ−1(O)/G(V ) a coadjoint orbit in (A/[A, A])∗.

Proof. Set X = µ−1(O)/G(V ), a smooth affine variety. As we have argued
in §1, proving the proposition amounts to showing that regular functions on
Spec

(
Rep(A, V )G(V )) of the form tr(â) , a ∈ A/[A, A], separate points and tan-

gents of the variety X ⊂ Spec
(
Rep(A, V )G(V )). This is clearly true for the

whole algebra Rep(A, V )G(V ), since it is true for the algebra k[X], and every
regular function on X is obtained from an element of Rep(A, V )G(V ), by restric-
tion.

We now use the result of Le Bruyn- Procesi [LP], saying that the algebra
Rep(A, V )G(V ) is generated by elements of the form:

tr(1̂i · x̂1 · x̂2 · . . . · x̂k · 1̂i) , i = 1, . . . , p , xj ∈ E , k ≥ 1 .

The expression above is nothing but tr(â), for a = 1i ·(x1⊗. . .⊗xk)·1i ∈ T k
B

E ⊂
A. It follows that, although the map t̂r : A/[A, A] −→ Rep(A, V )G(V ) is not
itself surjective, the algebra Rep(A, V )G(V ) is generated by its image. Thus,
elements of the image separate points and tangents of the variety X.

Quantization. Fix a quiver Q, and set A = T
B
(E

Q
). Consider the k-vector

space, R(Q, V ), of representations of Q in a B-bimodule V . Recall the canon-
ical identification: R(Q, V ) = T ∗R(Q, V ). There is an interesting ”quantiza-
tion” of the map t̂r : A/[A, A] −→ C[R(Q, V )]G(V ), in which the Poisson al-
gebra C[R(Q, V )]G(V ) = C[T ∗R(Q, V )]G(V ) gets replaced by the Lie algebra
D

(
R(Q, V )

)G(V ) of G(V )-invariant polynomial differential operators (with re-
spect to the commutator bracket) on the vector space R(Q, V ).

To construct this quantization, recall that V = ⊕
i∈I

Vi. For each
vertex i ∈ I, we choose and fix a basis {vµ}µ=1,2,... ,dim Vi

in Vi, and
let {v̌µ} be the dual basis of V ∗

i . By definition we have: R(Q, V ) 
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⊕
a∈Q Hom(Vtail(a) , Vhead(a)), and we equip each Hom-space above with the in-

duced basis:
{

δµν = v̌ν ⊗ vµ ∈ V ∗
tail(a)

⊗ Vhead(a)

}
. Any edge a ∈ Q gives a

linear map â ∈ Hom(Vtail(a) , Vhead(a)), which we can write, using the basis,
in the matrix form: â = ‖aµν‖, that is: â =

∑
µν aµν · δµν . Further,

write
{

δ∗µν ∈ Hom
(
Vtail(a) , Vhead(a)

)∗} for the dual basis in the dual space. To

a∗, the edge of Q reverse to an edge a ∈ Q, we associate the element
â∗ :=

∑
µν a∗

µν · δ∗µν ∈ Hom
(
Vtail(a) , Vhead(a)

)∗
, whose matrix ‖â∗

µν‖ := ‖âνµ‖
is transposed to that of a. Equivalently, one may view â∗ as a linear map
â∗ : Vhead(a) → Vtail(a) , given by the transposed matrix, and identify this map
with a linear function on Hom(Vtail(a) , Vhead(a)) via the trace pairing. In what
follows, we will treat a base vector δµν as a first order constant coefficient differ-
ential operator on the vector space Hom(Vtail(a) , Vhead(a)) (or on the larger space,
R(Q, V ), containing it as a direct summand), and the dual base vector, δ∗µν , as
a linear function on that vector space.

Recall next that by Lemma 3.1(ii) one has an isomorphism: A/[A, A] 
 A
cyclic

.
One may further identify A

cyclic
with the space A

cyclic ⊂ A formed by the closed
paths in Q (modulo cyclic permutations). Given such a closed path x = x

(1) ·
. . . · x(p) ∈ A

cyclic

, where each x
(p) is an edge of Q and, moreover, head(x(p) ) =

tail(x(1) ), we define a differential operator D(X) ∈ D
(
R(Q, V )

)
by the formula:

D(x) =
∑

µ1 ,µ2 ,... ,µp

(x
(1)

)µ1µ2
· (x(2)

)µ2µ3
· . . . · (x(p−1)

)µ
p−1µp

·(3.8)

· (x(p)
)µp µ1

· 1
p

∑
�

(
δ

(1)

µ1µ2
· δ(2)

µ2µ3
· . . . · δ(p−1)

µ
p−1µp

· δ(p)

µp µ1

)
.

