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SPIN 4-MANIFOLDS WITH SIGNATURE= −32

M. Furuta, Y. Kametani, and H. Matsue

Abstract. We show that if X is a closed spin 4-manifold with sign(X) = −32,
then X satisfies b2(X) ≥ 44 = (11/8)|sign(X)|.

1. Introduction

Let X be a closed spin 4-manifold. We denote by bi(X) the i-th Betti number
of X. We write b+

2 (X) (resp. b−2 ) for the maximal dimension of the positive (resp.
negative) definite subspace of H2(X,R) with respect to the intersection form
of X. The signature of X is defined as sign(X) := b+

2 (X) − b−2 (X). Rohlin’s
theorem implies that sign(X) is divisible by 16.

The first author showed that if sign(X) is not zero, then the inequality
b+
2 (X) ≥ 2(−sign(X)/16) + 1 holds. It implies that if sign(X) = −32, then

b+
2 (X) ≥ 5. The purpose of this note is to improve this inequality.

Theorem 1. Suppose that X is a closed spin 4-manifold with sign(X) = −32.
Then X satisfies that b+

2 (X) ≥ 6.

We give three proofs of the above theorem.
The first proof depends on Theorem 22 of [6]. The second proof is more

fundamental and uses stable-homotopy version of Seiberg-Witten invariant. The
third proof is essentially a translation of the second proof by using the language
of spin cobordism.

In 1994 P. B. Kronheimer gave a lecture discussing the inequality in Theorem 1
[7]. The formulation of the third proof is motivated by his argument.

We also give some applications of the above theorem. Some generalizations
along the line of this note is obtained in [5].

Alternative approaches for generalizations of Theorem 1 are discussed by
N. Minami [8], and the first and the second authors [4].(See Section 3.3.)

2. The first two proofs

We will give two proofs of Theorem 1.
By using the surgery along homologically nontrivial loops, we can assume

b1(X) = 0 without loss of generality.

Received September 21, 2000.

293



294 M. FURUTA, Y. KAMETANI, AND H. MATSUE

2.1. The first proof: adjunction inequality. Suppose there exists a spin
4-manifold X which satisfies

b1(X) = 0, − sign(X)
16

= 2, b+
2 (X) = 5.

Let Y be the connected sum X#S2 × S2. Then Y has the same rational coho-
mology ring as K3#K3. From Theorem 22 of [6], any embedded oriented closed
surface Σ in Y satisfies the generalized adjunction inequality

max(2g(Σ) − 2, 0) ≥ [Σ] · [Σ].

On the other hand, there exists an embedded sphere in S2 × S2 with arbitrary
large self-intersection number. Since it implies that Y has the same property,
this contradicts the generalized adjunction inequality.

2.2. The second proof: the stable-homotopy Seiberg-Witten invari-
ant I. Let s be a spin structure on X. We put

k := − sign(X)
16

, l := b+
2 (X).

We would like to show that if k = 2 then l ≥ 6.
Suppose l ≤ 5. Then the stable-homotopy Seiberg-Witten invariant SW (X, s)

is an element of {S(H2), S(R̃l)}Pin2 . (See Section 3.3 for its definition, and [6]
for details.) So it suffices to show the following proposition:

Proposition 2. If l ≤ 5, then {S(H2), S(R̃l)}Pin2 is empty.

Proof. By using the inclusion R̃l ⊂ R̃6, and by restricting the group action, we
have a composition of maps:

{S(H2), S(R̃l)}Pin2 → {S(H2), S(R̃6)}Pin2 → {S(C4), S(R6)}S1 ∼= Z2 .

Proposition 16 of [6] implies that the image of the composition is {1}, if not
empty.

On the other hand, the image of the composition

{S(H2), S(R̃l)}Pin2 → {S(C4), S(Rl)}S1 → {S(C4), S(R6)}S1 ∼= Z2

is {0}, if not empty, since S(Rl) is contractible in S(R6).
Since the above two compositions are the same map, we have a contradiction

if {S(H2), S(R̃l)}Pin2 is non-empty.

