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ON ELLIPTIC GENERA AND FOLIATIONS

Kefeng Liu1, Xiaonan Ma2, and Weiping Zhang3

Abstract. We prove several vanishing theorems for a class of generalized elliptic
genera on foliated manifolds, by using classical equivariant index theory. The main
techniques are the use of the Jacobi theta-functions and the construction of a new
class of elliptic operators associated to foliations.

1. Introduction

The main purpose of this paper is to prove some vanishing theorems of char-
acteristic numbers for foliated manifolds with group actions. Such type of results
are usually proved by using index theorems or fixed point theorems for foliations
(cf. [HL1]). In this paper we take a rather different route. Instead of using
the heavy machinery about index theory for foliations as developed by vari-
ous people, we use certain new elliptic operators particularly designed to study
integrable subbundles with spin struture, the so-called sub-Dirac operator (cf.
[LiuZ]). With the help of such operators, we are able to prove our theorems for
foliated manifolds by using the classical index theory. Compare with [HL2].

More precisely, let (M, F ) be a transversally oriented compact foliated mani-
fold such that the integrable bundle F is spin and carries a fixed spin structure.
Assume that there is an effective S3-action on M which preserves the leaves
induced by F and also the spin structure on F . Then a special case of our result
shows that the Witten genus ([W, (17)]) of M vanishes if the first Pontryagin
class of F verifies p1(F ) = 0. Note that here we do not assume that the mani-
fold M is spin, so that the Witten genus under consideration is not a priori an
integer.

When the foliation happens to be a fibration, then the above vanishing result
is a direct consequence of the family vanishing theorem proved in [LiuMa1].
Thus our results here generalize the corresponding vanishing results in [LiuMa1]
to foliations.

On the other hand, we will also prove certain vanishing theorems for spin
manifolds with split tangent bundles, by using the similar technique. The ellip-
tic genera we derive in this situation can be viewed as interpolations between
the various classical elliptic genera. They are actually the mixture of the two
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universal elliptic genera. It is interesting to note that, under some mild condi-
tions, we get quite general vanishing theorems. Similar theorems can be proved
for loop group representations.

This paper is organized as follows. In Section 2, we introduce the sub-Dirac
operator. In Section 3, we state our main vanishing theorem for elliptic genus
on a foliated manifold, which will be proved in Section 4 by combining the con-
struction in Section 2 with Jacobi-theta functions. In Section 5, we prove several
vanishing theorems for certain twisted elliptic genera associated to spin mani-
folds with split tangent bundle. In Section 6, we point out other generalizations
and state a conjecture concerning the vanishing of the Witten genus of a foliation
with spin leaves of positive Ricci curvature.

2. Sub-Dirac operator

Let M be an even dimensional smooth compact oriented manifold. Let F be
a sub-bundle of the tangent vector bundle TM of M . Let gTM be a Riemannian
metric on TM . Let F⊥ be the orthogonal complement to F in TM . Then one
has the orthogonal splittings

TM = F ⊕ F⊥,

gTM = gF ⊕ gF⊥
.

(2.1)

Moreover, one has the obvious identification that

TM/F � F⊥.(2.2)

From now on we make the special assumption that F is even dimensional,
oriented, spin and carries a fixed spin structure. Then F⊥ carries an induced
orientation. Set 2p = dimF and 2r = dimF⊥.

Let S(F ) be the bundle of spinors associated to (F, gF ). For any X ∈ F ,
denote by c(X) the Clifford action of X on S(F ). We have the splitting

S(F ) = S+(F ) ⊕ S−(F )(2.3)

and c(X) exchanges S±(F ).
Let Λ(F⊥,∗) be the exterior algebra bundle of F⊥. Then Λ(F⊥,∗) carries

a canonically induced metric gΛ(F⊥,∗) from gF⊥
. By using gF⊥

, one has the
canonical identification F⊥ � F⊥,∗. For any U ∈ F⊥, let U∗ ∈ F⊥,∗ be the
corresponding dual of U with respect to gF⊥

. Now for U ∈ F⊥, set

c(U) = U∗ ∧ −iU ,(2.4)

where U∗∧ and iU are the exterior and inner multiplications by U∗ and U on
Λ(F⊥,∗) respectively. One has the following obvious identities,

c(U)c(V ) + c(V )c(U) = −2〈U, V 〉
gF⊥(2.5)

for U, V ∈ F⊥.
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Let h1, · · · , h2r be an oriented local orthonormal basis of F⊥. Set

τ
(
F⊥, gF⊥)

= (
√−1)rc(h1) · · · c(h2r).(2.6)

Then clearly

τ
(
F⊥, gF⊥)2

= IdΛ(F⊥,∗).(2.7)

Denote

Λ±
(
F⊥,∗) =

{
h ∈ Λ

(
F⊥,∗) : τ

(
F⊥, gF⊥)

h = ±h
}

.(2.8)

Then Λ±(F⊥,∗) are sub-bundles of Λ(F⊥,∗). Also, one verifies that for any
h ∈ F⊥, c(h) exchanges Λ±(F⊥,∗).