In this formula, each x(k) stands for either a, an edge of Q, or a∗, the reverse
edge. Accordingly, the symbol δ(k)

µν
is understood as follows

δ(k)
µν

=
{

δµν = 1-st order constant differential operator if x(k) = a ∈ Q
δ∗

µν
= multiplication by linear function if x(k) = a∗, for a ∈ Q.

Finally,
∑

� (X ·Y · . . . ·Z) denotes the sum over cyclic permutations of factors
X, Y, . . . , Z.

The assignment: x �→ D(x) of formula (3.8) gives a well-defined map
D : A

cyclic −→ D
(
R(Q, V )

)
, independent of the choices of bases. Moreover, it is

clear that the image of this map is contained in D
(
R(Q, V )

)G(V ), the space of
G(V )-invariant differential operators. In the Proposition below we treat the al-
gebra D

(
R(Q, V )

)G(V ) as a Lie algebra with respect to the commutator bracket.
A direct calculation, left out for the reader, yields the following analogue of
Proposition 3.5(ii):

Proposition 3.9. The composite map t̂r
quantum

: A/[A, A] ∼−→ A
cyclic

D−→ D
(
R(Q, V )

)G(V ) is a Lie algebra homomorphism.
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Remark. The map t̂r
quantum

is closely related to the construction of M. Hol-
land [Ho].

4. Stabilization: infinite dimensional limit

We keep the setup of §2; in particular, we let B = kI and fix A, a finitely
generated associative B-algebra. Any imbedding: V ↪→ V ′ of finite rank left
B-modules induces a map: Hom

B-alg(A, EndV ) ↪→ Hom
B-alg(A, EndV ′), which is a

closed imbedding of affine algebraic varieties. The latter imbedding gives rise to
the restriction homomorphism of coordinate rings

r
V ′,V : Rep(A, V ′)G(V ′) −→ Rep(A, V )G(V ).(4.1)

Observe that the collection of all finite rank B-modules, V , forms a direct sys-
tem with respect to B-module imbeddings, and we set V∞ := lim−→

V

V , and

let G∞ := lim−→
V

G(V ) be the corresponding ind-group. By definition we put:

Rep(A, V∞)G∞ := lim←−
V

Rep(A, V )G(V ).

There is a standard way to introduce a cocomutative coproduct ∆ :
Rep(A, V∞)G∞ −→ Rep(A, V∞)G∞

⊗
B

Rep(A, V∞)G∞ . To see this, it is conve-
nient to think of Rep(A, V∞) as some sort of coordinate ring k[Hom

B-alg(A, EndV∞)].
Then any choice of B-module isomorphism: V∞

$
 V∞ ⊕ V∞ gives a morphism
of ind-schemes:

Hom
B-alg(A, EndV∞) × Hom

B-alg(A, EndV∞)

↪→ Hom
B-alg

(
A, End(V∞ ⊕ V∞)

) $
∼→ Hom

B-alg(A, EndV∞).

The coproduct ∆ on Rep(A, V∞)G∞ is the one induced by the corresponding
algebra map:

∆ : k[Hom
B-alg(A, EndV∞)]

−→ k[Hom
B-alg(A, EndV∞)]

⊗
B

k[Hom
B-alg(A, EndV∞)] .

Let prim
(
Rep(A, V∞)G∞

)
denote the B-module of primitive elements in

Rep(A, V∞)G∞ , i.e., the elements f ∈ Rep(A, V∞)G∞ such that ∆(f) =
f ⊗ 1 + 1 ⊗ f .

Observe further that the map t̂r
V

: A/[A, A] −→ Rep(A, V )G(V ) given by
(2.7) is compatible with restriction morphisms r

V ′,V , see (4.1), that is, for any
imbedding V ↪→ V ′, one has a commutative triangle: r

V ′,V ◦ t̂r
V ′ = t̂r

V
. There-

fore, the maps {t̂r
V
} give rise to a well-defined limit map tr∞ : A/[A, A] −→

Rep(A, V∞)G∞ .
We now specialize to the setup of §3 and assume that A = T

B
E, for a certain

finite rank projective B-bimodule E. The following result is, in a sense, dual
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to the well-known relationship, see [LQ], [L], between cyclic homology of an
associative algebra A and primitive homology of the Lie algebra gl∞(A).

Proposition 4.2. For A = T
B
E, the map tr∞ sets up a bijection:

tr∞ : A/(B + [A, A]) ∼−→ prim
(
Rep(A, V∞)G∞

)
.

Notice next that, for A = T
B
E, we have: Rep(A, V∞) =

k[Hom
B-bimod(E, EndV∞)], is a polynomial algebra with a natural grading, that

also induces a grading on Rep(A, V∞)G∞ . Furthermore, the coproduct ∆ is
compatible with the (graded) algebra structure, hence makes Rep(A, V∞)G∞ a
commutative and cocomutative graded Hopf B-algebra. The structure theo-
rem for commutative and cocommutative graded Hopf algebras implies that
Rep(A, V∞)G∞ must be the symmetric algebra (over B) on the B-bimodule of its
primitive elements. Therefore, Proposition 4.2 yields

Corollary 4.3. For A = T
B
E, the map tr∞ extends, by multiplicativity, to a

graded isomorphism of Poisson algebras:

Sym
• (

A/(B + [A, A])
) ∼−→ Rep(A, V∞)G∞ .