3. The third proof

We will give a direct proof of Theorem 1.
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3.1. Spin structures on surface with free involution.

Lemma 3. Let M be an oriented surface, possibly with boundary. Let sM be a
spin structure on M . Suppose M has a free Z2-action preserving the orientation.
Let ι : M → M be the action of the non-trivial element of Z2. We assume that
ι lifts to an automorphism ι̃ of sM which satisfies ι̃2 = −idsM

. We write M̄ for
the quotient space M/ι and p : M → M̄ for the quotient map.

Let u ∈ H1(M̄,Z2) be the element classifying the double covering p. Then
there is a bijection between the set of spin structures on M̄ and the set of Z4-lifts
of u:

{w ∈ H1(M̄,Z4) | u = w mod 2}.
Let sw

M̄
be the spin structure on M̄ corresponding to w. Then we have the relation

p∗sw
M̄ − sM =

p∗w
2

mod 2 ∈ H1(M,Z2).

Remark 4. 1. We used the following notation: the Bockstein exact sequence
implies that the natural map

H1(A,Z2) → Ker(H1(A,Z4) → H1(A,Z2))

is an isomorphism for any space A. We write •/2 mod 2 for the inverse
map of this isomorphism.

2. The bijection is well-defined up to sign. More precisely, if we fix one of the
two lifts of ι to sM , then the bijection is well-defined.

Proof of Lemma 3. Let R̃ be the real line bundle on M̄ such that w1(R̃) = u.
We write C̃ for R̃⊗C. We first show that TM̄⊕C̃ has a canonical spin structure,
which implies that the spin structures on M̄ is in one-to-one correspondence with
the spin structures on C̃.

Let C1 and C2 be two copies of the product bundle M × C. We regard the
circle bundle S(C2) as a trivial spin structure of C1 by using the square map
S(C2) → S(C1), w �→ w2. Let ι̃1 and ι̃2 be the lifts of ι to C1 and S(C2) defined
by

ι̃1 : C1 → C1, (x, z) �→ (ιx,−z)

ι̃2 : S(C2) → S(C2), (x, w) �→ (ιx,
√−1w).

Then ι̃2 is a lift of ι̃1. The square of ι̃1 is the identity and the quotient of C1

by the involution ι̃1 is identified with C̃. Let SM be the Spin(2)-bundle over M
that corresponds to the spin structure sM . A spin structure of TM ⊕C1 is given
by (SM × S(C2))/ ± 1 via the inclusion (Spin(2) × Spin(2))/ ± 1 ⊂ Spin(4),
where we write ±1 for {(1, 1), (−1,−1)}. We denote by s′M this spin structure
on TM ⊕C1, and by ι̃′ the lift of ι to s′M induced from the product ι̃× ι̃2. The
square of ι̃′ is the identity. It implies that s′M descends to a spin structure on
the quotient TM̄ ⊕ C̃.

Let w be a Z4-lift of u. We will construct a spin structure on C̃ by using w.
Let α be the standard generator of H1(BZ4,Z4) ∼= Z4. Since BZ4 = K(Z4, 1),

the Z4-lift w of u corresponds to the homotopy class of a continuous map
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f : M̄ → BZ4 by the relation w = f∗α. Let q : EZ4/Z2 → BZ4 be the
double covering corresponding to α mod 2. Then p : M → M̄ is the pullback of
q by f , and hence C̃ is canonically isomorphic to the pullback of the complex
line bundle (EZ4/Z2×C)/Z2 over BZ4, where Z2 acts on C nontrivially. A spin
structure of this complex line bundle over BZ4 is given by the Spin(2)-bundle
(EZ4×Spin(2))/Z4 over BZ4, where the Z4-action on Spin(2) is given by using
the embedding Z4 ⊂ Spin(2). We define sw

M̄
(C̃) to be the pullback of this spin

structure by f .
The pullback of this spin structure by q is given by the Spin(2)-bundle (EZ2×

Spin(2))/Z2 over BZ2 = EZ4/Z2, which is not isomorphic to the trivial spin
structure on BZ2 × C. The difference of the spin structures of the former and
the latter is given by the nontrivial element of H1(BZ2,Z2) ∼= Z2. Note that
this nontrivial element is equal to

q∗α
2

mod 2.