We will view both vector bundles

S(F ) = S+(F ) ⊕ S−(F )(2.9)

and

Λ
(
F⊥,∗) = Λ+

(
F⊥,∗) ⊕ Λ−

(
F⊥,∗)(2.10)

as super-vector bundles. Their Z2-graded tensor product is given by

(2.11) S(F )⊗̂Λ
(
F⊥,∗) =

[
S+(F ) ⊗ Λ+

(
F⊥,∗) ⊕ S−(F ) ⊗ Λ−

(
F⊥,∗)]⊕ [

S+(F ) ⊗ Λ−
(
F⊥,∗) ⊕ S−(F ) ⊗ Λ+

(
F⊥,∗)] .

For X ∈ F , U ∈ F⊥, the operators c(X), c(U) extend naturally to

S(F )⊗̂Λ(F⊥,∗).

Let ∇TM be the Levi-Civita connection associated to gTM . Let ∇F , ∇F⊥
be

the resitriction of ∇TM on ∇F , ∇F⊥
respectively. Then ∇F , ∇F⊥

lift to S(F )
and Λ(F⊥,∗) naturally, and preserve the splittings (2.9) and (2.10). We write
them as

∇S(F ) = ∇S+(F ) ⊕∇S−(F ), ∇Λ(F⊥,∗) = ∇Λ+(F⊥,∗) ⊕∇Λ−(F⊥,∗).

Then S(F )⊗̂Λ(F⊥,∗) carries the induced tensor product connection

∇S(F )⊗̂Λ(F⊥,∗) = ∇S(F ) ⊗ IdΛ(F⊥,∗) + IdS(F ) ⊗∇Λ(F⊥,∗).

And similarly for S±(F )⊗̂Λ±(F⊥,∗).
For any vector bundle E over M , by an integral polynomial of E we will

mean a vector bundle ϕ(E) which is a polynomial in the exterior and symmetric
powers of E with integral coefficients.

Let ψ(F ) (resp. ϕ(F⊥)) be an integral polynomial of F (resp. F⊥), then
ψ(F ) (resp. ϕ(F⊥)) carries a naturally induced metric gψ(F ) (resp. gϕ(F⊥))
from gF (resp. gF⊥

) and also a naturally induced Hermitian connection ∇ψ(F )

(resp. ∇ϕ(F⊥)) induced from ∇F (resp. ∇F⊥
).

Our main concern will be on the Z2-graded vector bundle(
S(F )⊗̂Λ

(
F⊥,∗)) ⊗ ψ(F ) ⊗ ϕ

(
F⊥)
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which is[
S+(F ) ⊗ Λ+

(
F⊥,∗) ⊗ ψ(F ) ⊗ ϕ

(
F⊥) ⊕ S−(F ) ⊗ Λ−

(
F⊥,∗)
⊗ψ(F ) ⊗ ϕ

(
F⊥)]

⊕ [
S+(F ) ⊗ Λ−

(
F⊥,∗) ⊗ ψ(F ) ⊗ ϕ

(
F⊥) ⊕ S+(F ) ⊗ Λ−

(
F⊥,∗)

⊗ψ(F ) ⊗ ϕ
(
F⊥)]

.

The Clifford actions c(X), c(U) for X ∈ F , U ∈ F⊥ extend further to these
bundles by acting as identity on ψ(F ) ⊗ ϕ(F⊥).

We can also form the tensor product metric on the new bundles as well as the
tensor product connection on (S(F )⊗̂Λ(F⊥,∗)) ⊗ ψ(F ) ⊗ ϕ(F⊥) given by

∇(S(F )⊗̂Λ(F⊥,∗))⊗ψ(F )⊗ϕ(F⊥) =

∇S(F )⊗̂Λ(F⊥,∗) ⊗ Idψ(F )⊗ϕ(F⊥) + IdS(F )⊗̂Λ(F⊥,∗) ⊗∇ψ(F )⊗ϕ(F⊥),

where ∇ψ(F )⊗ϕ(F⊥) is the tensor product connection on ψ(F )⊗ϕ(F⊥) obtained
from ∇ψ(F ) and ∇ϕ(F⊥), as well as on the ± subbundles.

Now let {fi}2p
i=1 be an oriented orthonormal basis of F . Recall that {hs}2r

s=1

is an oriented orthonormal basis of F⊥. The follwoing elliptic operator is intro-
duced mainly for the reason that the vector bundle F⊥ might well be non-spin.

Definition 2.1. Let DF,ψ(F )⊗ϕ(F⊥) be the operator which maps
Γ(S(F )⊗̂Λ(F⊥,∗) ⊗ ψ(F ) ⊗ ϕ(F⊥)) to itself defined by

DF,ψ(F )⊗ϕ(F⊥) =
2p∑

i=1

c(fi)∇(S(F )⊗̂Λ(F⊥,∗))⊗ψ(F )⊗ϕ(F⊥)
fi

+
2r∑

s=1

c(hs)∇(S(F )⊗̂Λ(F⊥,∗))⊗ψ(F )⊗ϕ(F⊥)
hs

.