Remark. It is interesting to note that, for any finite dimensional V such that
dimV > 1, the variety Spec

(
Rep(A, V )G(V )

)
is quite complicated, e.g., in the

Calogero-Moser case. Nonetheless, Corollary 4.3 says that the ‘limiting’ variety
Spec

(
Rep(A, V∞)G∞

)
is always a vector space.

Proof of Proposition 4.2. It is clear from definitions, that tr∞(f) ∈ Rep(A, V∞)G∞

is a primitive element, for any homogeneous element f ∈ A such that deg f > 0.
Furthermore, one verifies that any element not contained in the image of the map
tr∞ cannot satisfy the equation ∆(f) = f ⊗ 1 + 1 ⊗ f , hence, is not primitive.
Thus, the map tr∞ is surjective, and it suffices to prove it is injective.

In order to avoid complicated notation, we restrict ourselves to proving in-
jectivity in the special case of the quiver Q consisting of a single vertex and a
single edge-loop, that is the Calogero-Moser quiver (the general case goes in a
similar fashion with minor modifications). Thus, we assume that A = k〈x, y〉,
and therefore, Rep(A, V∞) = k[gl∞ ⊕ gl∞], where gl∞ := lim−→ gln(k) . We must

show that, given f ∈ A, the equation: tr∞(f) = 0 implies: f ∈ [A, A]. This is
proved as follows (the argument below seems to be standard, but we could not
find an appropriate reference in the literature).

Let A = k〈x1, x2, . . . , y1, y2 . . . 〉 be the free associative algebra on countably
many variables, and [A, A] the k-linear subspace of A spanned by the commuta-
tors. Similarly to formula (1.6), to any element F ∈ A one assignes a polynomial
function trF in infinitely many matrix variables: X1, X2, . . . , Y1, Y2 . . . ∈ gl∞ ,
by inserting matrices instead of formal variables. We claim that: if F is multi-
linear in all its variables, and the polynomial function trF is identically zero
on gl∞, then F ∈ [A, A]. To prove this, note that modulo [A, A] we can
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write: F (x1, x2, . . . , y1, y2 . . . ) = x1 · �(x2, . . . , y1, y2 . . . ) . Hence, equation:
0 = trF (X1, X2, . . . , Y1, Y2 . . . ) = tr

(
X1 · �(X2, . . . , Y1, Y2 . . . )

)
implies, since

the trace pairing on gl∞ is nondegenerate, that the function �(x2, . . . , y1, y2 . . . )
is identically zero on gl∞. Furthermore, since gl∞ (viewed as an associative alge-
bra) is known to be an algebra without polynomial identities, we conclude that
� = 0. Thus, F ∈ [A, A], and our claim is proved.

We can now complete the proof of the Proposition. Fix f ∈ A such that
trf(X, Y ) = 0 identically on gl∞ ⊕ gl∞. Rescaling transformations: X �→ t ·
X , Y �→ s · Y , ∀t, s ∈ k×, show that we may reduce to the case where f is
homogeneous in X and Y of degrees, say p, q, respectively. We now use the
standard polarisation trick, and formally substitute: x = t1 ·x1 + . . . tp ·xp , y =
s1 · y1 + . . . sq · yq into f , and then take the term multilinear in t1, . . . , sq.
This way we get from f ∈ A a multilinear element F ∈ A such that trF = 0
identically on gl∞. By the claim of the preceeding paragraph we conclude that
F ∈ [A, A]. Observe now that sending all the xi’s to x, and all the yi’s to y
yields an algebra homomorphism π : A → A such that π(F ) = p!q! · f . Applying
this homomorphism to F we get: f = 1

p!q!π(F ) ∈ π([A, A]) = [A, A] .

5. The basics of P-geometry.

Let P = {P(n), n = 1, 2, . . . } be a k-linear quadratic operad with P(1) = k,
see [GiK]. Let Sn denote the Symmetric group on n letters. Given µ ∈ P(n) and
a P-algebra A, we will write: µA(a1, . . . , an) for the image of µ ⊗ a1 ⊗ . . . ⊗ an

under the structure map: P(n) ⊗
Sn

A⊗n −→ A . Following [GiK, §1.6.4], we
introduce an enveloping algebra UPA, the associative unital k-algebra such that
the abelian category of (left) A-modules is equivalent to the category of left
modules over UPA, see [GiK, Thm. 1.6.6]. The algebra UPA is generated by the
symbols: u(µ, a) , µ ∈ P(2), a ∈ A, subject to certain relations, see [Ba, §1.7].