Pulling back the equality to M , we obtain

p∗sw
M̄ (C̃) − sM (C) =

p∗w
2

mod 2,

where sM (C) is the trivial spin structure on the trivial bundle M × C.
If w and w′ are two Z4-lifts of u, then the difference of the corresponding spin

structures sw
M̄

and sw′
M̄

is given by the element (w − w′)/2 mod 2 in H1(M̄,Z2).
This implies that all the spin structures on C̃ appears by this construction.

The following lemma is a variant of the above one.

Lemma 5. Let B be a manifold, possibly with boundary. Let ι be a free involu-
tion on B and E an ι-equivariant real vector bundle over B. We write B̄ (resp.
Ē) for the quotient of B (resp. E) by ι. Let u be the element of H1(B̄,Z2)
classifying the double covering p : B → B̄. Suppose the following conditions are
satisfied.

dimB − rankE = 2, w1(Ē) − w1(B̄) = 0, w2(Ē) − w2(B̄) = u2.

Then we can take an ”orientation” and a ”spin structure” on the virtual bundle
TM − E so that the following properties are satisfied: Let s be an ι-invariant
section of E transverse to the zero section. We write M for the zero set s−1(0)
and M̄ for the quotient M/ι.

1. There exists a canonical orientation oM and a canonical spin structure sM

on M .
2. The action of ι preserves oM .
3. The involution ι lifts to an automorphism ι̃ of sM which satisfies ι̃2 =

−idsM
.

4. There exists a canonical orientation oM̄ on M̄ such that p∗oM̄
∼= oM .
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5. There is a bijection between the set of spin structures on M̄ and the set

{w ∈ H1(M̄,Z4) | u|M̄ = w mod 2}.
such that if sw

M̄
is the spin structure corresponding to w, then we have the

relation

p∗sw
M̄ − sM =

p∗w
2

mod 2 ∈ H1(M,Z2).(1)

Remark 6. 1. B or E could be non-orientable.
2. Let C̃ be the complex line bundle over B̄ defined to be the quotient of

B×C where ι acts as −1 on C. Then the assumption of the above lemma
is equivalent to the following conditions for the element κ := [TB−E− C̃]
in KO(B̄):

rank(κ) = 0, w1(κ) = 0, w2(κ) = 0.

Proof of Lemma 5. Let C̃ be the complex line bundle over B̄ defined in Remark 6.
Take and fix a real vector bundle F̄ over B̄ satisfying

w1(F̄ ) = w1(Ē), w2(F̄ ) = w1(Ē)2 + w2(Ē).

For instance we can take F̄ = Ē ⊕ Ē ⊕ Ē. Let F = p∗F̄ be the pullback of F̄ on
M .

1. Since w1(Ē⊕ F̄ ) and w2(Ē⊕ F̄ ) vanish, Ē⊕ F̄ is orientable and spin. Take
and fix an orientation and a spin structure on Ē ⊕ F̄ .

2. Since we have w1(C̃) = 0 and w2(C̃) = u2, w1(TB̄⊕ F̄ ⊕ C̃) and w2(TB̄⊕
F̄ ⊕ C̃) vanish, and hence TB̄ ⊕ F̄ ⊕ C̃ is orientable and spin. Take and
fix an orientation and a spin structure on TB̄ ⊕ F̄ ⊕ C̃.

Note that we have the following relations.