Let DF,ψ(F )⊗ϕ(F⊥),+ be the restriction of DF,ψ(F )⊗ϕ(F⊥) to the even part of
(S(F )⊗̂Λ(F⊥,∗)) ⊗ ψ(F ) ⊗ ϕ(F⊥).

Let Â(x), L(x) be the functions of x defined by

Â(x) =
x/2

sinh(x/2)
, L(x) =

x

tanh(x/2)
.

Let Â(F ), L(F⊥) be the corresponding characteristic classes of F , F⊥.
The following result follows easily from the Atiyah-Singer index theorem [AS].

Theorem 2.2. The following index formula holds,

ind
(
DF,ψ(F )⊗ϕ(F⊥),+

)
=

〈
Â(F )ch(ψ(F ))L

(
F⊥)

ch
(
ϕ

(
F⊥))

, [M ]
〉

.
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Now assume that M admits an S1-action which preserves gTM , as well as the
spin structure on F . Then it also preserves the splittings in (2.1). Furthermore,
an equivariant version of the above index formula still holds.

More precisely, let {N} be the set of connected components of the fixed point
set of this circle action. When restricted to the fixed point set, we have the
equivariant decompositions

(2.12) F |N = F0 ⊕ (⊕jEj) , F⊥ = F⊥
0 ⊕ (⊕jLj)

such that the generator e2πit ∈ S1 acts trivially on the real vector bundles F0

and F⊥
0 , and acts on the complex vector bundles Ej and Lj by multiplications

by e2πimjt and e2πinjt respectively. Let {2πixk
j } be the Chern roots of Ej and

{2πizk
j } be the Chern roots of Lj . Note that in our notation, if Ej is a complex

line bundle and REj is the curvature of a connection on Ej , then −REj

2πi = 2πixj .
By (2.12), F0, F⊥

0 are naturally oriented. We fix the orientation on N induced
by the orientations on F0, F⊥

0 .
The following result follows easily from the equivariant index theorem of

Atiyah, Bott, Segal and Singer (cf. [AS]).

Theorem 2.3. The following equivariant index formula for the Lefschetz num-
ber L(g) of the generator g = e2πit ∈ S1 associated to the elliptic operator
DF,ψ(F )⊗ϕ(F⊥),+ holds,

L(g) =
∑
N

〈
Â(F0)L

(
F⊥

0

)
A(F, t)L

(
F⊥, t

)
chg (ψ(F |N )) chg

(
ϕ

(
F⊥|N

))
, [N ]

〉
,

where

A(F, t) =
∏
j,k

1
2sinh(πi(xk

j + mjt))
, L

(
F⊥, t

)
=

∏
j,k

1
tanh(πi(zk

j + njt))

and chg denotes the equivariant Chern character, for examples,

chg(Ej) =
∑

k

e2πi(xk
j +mjt), chg(Lj) =

∑
k

e2πi(zk
j +njt)

3. Elliptic genus for foliations

For any vector bundle E, let us denote the two operations in K-theory, the
total symmetric and exterior power operations, by

Symq(E) = 1 + qE + q2Sym2(E) + · · · ,

Λq(E) = 1 + qE + q2Λ2(E) + · · · ,
(3.1)

where q is a parameter. Recall the relations:

Symq(E1 − E2) = Symq(E1) · Λ−q(E2); Λq(E1 − E2) = Λq(E1) · Sym−q(E2).

In what follows, we will take ψ(F ) to be the Witten element [W]

(3.2) Ψq(F ) = ⊗∞
j=1Symqj (F − dimF )

with q a parameter.
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We now further assume in this section that F is a nontrivial integrable sub-
bundle of TM . Then F induces a foliation on M . We make the basic assumption
that the S1-action on M preserves the leaves induced by F .

Recall that the equivariant cohomology group H∗
S1(M) is defined to be the

usual cohomology group of the space ES1×S1 M , where ES1 denotes the univer-
sal principal S1-bundle over the classifying space BS1. Here we take cohomology
with rational coefficients. The projection

(3.3) π : ES1 ×S1 M → BS1

induces a map

(3.4) π∗ : H∗
S1(pt.) → H∗

S1(M)

which makes H∗
S1(M) a module over H∗

S1(pt.) � Q[[u]] with u a generator of
degree 2.

Let p1(F )S1 be the equivariant first Pontryagin class of F . We can now state
the main result of this section as follows.

Theorem 3.1. If M is connected and the S1-action on M is nontrivial and
p1(F )S1 = n · π∗u2 for some integer n, then the equivariant index of
DF,Ψq(F )⊗ϕ(F⊥),+ is 0. As a consequence, for any Pontryagin class p(TM/F )
of TM/F , we have

(3.5)
〈
Â(F )ch (Ψq(F )) p(TM/F ), [M ]

〉
= 0.