An ideal I in a P-algebra A will be called N -nilpotent if, for any n ≥ N , µ ∈
P(n), and a1, . . . , an ∈ A , one has: µA(a1, . . . , an) = 0, whenever at least N
among the elements a1, . . . , an belong to I. The following useful reformulation
of the notion of a left A-module is essentially well-known, see e.g., [Ba, 1.2]:

Lemma 5.1. Giving a left A-module structure on a vector space M is equivalent
to giving a P-algebra structure on A9M := A ⊕ M such that the following
conditions hold:

(i) The imbedding: a �→ a ⊕ 0 makes A a P-subalgebra in A9M .
(ii) M is a 2-nilpotent ideal in A9M .

A P-algebra in the monoidal category of Z/2-graded, (resp. Z-graded) super-
vector spaces, see [GiK, §1.3.17-1.3.18], will be referred to as a P-superalgebra,
(resp. graded superalgebra). Any P-algebra may be regarded as a P-superalgebra
concentrated in degree zero. Given a finite dimensional (super-) vector space V ,
write V for the same vector space with reversed parity. Let

T
•
P
V :=

⊕
i≥1

P(i) ⊗
Si

V ⊗i and Ť
•
P
V :=

⊕
i≥1

P(i) ⊗
Si

V
⊗i
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be the free graded P-algebra (resp. super-algebra) generated by V .
Fix a P-algebra A, and consider the category of A-algebras, i.e. of pairs (B, p),

where B is a P-algebra and p : A → B is a P-algebra morphism. Note that such
a morphism makes B an A-module. Thus, we get an obvious forgetful functor:
A-algebras −→ A-modules. The result below says that this functor has a right
adjoint:

Lemma 5.2. (i) Given a P-algebra A, there is a functor: M �→ T
•
AM , (resp.

M �→ Ť
•
AM) assigning to a left A-module M a graded P-algebra T

•
AM =⊕

i≥0 T i
AM (resp. graded P-superalgebra Ť

•
AM =

⊕
i≥0 T i

AM ), such that
T 0

AM = A.
(ii) For any P-algebra map: A → B, one has a natural adjunction isomor-

phism:

Hom
A-mod(M, B) ∼−→ Hom

P-alg(T
•
AM, B) .

Proof. If A is a P-subalgebra in a P-algebra Ã, we define a P-algebra T
A
Ã as

the quotient of T•
P
Ã, a free P-algebra, modulo two-sided ideal generated by all

relations of the form:

µ⊗a⊗ ã = µ
Ã
(a, ã) , µ⊗ ã⊗a = µ

Ã
(ã, a) , ∀µ ∈ P(2), a ∈ A ⊂ Ã, ã ∈ Ã ,

where µ ⊗ ã ⊗ a , µ ⊗ a ⊗ ã ∈ P(2) ⊗ Ã⊗2 = T2
P
Ã, and µ

Ã
(a, ã), µ

Ã
(ã, a) ∈

P(1)⊗ Ã = T1
P
Ã. We now apply this construction to the algebra Ã = A9M , and

put T
•
AM := T

A
Ã, where the grading on the left accounts for the number of

occurrences of elements of M , which is well-defined since the relations involved
in the definition of T

A
Ã are ‘homogeneous in M ’.

A closer look at the construction above shows that

T
•
AM = A

⊕
(T•

P
M)

/〈〈
µ(12)(a, m1) ⊗ m2 − m1 ⊗ µ(a, m2)

〉〉
,(5.3)

where 〈〈. . . 〉〉 denotes the two-sided ideal generated by the indicated subset of
P(2) ⊗ M⊗2 = T2

P
M , for all µ ∈ P(2), a ∈ A, m1, m2 ∈ M , and where µ(12)

stands for the action of the transposition (12) ∈ S2 on µ. In particular, we have:
T 0

AM = A and T 1
AM = M .

Let A be a P-algebra and M a left A-module. By Lemma 5.1, we may (and
will) regard A9M as a P-algebra.

Definition 5.4. A k-linear map θ : A → M is called a derivation if the map:
a

⊕
m �→ a

⊕
θ(a)+m , is an automorphism of the P-algebra A9M .

Equivalently, following [Ba, Definition 3.2.6], extend θ to a k-linear map θ& :
A9M → A9M , given by θ& : a ⊕ m �→ 0 ⊕ θa. Then, θ is a derivation if and
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only if, for any µ ∈ P(n), we have:

θ&
(
µ

A�M
(b1, . . . , bn)

)
=

n∑
i=1

µ
A�M

(b1, . . . , bi−1, θ&bi , bi+1, . . . , bn) , ∀b1, . . . , bn ∈ A9M.