In particular, the Witten genus [W ] of M , which is defined by

(3.6)
〈
Â(TM)ch (Ψq(TM)) , [M ]

〉
,

vanishes.

If the S1-action is induced from an effective S3-action which also preserves the
foliation and the spin structure on F , then one can show that p1(F )S1 = n ·π∗u2

is equivalent to the condition that p1(F ) = 0. This gives us the following

Corollary 3.2. Assume that M is connected and that there is an effective S3-
action that preserves the foliation and the spin structure on F , and that p1(F ) =
0, then the equivariant index of DF,Ψq(F )⊗ϕ(F⊥),+ is 0. In particular, the van-
ishing formula (3.5) holds and the Witten genus given by (3.6) vanishes.

Theorem 3.1 and Corollary 3.2 will be proved in the next section.

4. Proof of Theorem 3.1

Let us first recall the defintion of the Jacobi-theta functions as in [Ch].
For v ∈ C, τ ∈ H = {τ ∈ C, Imτ > 0}, q = e2πiτ , let θ(v, τ) denote the

classical Jacobi theta-function

(4.1) θ(v, τ) = c(q)q1/82sin (πv)
∞∏

n=1

(
1 − qne2πiv

) (
1 − qne−2πiv

)



ON ELLIPTIC GENERA AND FOLIATIONS 367

where c(q) =
∏∞

n=1 (1 − qn). Set

(4.2) θ′(0, τ) =
∂θ(v, τ)

∂v

∣∣∣∣
v=0

.

Since any Pontryagin class p(F⊥) of F⊥ can be written as a linear combination
with rational coefficients of classes of the form L(F⊥)ch(ϕ(F⊥)), we can and we
will assume first that p(F⊥) is of homogeneous degree 2l and that ϕ(F⊥) verifies
that L(F⊥)ch(ϕ(F⊥)) is a nonzero rational multiple of p(F⊥).

Let g = e2πit ∈ S1 be a generator of the S1-action. Let {N} denote the set of
connected components of the fixed point set of the S1-action. Since the S1-action
preserves the leaves induced by F , according to Lemma 3.3 in [HL2], it induces
a trivial action on F⊥|N . Assume that the bundle F |N has the decomposition

(4.3) F |N = F0 ⊕ (⊕jEj) ,

where each Ej is a complex vector bundle on which e2πit acts by e2πimjt, while
the S1 acts trivially on the real vector bundle F0.

Let {2πixk
j } denote the Chern roots of Ej , and let {±2πiyj} denote the Chern

roots of F0⊗RC. By Theorem 2.3 one deduces easily that the Lefschetz number
L(g) associated to the operator DF,Ψq(F )⊗ϕ(F⊥),+ is given by

(4.4) H(t, τ) =

(2πi)−p
∑
N

〈
H(F0, τ)

∏
j,k

(
θ′(0, τ)

θ(xk
j + mjt, τ)

)
L

(
F⊥|N

)
ch

(
ϕ

(
F⊥|N

))
, [N ]

〉
,

where the term H(F0, τ) denotes the characteristic class

(4.5) H(F0, τ) =
∏
j

(
2πiyj

θ′(0, τ)
θ(yj , τ)

)
.

Considered as function of (t, τ), we can obviously extend H(t, τ) to meromor-
phic function on C × H. Note that this function is holomorphic in τ .

Recall that 2p = dimF and that L(F⊥)ch(ϕ(F⊥)) is of homogeneous degree
2l. As the S1 action on M induces a trivial action on F⊥|N , we know that
dimN = 2r + dimF0.

Lemma 4.1. The following formulas hold under the modular transformations,

(4.6) H

(
t

τ
,−1

τ

)
= τp+r−le−πint2/τH(t, τ), H(t, τ + 1) = H(t, τ).

Proof. One deduces easily that the condition on p1(F )S1 implies that∑
j,k

(
2πixk

j + mju
)2

+
∑

j

(2πiyj)2 = n · u2,

which in turn implies that

(4.7)
∑
j,k

(
xk

j

)2
+

∑
j

y2
j = 0,

∑
j,k

mj xk
j = 0,

∑
j

(dimC Ej) m2
j = n.
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By [Ch], we have the following transformation formulas

(4.8) θ

(
t

τ
,−1

τ

)
=

1
i

√
τ

i
e

πit2
τ θ(t, τ), θ(t, τ + 1) = e

πi
4 θ(t, τ).

By (4.7) and (4.8), we get

(4.9) H

(
t

τ
,−1

τ

)
=

1
(2πi)p

·
∑
N

〈
H

(
F0,−1

τ

) ∏
j,k

(
θ′

(
0,− 1

τ

)
θ
(
xk

j + mj
t
τ ,− 1

τ

))
L

(
F⊥)

ch
(
ϕ

(
F⊥))

, [N ]

〉
=

(2πi)−pτpe−πint2/τ
∑
N

〈∏
j

(
2πiyj

θ′(0, τ)
θ(τyj , τ)

)
∏
j,k

(
θ′(0, τ)

θ(τxk
j + mjt, τ)

)
L

(
F⊥)

ch
(
ϕ

(
F⊥))

, [N ]

〉
.

By comparing the (1
2 dimF0 + r) = 1

2 dimN homogeneous terms of the poly-
nomials in x’s and y’s and the Chern roots of F⊥, on both sides, we get the
following equation:

(4.10) τ− dim F0/2

·
〈∏

j

(
2πiτyj

θ′(0, τ)
θ(τyj , τ)

) ∏
j,k

(
θ′(0, τ)

θ(τxk
j + mjt, τ)

)
L

(
F⊥)

ch
(
ϕ

(
F⊥))

, [N ]

〉

= τ r−l

〈
H(F0, τ)

∏
j,k

(
θ′(0, τ)

θ(xk
j + mjt, τ)

)
L

(
F⊥|N

)
ch

(
ϕ

(
F⊥|N

))
, [N ]

〉
.

By (4.9), (4.10), we get the first identity of (4.6). By using (4.8), the second
identity can also be verified easily.

Lemma 4.2. For a, b ∈ 2Z, the following identity holds,

(4.11) H(t + aτ + b, τ) = eπin(a2τ+2at)H(t, τ).

Proof. By [Ch], for a, b ∈ 2Z, we have the transformation formula for the theta-
function,

(4.12) θ(t + aτ + b, τ) = e−πi(a2τ+2at)θ(t, τ).

By using (4.7) and (4.12), we obtain immediately the wanted identity.

Let R denote the real number field.

Lemma 4.3. The function H(t, τ) is holomorphic for (t, τ) ∈ R × H.
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Remark 4.4. Lemma 4.3 is the place where the spin condition on F comes in,
which guarantees that the function H(t, τ) is defined as the equivariant index
of an elliptic operator, which is a virtual character of the S1 representation and
therefore is holomorphic for (t, τ) ∈ R × H.

Proof of Lemma 4.3. Let z = e2πit, K = maxj,N |mj |. Denote by DK ⊂ C2 the
domain

|q|1/K < |z| < |q|−1/K , 0 < |q| < 1.

Let fN be the contribution of the fixed component N in the function H. Then
by (4.1), (4.4), in DK , fN has expansion of the form∏

j

(1 − zmj )−p(p+r)
∞∑

n=0

bN,n(z)qn,

where Σ∞
n=0bN,n(z)qn is a holomorphic function of (z, q) ∈ DK , and bN,n(z) are

polynomial functions of z. So as a meromorphic function, in DK , H has an
expansion of the form

∞∑
n=0

bn(z)qn

with each bn(z) a rational function of z, which can only have poles on the unit
circle {z : |z| = 1}.

Now if we multiply the function H by a function of the form

f(z) =
∏
N

∏
j

(1 − zmj )p(p+r)
,

where N runs over the connected components of the fixed point set, we get a
holomorphic function which has convergent power series expansion of the form

∞∑
n=0

cn(z)qn

with {cn(z)} polynomial functions of z in DK .
By comparing the above two expansions, we get

cn(z) = f(z)bn(z).

On the other hand, we can expand the element Ψq(F ) ⊗ ϕ(F⊥) into formal
power series of the form Σ∞

n=0Rnqn with Rn ∈ K(M). So, for t ∈ [0, 1] \ Q, z =
e2πit, by applying the equivariant index formula to each term we get a formal
power series of q for H:

∞∑
n=0

 N(n)∑
m=−N(n)

am,nzm

 qn

with am,n ∈ C and N(n) some positive integer depending on n.
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By comparing the above formulas we get for t ∈ [0, 1] \ Q, z = e2πit,

bn(z) =
N(n)∑

m=−N(n)

am,nzm.

Since both sides are analytic functions of z, this equality holds for any z ∈ C.
By using the Weierstrass preparation theorem, we then deduce that

∞∑
n=0

bn(z)qn =
1

f(z)

∞∑
n=0

cn(z)qn

is holomorphic on (z, q) in DK which clearly contains the set {(t, q) : t ∈ R, q ∈
H}.

We recall that a (meromorphic) Jacobi form of index m and weight k over
L � Γ, where L is an integral lattice in the complex plane C preserved by the
modular subgroup Γ ⊂ SL(2,Z), is a (meromorphic) function F (t, τ) on C×H
such that

F

(
t

cτ + d
,
aτ + b

cτ + d

)
= (cτ + d)ke2πim(ct2/(cτ+d))F (t, τ),

F (t + λτ + µ, τ) = e−2πim(λ2τ+2λt)F (t, τ),
(4.13)

where (λ, µ) ∈ L and γ =
(

a b
c d

)
∈ Γ. If F is holomorphic on C×H, we say

that F is a holomorphic Jacobi form [EZ].