Let Der
P
(A, M) denote the k-vector space of all derivations from A to M . It

is straightforward to see that the ordinary commutator makes Der
P
(A, A) a Lie

algebra.
Next we define, following [Ba, Def. 4.5.2], an A-module of Kähler differentials

as the left UPA-module, Ω1
P
A, generated by the symbols da, for a ∈ A, subject

to the relations:
(i) d(λ1a1 + λ2a2) = λ1da1 + λ2da2 , ∀λ1, λ2 ∈ k;
(ii) d(µ(a1, a2)) = u(µ, a1)⊗da2+u(µ(12), a2)⊗da1 , ∀µ ∈ P(2), a1, a2 ∈ A ,

where u(µ, a) denote the standard generators of UPA, see [Ba].

By construction, Ω1
P
A is a left A-module, and the assignment a �→ da gives

a derivation d ∈ Der
P
(A , Ω1

P
A). Moreover, this derivation is universal in the

following sense. Given any left A-module M and a derivation θ : A → M ,
there exists an A-module morphism Ω1θ : Ω1

P
A → M , uniquely determined by

the condition that (Ω1θ)(da) = θ(a) . It follows that the A-module of Kähler
differentials represents the functor Der

P
(A,−), i.e., we have (see [Ba, Remark

4.5.4]):

Lemma 5.5. For any left A-module M there is a natural isomorphism:

Der
P
(A, M) 
 Hom

A-mod(Ω
1
P
A, M) . �

In particular, for M = A, we get an isomorphism: Der
P
(A, A) ∼−→

Hom
A-mod(Ω

1
P
A, A) . We let iθ ∈ Hom

A-mod(Ω
1
P
A, A) denote the morphism: Ω1

P
A →

A, corresponding to θ ∈ Der
P
(A, A) under the isomorphism above.

We set Ω•
P
A := Ť

•
A(Ω1

P
A), a graded P-superalgebra generated by the A-

module Ω1
P
A. Recall that the differential envelope of a P-algebra A is a differen-

tial graded P-super-algebra D•(A) =
⊕

i≥0 Di(A), such that D0(A) = A, and
such that the following universal property holds: For any differential graded P-
superalgebra D̃• =

⊕
i≥0 D̃i , and a P-algebra morphism ρ : A → D̃0 there

exists a unique DG-superalgebra morphism D(ρ) : D•(A) → D̃• such that
D(ρ)

∣∣
D0(A)

= ρ.

Proposition 5.6. (i) On Ω•
P
A, there exists a natural super-differential d :

Ω•
P
A −→ Ω•+1

P
A , d2 = 0, such that its restriction: A = Ω0

P
A −→ Ω1

P
A

coincides with the canonical A-module derivation d : A → Ω1
P
A.

(ii) The differential graded P-superalgebra (Ω•
P
A , d) is the differential enve-

lope of A.
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Proof. We first give a direct construction of the differential envelope D•(A) of a
P-algebra A, as follows. Let A denote a second copy of A viewed as a k-vector
space, and write a for the element of A corresponding to an element a ∈ A. We
form the graded super-vector space A⊕A, where A is placed in grade degree zero,
and A is placed in grade degree 1. Let Ť

•
P
(A⊕A) :=

⊕
i≥1 P(i)⊗

Si
(A⊕A)⊗i

be the free P-superalgebra generated by A⊕A, viewed as a graded superalgebra
with respect to the total grading coming from both the grading on A ⊕ A and
the grading on the tensor algebra. We put: D•(A) := Ť

•
P
(A ⊕ A)/I , where I

is the two-sided ideal generated by the following set:

(5.7) {µ ⊗ a1 ⊗ a2 − µ(a1, a2) ,

µ ⊗ a1 ⊗ a2 + µ ⊗ a1 ⊗ a2 − µ(a1, a2)}µ∈P(2) , a1,a2∈A.

Thus, D•(A) is a graded P-superalgebra.
The k-linear endomorphism of A ⊕ A given by the assignment: a ⊕ a1 �→

0 ⊕ a extends uniquely to a super-derivation: Ť
•
P
(A ⊕ A) −→ Ť

•
P
(A ⊕ A). This

derivation descends to a well-defined derivation d on D•(A). Note that, for any
x ∈ A⊕A we have: d2(x) = 0. This implies, since the subspace A⊕A generates
the algebra D•(A), that d2 = 0 identically on D•(A). Thus, d makes D•(A) a
differential graded P- superalgebra.

The zero-degree component, D0(A), of the super-algebra D•(A) is by con-
struction a P-subalgebra isomorphic to A, i.e., there is a canonical superalgebra
imbedding j : A = D0(A) ↪→ D•(A). Hence, D•(A) may be regarded as an A-
module, and the assignment: a �→ a gives a derivation d ∈ Der

P
(A, D•(A)). This

derivation is universal in the sense explained above (for uniqueness property use
that the superalgebra D•(A) is generated by the subspace A⊕A). Hence D•(A)
is the differential envelope of A.