Lemma 4.5. The function H(t, τ) is a holomorphic Jacobi form of weight p +
r − l and index −n/2 over (2Z)2 � SL(2,Z).

Proof. For γ =
(

a b
c d

)
∈ SL(2,Z), we define its modular transformation on

C × H by

γ(t, τ) =
(

t

cτ + d
,
aτ + b

cτ + d

)
.

Recall the two generators of SL(2,Z) are S =
(

0 − 1
1 0

)
and T =

(
1 1
0 1

)
,

which act on C × H in the following way:

S(t, τ) =
( t

τ
,−1

τ

)
, T (t, τ) = (t, τ + 1).

So Lemmas 4.1-4.3 imply that H(t, τ) is a (meromorphic) Jacobi form of
weight p + r − l and index −n/2 over (2Z)2 � SL(2,Z). We now show that it
actually is holomorphic.

From (4.1) and (4.4) we know that the possible poles of H in C × H are of
the form

(4.14) t =
h

s
(cτ + d),
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where h, s, c, d are integers with (c, d) = 1 or c = 1, d = 0.
We can always find integers a, b such that ad − bc = 1. Then the matrix

(4.15) γ =
(

d − b
−c a

)
∈ SL(2,Z)

induces an action

(4.16) H(γ(t, τ)) = H

(
t

−cτ + a
,

dτ − b

−cτ + a

)
.

Now, if t = h
s (cτ + d) is a polar divisor of H(t, τ), then one polar divisor of

H(γ(t, τ)) is given by

(4.17)
t

−cτ + a
=

h

s

(
c

dτ − b

−cτ + a
+ d

)
,

which exactly gives t = h/s. But by Lemma 4.1, up to a factor that is holomor-
phic in (t, τ) ∈ C × H, H(γ(t, τ)) is still equal to H(t, τ) which is holomorphic
for t ∈ R. This implies that H(t, τ) has no poles in C × H.

Proof of Theorem 3.1. Since by (4.7), n =
∑

j(dimC Ej)m2
j , we have n ≥ 0.

(i) If n = 0, then since the S1-action is nontrivial, it has no fixed point on M .
Thus all the Lefschetz number L(g) vanishes by the fixed point formula.

(ii) If n > 0, then Lemma 4.5 shows that H(t, τ) is a holomorphic Jacobi form
of negative index. By [EZ, Theorem 1.2], H(t, τ) must be zero.

By (i), (ii) and our choice of ϕ(F⊥), one gets (3.5) easily. Formula (3.6) then
follows from (3.5) and the multiplicativity of the Witten elements:

(4.18) Ψq(TM) = Ψq(F ) · Ψq

(
F⊥)

.

Now for a general ϕ(F⊥), we write

(4.19) L
(
F⊥)

ch
(
ϕ

(
F⊥))

=
∑

i

ωi

(
F⊥)

with ωi

(
F⊥) ∈ Hi(M ;Q).

Then for each ωi(F⊥), one can find an integral polynomial ϕi(F⊥) such that

(4.20) L
(
F⊥)

ch
(
ϕi

(
F⊥))

= ni · ωi

(
F⊥)

for some nonzero integer ni. One then verifies that the equivariant index of
DF,Ψq(F )⊗ϕ(F⊥) can be expressed as a linear combination with rational coeffi-
cients of the equivariant indices of DF,Ψq(F )⊗ϕi(F⊥)’s, which have been proved
to be zero.

The proof of Theorem 3.1 is completed.

Proof of Corollary 3.2.. We can either use the simple exact sequence for the S3-
equivariant cohomology groups,

(4.21) H4(BS3) → H4
S3(M) → H4(M)

which follows from the spectral sequence for the fibration

ES3 ×S3 M → BS3
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by using the fact that BS3 is 3-connected. Here ES3 is the universal S3-principal
bundle over the classifying space BS3 of S3.

Alternatively, one may prove this by using the following simple observation.
In fact, at least formally, we may write p1(F )S1 as

(4.22) p1(F )S1 = p1(F ) + Au + n · π∗u2

with A a two form on M .
If the S1-action is induced from an S3-action, then p1(F )S1 should be invari-

ant under the Weyl group action u → −u, which implies A = 0.
This means under the condition of Corollary 3.2, there exists n ∈ Z, such

that p1(F )S1 = nπ∗u2. By Theorem 3.1, we get Corollary 3.2.

By using a special case of the above arguments, one gets the following result
in which the condition on p1(F ) is no longer needed. Compare with [HL2, Prop.
3.2]. It generalizes the classical Atiyah-Hirzebruch vanishing theorem [AH] to
the foliated manifolds.

Theorem 4.6. If an S1 acts nontrivially on a compact connected foliation
(M, F ) and preserves the leaves induced by F as well as the spin structure on
F , then 〈Â(TM), [M ]〉 = 0.