Observe next that the degree 1 component of D•(A) is isomorphic, by defi-
nition of D•(A), to the quotient of UPA ⊗ A by the relations (i) –(ii) defining
the module Ω1

P
A of Kähler differentials. Therefore, D1(A), the degree 1 com-

ponent of D•(A), is isomorphic to Ω1
P
A and, moreover, the canonical derivation

d : A → Ω1
P
A may be identified with the map: a �→ a ∈ D•(A).

By the universal property of the tensor algebra, the A-module imbedding
Ω1A ↪→ D•(A) can be extended uniquely to a graded super-algebra morphism
f : Ť

•
A(Ω1

P
A) −→ D•(A). To show that f is an isomorphism we construct

its inverse, a map g : D•(A) −→ Ť
•
A(Ω1

P
A), as follows. We have an obvious

imbedding of k-vector spaces: A⊕A ↪→ A⊕Ω1
P
A, given by: a⊕a1 �→ a⊕da1 .

This imbedding extends, by the universal property of a free P-algebra, to a P-
superalgebra morphism g̃ : Ť

•
P
(A ⊕ A) −→ Ť

•
A(Ω1

P
A). The relations defining

the ideal I in formula (5.7) are designed in such a way that the morphism g̃
descends to a well-defined super-algebra morphism g : D•(A) → Ť

•
A(Ω1

P
A). It is

straightforward to verify that g = f−1.
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Remark. Our construction agrees with the notion of non-commutative differ-
ential forms for an algebra over the associative operad, as defined e.g. in [L] and
used in §2 above.

From now on we assume, in addition, that P is a cyclic Koszul operad,
see [GeK], with P(1) = k. In particular, for each n ≥ 1, the space P(n) is
equipped with an Sn+1-action that extends the Sn-module structure on P(n)
arising from the operad structure. Write Sym2

k
A for the symmetric square of

A. Following an idea of Kontsevich, Getzler and Kapranov introduce a functor
R : P-algebras −→ k-vector spaces ,

R : A �→ R(A) :=
Sym2

k
A〈

a0 · µ(a1, a2) − µ(a0, a1) · a2

〉∣∣ a0,a1,a2∈A , µ∈P(2)

.

Generalizing the Karoubi’s construction [Ka] in the associative case, define
de Rham complex of A as the graded vector space DR

•
A := R(Ω•

P
A) . The

differential d on Ω•
P
A induces a differential on DR

•
A.

For any θ ∈ Der
P
A, the morphism iθ : Ω1

P
A → A, introduced after Lemma

5.5, extends to a super-derivation iθ : Ω•
P
A → Ω•−1

P
A, called the contraction

operator. Further, the derivation θ induces, by a standard argument, a derivation
Lθ of the associative algebra UPA, and a map Lθ : Ω1

P
A → Ω1

P
A. The latter

one extends to a derivation Lθ : Ω•
P
A → Ω•

P
A, called the Lie operator. The

maps iθ and Lθ descend naturally to the corresponding operators on DR
•
A. It

is straightforward to verify that these latter operators satisfy all the standard
commutation relations (2.1).

6. Symplectic geometry of a free P-algebra.

We keep the assumption that P is a cyclic Koszul operad. In this section
which is a generalization of §3, inspired by works of Drinfeld [Dr, Proposition
6.1 and above it] and Kontsevich (private communication, 1994), we consider
the case of a free P-algebra. To avoid unnecessary repetitions and to simplify
notation we only consider the ‘absolute’ case, i.e., the case of the ground ring
B = k.

Fix a finite dimensional k-vector space E, and write A = T
P
E for the free

P-algebra (note that P-algebras are algebras without unit, in general). We have:

R(A) = DR0(A) =
⊕

i≥1
Pi ⊗Si+1

E⊗(i+1) , DR1(A) = A
⊗

E .(6.1)

Let Â =
∏

i≥0 Ti
P
E denote the completion of A with respect to the augmen-

tation, and let Aut(Â) denote the group of continuous algebra automorphisms
of Â. Any such automorphism Φ is determined by its restriction to E = T1

P
E,

a k-linear map φ : E → Â. We have an expansion: φ(v) =
∑∞

i=1 φi(v), where
φi(v) ∈ Ti

P
E. We write dΦ : E → E, for the map: v �→ φ1(v); and we let Aut◦(Â)

be the subgroup of Aut(Â) formed by all automorphisms Φ such that dΦ = IdE .
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Observe further that the obvious grading on the free algebra A = T
P
E induces

a natural grading R
• (A) =

⊕
i R(A)(i), and, for each p ≥ 0, a similar grading

DRp(A) =
⊕

i DRp(A)(i). Fix a closed 2-form ω ∈ DR2A, and let ω = ω0 +
ω1 + . . . , ωi ∈ DR2(A)(i) , be its expansion into graded components. We see,
in particular, that ω0 may be viewed as an ordinary skew-symmetric k-bilinear
form: E × E → k.

Theorem 6.2. (Darboux theorem). (i) A closed 2-form ω = ω0 + ω1 +
. . . ∈ DR2A is non-degenerate if and only if so is the associated bilinear form
ω0 : E × E → k.

(ii) If ω is non-degenerate then there exists an automorphism Φ ∈ Aut◦(Â)
such that: Φ∗ω = ω0.

Proof. Part (i) is clear. Part (ii) is proved by the standard ‘homotopy argument’.
Specifically, we consider a 1-parameter ‘family’:ωt = ω0 + t · ω′ ∈ DR2A[[t]],
where ω′ = ω − ω0 = ω1 + ω2 + . . . ∈ DR2A. The 2-form ω′ being closed, there
exists α ∈ ⊕

p≥1 DR1(A)(p), such that ω′ = −dα. Since ω0 is non-degenerate,
there exists a 1-parameter family θt ∈ k[[t]] ⊗̂ Der

P
A = Der

P
A[[t]] determined

uniquely from the equation: iθtωt = α. We define Φ(t) ∈ Aut(Â[[t]]), a formal
one-parameter family of automorphisms of A, to be the solution of the differential
equation: dΦ(t)

dt = LθtΦ(t) of the form: Φ(t) = Id
A

+ t · Φ1 + t2 · Φ2 + . . . . It
follows from the construction that Φ(t)∗ωt = ω0, see e.g. [GS] for more details.
Note further that the series Φ(t) above has only finitely many terms in any given
grade degree p ≥ 0, i.e. terms that shift the grading on A by p. In particular,
setting t = 1 in this series gives a well-defined element of Φ(1) ∈ Aut◦(Â) and
we get: Φ(1)∗ωt=1 = ω0. But ωt=1 = ω, and part (ii) follows.

Because of this result, there is no loss of generality in considering only degree
zero symplectic 2-forms ω ∈ DR2A, i.e., such that ω = ω0. Fix such an ω, that
is fix (E, ω), a symplectic vector space. Imitating the strategy used in §2 it is
possible to define a Lie bracket on the vector space R(A). We prefer however to
give the following direct explicit construction of this bracket similar to formula
(1.4) in the associative case.

For each i, j ≥ 1, let = : µ⊗ν �→ µ(1, . . . , 1, ν) , denote the operad-composition
map: P(i) ⊗ P(j) 
 P(1) ⊗ . . . ⊗ P(1) ⊗ P(i) ⊗ P(j) −→ P(i + j − 1) , where
1 ∈ k = P(1), see [GeK, Theorem 2.2(2)]. We now change the notation and
write: R•(A) =

⊕
i Ri(A), where Ri(A), previously denoted by R(A)(i), is the

graded component with respect to the grading induced by one on A. Also, let
Sym be the ‘symmetrisation map’, the projection to Sn-coinvariants. For each
i, j ≥ 1, we define a bilinear pairing {−,−}ω : Ri(A) ⊗ Rj(A) −→ Ri+j−1(A)
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as the following composition

Ri(A) ⊗ Rj(A) =
(
P(i) ⊗Si+1 E⊗i+1

) ⊗ (
P(j) ⊗Sj+1 E⊗j+1

) −→(
P(i) ⊗ P(j) ⊗ E⊗i+j+2

)
Si+1×Sj+1

	−→(
P(i + j − 1) ⊗ E⊗i+j+2

)
Si+1×Sj+1

Sym−→(
P(i + j − 1) ⊗Si+j

E⊗i+j
) ⊗

E⊗2 id⊗ω−→
P(i + j − 1) ⊗

Si+j
E⊗i+j = Ri+j−1(A) .

An appropriate modification of the proof of Theorem 2.5, or a direct calcula-
tion, yields

Proposition 6.3. The bracket {−,−} makes R•−1(A) into a graded Lie algebra.

Remark. It is likely, cf. [GeS], that there is a graded Lie super-algebra
structure on DR•(A) extending the one on R(A) = DR0(A), defined above.

Let Der
P
(A, ω) denote the Lie subalgebra in Der

P
A formed by all derivations

θ ∈ Der
P
A such that Lθω = 0. Since ω = ω0, this is equivalent to the requirement

that the degree zero component dθ : A1 → A1 induces an endomorphism of E⊗E
that annihilates ω∨ ∈ E ⊗ E. Using the same argument as in §§2-3, one proves
the following two results

Lemma 6.4. The assignment: θ �→ iθω gives graded vector space isomorphisms:

Der
•
P
(A) ∼−→ DR1(A

•
) and Der

•
P
(A, ω) ∼−→ DR1(A

•
)closed . �

Proposition 6.5. There is a canonical graded Lie algebra central extension:

0 −→ k −→ R•−1(A) −→ Der
•
P
(A, ω) −→ 0 . �

We call a pair (S, tr), where S is a P-algebra and tr is a symmetric non-
degenerate invariant bilinear form tr : S ⊗ S → k, a symmetric P-algebra. Any
such bilinear form is determined, cf. [GeK], by a linear function tr : R(S) →
k , b ⊗ b′ �→ tr(b ⊗ b′) = tr(b, b′).