5. Manifolds with split tangent bundle

In this section, we no longer assume that F is integrable. We assume instead
that M itself is a spin manifold and the S1-action preserves the spin structures on
TM and F . Then it also preserves the induced spin structure on TM/F � F⊥.
Consequently, the S1-action on the restriction of F⊥ to the fixed point set of
the S1-action on M need not be trivial.

Let us introduce elements

Rq

(
F⊥)

= ⊗∞
j=1Symqj

(
F⊥ − dimF⊥)

⊗ (⊗∞
m=1Λqm · (F⊥ − dimF⊥))

,

R′
q

(
F⊥)

= ⊗∞
j=1Symqj

(
F⊥ − dimF⊥)

⊗ (⊗∞
m=1Λqm−1/2

(
F⊥ − dimF⊥))

,

R′′
q

(
F⊥)

= ⊗∞
j=1Symqj

(
F⊥ − dimF⊥)

⊗ (⊗∞
m=1Λ−qm−1/2

(
F⊥ − dimF⊥))

.

(5.1)

Recall that since the S1-action preserves gTM , it preserves the orthogonal
splitting

(5.2) TM = F ⊕ F⊥.

Let D denote the canonical Dirac operator on M associated to gTM . We also
consider the twisted Dirac operators

DΨq(F )⊗R′
q(F⊥) = D ⊗ Ψq(F ) ⊗ R′

q

(
F⊥)
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and

DΨq(F )⊗R′′
q (F⊥) = D ⊗ Ψq(F ) ⊗ R′′

q

(
F⊥)

.

Under the above assumptions and notations, the main result of this section
can be stated as follows.

Theorem 5.1. If p1(F )S1 = n · π∗u2 for some integer n �= 0, then the equi-
variant indices of DF,Ψq(F )⊗Rq(F⊥),+, DΨq(F )⊗R′

q(F⊥),+ and DΨq(F )⊗R′′
q (F⊥),+

vanish. In particular, the following three formulas hold,〈
Â(F )L

(
F⊥)

ch (Ψq(F )) ch
(
Rq

(
F⊥))

, [M ]
〉

= 0,〈
Â(TM)ch (Ψq(F )) ch

(
R′

q

(
F⊥))

, [M ]
〉

= 0,〈
Â(TM)ch (Ψq(F )) ch

(
R′′

q

(
F⊥))

, [M ]
〉

= 0.

Proof of Theorem 5.1. Let

(5.4) F |N = F0 ⊕ (⊕jEj) , F⊥∣∣
N

= F⊥
0 ⊕ (⊕jLj)

be the corresponding equivariant decomopositions of F and F⊥, when restricted
to the connected component N of the fixed point set of the S1-action on M .
Assume the generator g = e2πit ∈ S1 acts on Ej by multiplication by e2πimjt

and on Lj by multiplication by e2πinjt.
Let {2πixk

j } denote the Chern roots of Ej and {2πizk
j } denote the Chern roots

of Lj . We also denote by {±2πiyj} and {±2πiwj} the Chern roots of F0 ⊗R C
and F⊥

0 ⊗R C respectively.
Let θ1(v, τ), θ2(v, τ) and θ3(v, τ) be the three theta functions (cf. [Ch]):

θ3(v, τ) = c(q)
∞∏

n=1

(
1 + qn−1/2e2πiv

) ∞∏
n=1

(
1 + qn−1/2e−2πiv

)
,

θ2(v, τ) = c(q)
∞∏

n=1

(
1 − qn−1/2e2πiv

) ∞∏
n=1

(
1 − qn−1/2e−2πiv

)
,

θ1(v, τ) = c(q)q1/82 cos(πv)
∞∏

n=1

(
1 + qne2πiv

) ∞∏
n=1

(
1 + qne−2πiv

)
.

Let us write

G0(τ) = Â(F0)L
(
F⊥

0

)
ch (Ψq (F0)) ch

(
Rq

(
F⊥

0

))
,

G′
0(τ) = Â (TN) ch (Ψq (F0)) ch

(
R′

q

(
F⊥

0

))
,

G′′
0(τ) = Â (TN) ch (Ψq (F0)) ch

(
R′′

q

(
F⊥

0

))
.
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By applying the equivariant index formula (2.21), we get three functions,

G(t, τ) =
∑
N

(2πi)−(p+r− dim N
2 )

·
〈

G0(τ)
∏
j,k

θ′(0, τ)
θ(xk

j + mjt, τ)

∏
j,k

θ1(zk
j + njt, τ)θ′(0, τ)

θ(zk
j + njt, τ)θ1(0, τ)

, [N ]

〉
,

G′(t, τ) =
∑
N

(2πi)−(p+r− dim N
2 )

·
〈

G′
0(τ)

∏
j,k

θ′(0, τ)
θ(xk

j + mjt, τ)

∏
j,k

θ2(zk
j + njt, τ)θ′(0, τ)

θ(zk
j + njt, τ)θ2(0, τ)

, [N ]

〉
,

G′′(t, τ) =
∑
N

(2πi)−(p+r− dim N
2 )

·
〈

G′′
0(τ)

∏
j,k

θ′(0, τ)
θ(xk

j + mjt, τ)

∏
j,k

θ3(zk
j + njt, τ)θ′(0, τ)

θ(zk
j + njt, τ)θ3(0, τ)

, [N ]

〉
corresponding to the equivariant indices of the three elliptic operators
DF,Ψq(F )⊗R(F⊥),+, DΨq(F )⊗R′(F⊥),+ and DΨq(F )⊗R′′(F⊥),+ respectively.

Now recall the definitions of the following three modular subgroups:

Γ0(2) =
{(

a b
c d

)
∈ SL(2,Z) : c ≡ 0 (mod 2)

}
,

Γ0(2) =
{(

a b
c d

)
∈ SL(2,Z) : b ≡ 0 (mod 2)

}
,

Γθ =
{(

a b
c d

)
∈ SL(2,Z) :

(
a b
c d

)
≡

(
1 0
0 1

)

or
(

0 1
1 0

)
(mod 2)

}
.

By using the modular transformation formula of the theta-functions [Ch], we
can immediately prove the following result by proceeding as in the proofs of
Lemmas 4.1 and 4.2.

Lemma 5.2. If p1(F )S1 = n · π∗u2, then G(t, τ) is a Jacobi form over (2Z) �

Γ0(2), G′(t, τ) is a Jacobi form over (2Z) � Γ0(2) and G′′(t, τ) is a Jacobi form
over (2Z) � Γθ. All of them are of index −n/2 and weight p + r.

For γ =
(

a b
c d

)
∈ SL(2,Z), let us use the notation

(5.7) H(γ(t, τ))|m,k = (cτ + d)−ke−2πimct2/(cτ+d)H

(
t

cτ + d
,
aτ + b

cτ + d

)
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to denote the action of γ on a Jacobi form H of index m and weight k.
Recall that 2p = dimF and 2r = dimF⊥. The following lemma can be proved

easily by proceeding as the proof of Lemma 4.3.

Lemma 5.3. For any γ ∈ SL(2,Z), let F (t, τ) be one of the functions G(t, τ),
G′(t, τ) and G′′(t, τ). Then F (γ(t, τ))|−n

2 ,p+r is holomorphic for (t, τ) ∈ R×H.

Again this is the place where the index theory comes in to cancel part of
the poles of these functions. Here the spin conditions on F , TM are crucially
needed.

Now, by using the same argument as in the proof of Lemma 4.5, we get

Lemma 5.4. For a (meromorphic) Jacobi form H(t, τ) of index m and weight k
over L�Γ, assume that H may only have polar divisors of the form t = (cτ +d)/l
in C × H for some integers c, d and l �= 0. If H(γ(t, τ))|m,k is holomorphic for
t ∈ R, τ ∈ H for every γ ∈ SL(2,Z), then H(t, τ) is holomorphic for any t ∈ C
and τ ∈ H.

From Lemmas 5.3 and 5.4 one sees, as in the proof of Theorem 3.1, that the
G’s are holomorphic Jacobi forms of index −n/2, and therefore must be zero.
(Here we have used the fact that n > 0.)

The proof of Theorem 5.1 is completed.

Remark 5.5. If n = 0, then we get the rigidity properties in Theorem 5.1
instead of the vanishing results.

6. Concluding remarks

Motivitate by Corollary 3.2, we find it is interesting and reasonable to make
the following conjecture which may be viewed as a foliation analogue of a con-
jecture of Hoehn and Stolz [S].

We consider an oriented compact foliation M which is foliated by a spin
integrable subbundle F of TM . Let gF be a metric on F .

Conjecture 6.1. If 1
2p1(F ) = 0, and the Ricci curvature of gF along each leaf

is positive, then the Witten genus of M , 〈Â(TM)ch(Ψq(TM)), [M ]〉, vanishes.

As have been remarked in the introduction, we may as well take ψ(F ) or
ϕ(F⊥) in Section 2 as the elements in K(M) induced from loop group represen-
tations. Then the modularity of the characters of the loop group representations
can be used to prove vanishing theorems for the correponding twisted sub-Dirac
operators. On the other hand, the construction of the sub-elliptic operators is
very flexible. For example if the the integrable subbundle of the foliation has al-
most complex structure or Spinc-structure, then we can construct sub ∂̄-operator
or Spinc sub-Dirac operator correspondingly. If there exists a compact Lie group
action on M preserving the leaves, then the rigidity and vanishing theorems can
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be proved for the equivariant indices of such operators which generalize the cor-
responding rigidity and vanishing results for the usual elliptic genera. See [Liu2]
or [LiuMa2] for some details about these.

In concluding, we may also replace the signature operator in the normal di-
rection by other elliptic operators like the de Rham type operator from which
we can derive the vanishing of characteristic numbers like〈

Â(TM) ch (Ψq(F )) e
(
F⊥)

, [M ]
〉

,

where e(F⊥) denotes the Euler class of F⊥.
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