From now on, fix a finite-dimensional symmetric P-algebra (S, tr). Let
Aut(S, tr) denote the algebraic group of automorphisms of the P-algebra S that
preserve the bilinear form tr. The corresponding Lie algebra Der

P
(S, tr) is

formed by all the derivations θ ∈ Der
P
S such that, for any b, b′ ∈ S, one has:

tr(θ(b) , b′) + tr(b , θ(b′)) = 0 .

Representation functor. For any finitely generated P-algebra A, the set
Hom

P-alg(A, S) has the natural structure of a finite dimensional affine algebraic
variety, acted on by the algebraic group Aut(S, tr). We put Rep(A, S) :=
k[Hom

P-alg(A, S)].
Let now (E, ω) be a finite dimensional symplectic vector space, and A = T

P
E,

the free P-algebra on E. Then we clearly have: Hom
P-alg(A, S) = Hom

k
(E, S) =
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E∗ ⊗
k
S, is a finite dimensional k-vector space. The symplectic 2-form ω on E

gives rise, as in §3, to the symplectic 2-form ω
Rep

:= ω∨ ⊗ tr on Hom
k
(E, S) =

E∗ ⊗
k

S. The action of the group Aut(S, tr) on Hom
P-alg(A, S) preserves this

symplectic form and is, moreover, Hamiltonian. In other words, the vector field
on E∗ ⊗

k
S arising from a derivation θ ∈ Der

P
(S, tr) is induced by an Aut(S, tr)-

invariant Hamiltonian function H
θ
∈ Rep(A, S). Explicitly, the function H

θ
is

given by the following quadratic polynomial on E∗ ⊗
k
S:

H
θ

:
∑

k
x̌k ⊗ sk �→

∑
i<j

ω∨(x̌i , x̌j) · tr(θ(si) , sj) ,

xl ∈ E∗ , sl ∈ S , l = i, j, k.

Write Rep(A, S)Aut(S,tr) for the k-algebra of Aut(S, tr)-invariant polynomial
functions on the k-vector space Hom

k
(E, S). The symplectic form ω

Rep
= ω ⊗ tr

makes Rep(A, S)Aut(S,tr) into a Poisson algebra. We have the standard Lie algebra
central extension:

(6.6) 0 → k → Rep(A, S)Aut(S,tr) δ→ Derω
Rep

(
Rep(A, S)Aut(S,tr)

) → 0 ,

where Der
ω

Rep

(
Rep(A, S)Aut(S,tr)

)
stands for the Lie algebra of derivations of

the commutative algebra Rep(A, S)Aut(S,tr) respecting the Poisson bracket. It
is straightforward to check that the assignment: θ �→ H

θ
gives a Lie algebra

splitting: Der
ω

Rep

(
Rep(A, S)Aut(S,tr)

) −→ Rep(A, S)Aut(S,tr) of the surjective mor-
phism δ in the exact sequence above.

Observe next that the ‘infinite dimensional’ group Aut(A) acts naturally on
Hom

P-alg(A, S). This action commutes with that of the group Aut(S, tr), preserves
the symplectic form ω

Rep
, but it is not Hamiltonian, in general. That means that

the induced Lie algebra morphism ξ : Der
P
A −→ Derω

Rep

(
Rep(A, S)Aut(S,tr)

)
cannot be lifted, in general, to a Lie algebra morphism:

Der
P
A −→ Rep(A, S)Aut(S,tr) , see (6.6).

The following result shows that the Aut(A)-action becomes Hamiltonian af-
ter a 1-dimensional central extension. The result below agrees also with the
philosophy advocated in [KR], saying that, for any finite-dimensional (symmet-
ric) P-algebra S, ‘functions’ on the non-commutative space corresponding to a
P-algebra A should go into genuine regular functions on the affine algebraic
variety Hom

P-alg(A, S).
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Theorem 6.7. There is a natural Lie algebra homomorphism t̂r : R(A) →
Rep(A, S)Aut(S,tr) making the following diagram commute:

0 �� k �� R(A) 6.5 ��

t̂r

��

Der
B
(A, ω) ��

ξ

��

0

0 �� k �� Rep(A, S)Aut(S,tr)
(6.6) �� Derω

Rep

(
Rep(A, S)Aut(S,tr)

)
�� 0

Proof. Very similar to the proof of Proposition 3.4.

Given an action of an algebraic group on a smooth affine algebraic variety
X, let DR•

G(X) denote the G-equivariant algebraic De Rham complex of X,
computing the equivariant cohomology of X.

Problem. Construct a natural morphism of complexes:
DR•A → DR•

Aut(S,tr)

(
Hom

P-alg(A, S)
)

that gives an equivariant lifting of the mor-
phism: DR•A −→ DR•(Hom

P-alg(A, S)
)
, constructed in the Remark at the end

of §2.
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