(TB ⊕ F ) ⊕ (B × C) = p∗(TB̄ ⊕ F̄ ⊕ C̃)
E ⊕ F = p∗(Ē ⊕ F̄ ),

By pulling back the spin structures on TB̄ ⊕ F̄ ⊕ C̃ and Ē ⊕ F̄ , we obtain the
pullback spin structures on the left-hand sides. Using the trivial orientation and
the trivial spin structure on B × C, we obtain the spin structure on TB ⊕ F .
By stabilizing the isomorphism TM̄ ⊕ Ē|M̄ ∼= TB̄|M̄, we have the isomorphism

(TM̄ ⊕ C̃|M̄) ⊕ (Ē ⊕ F̄ )|M̄ ∼= (TB̄ ⊕ F̄ ⊕ C̃)|M̄.

It implies that TM̄ ⊕ C̃|M̄ has an induced orientation and an induced spin
structure. By pulling back this orientation and the spin structure, we have
an orientation and a spin structure on TM ⊕ (M × C). By using the trivial
orientation and the trivial spin structure on M ×C, we have an orientation oM

and a spin structure sM on M .
The claims 1, 2 and 4 immediately follow from the above construction. The

induced Z2-action on M ×C cannot lift to the trivial spin structure on M ×C.
On the other hand the Z2-action lifts to the spin structure on TM ⊕ (M × C).
Thus we have the claim 3. The claim 5 is a corollary of Lemma 3.
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Corollary 7. We use the notations of Lemma 5. Suppose M is a compact
surface with boundary. We assume the following two conditions.

1. Each boundary component C is not preserved by ι as a set: ιC ∩ C = ∅.
2. The restriction of sM on each boundary component is not the null-cobordant

spin structure.
Then the number of the boundary components of M is divisible by 4.

Proof. We first show that we can take a Z4-lift w of u so that the restriction of
w on the boundary of M̄ is trivial.

Collapse each boundary component of M̄ to get an oriented closed surface M̂ .
Since the restriction of u on each boundary component of M̄ is trivial, we can
extend u to an element û of H1(M̂,Z2). Since M̂ is torsion free, we can take a
Z4-lift ŵ of û. Then we can take w as the pullback of ŵ. From this construction
the restriction of w on the boundary of M̄ is trivial.

The relation (1) implies that the pullback p∗sw
M̄

is isomorphic to sM on the
neighborhood of the boundary of M . Hence the restriction of sw

M̄
on each bound-

ary component C̄ is not the null-cobordant spin structure. It implies that the
number of the boundary components of M̄ is even.

3.2. Equivariant map. We use the following notations.
1. Sp1 = {q ∈ H | |q| = 1}
2. Pin2 = {cos θ + i sin θ}0≤θ<2π ∪ {j cos φ + k sin φ}0≤φ<2π ⊂ Sp1

3. We regard H as a right Pin2 module by the right multiplication.
4. We regard ImH as a Pin2 module by the conjugation.
5. Let R̃ be the non-trivial 1-dimensional real representation of Pin2/S1 =

{±1}.
Note that ImH is isomorphic to R̃3 as Pin2-module. Let V0, V1, W0 and W1 be
four finite dimensional right Pin2 modules which satisfy the following conditions.

1. Any irreducible submodule of V0 or V1 is isomorphic to H. In other words
they are quaternionic vector spaces.

2. dimH V0 − dimH V1 = 2.
3. Any irreducible submodule of W0 or W1 is isomorphic to R̃.
4. dimR W0 − dimR W1 = −5.

Proposition 8. There exists no Pin2-equivariant map from S(V0 ⊕ W0) to
S(V1 ⊕ W1).

Proof. Suppose there is a Pin2-equivariant map

f1 : S(V0 ⊕ W0) → S(V1 ⊕ W1).

Fix isomorphisms

V0
∼= V1 ⊕ H2, (jR + kR) ⊕ (jR + kR) ⊕ iR ⊕ W0

∼= W1

as Pin2-modules. Let f0 be the Pin2-equivariant map

f0 : S(V0 ⊕ W0) → V1 ⊕ W1
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defined to be

f0((v, q0, q1) ⊕ w) = v ⊕ ((q0iq̄0)jk, (q1iq̄1)jk, (q0iq̄0)i − (q1iq̄1)i), w),

where (q)jk (resp. (q)i) is the jk-component (resp. the i-component) of the
quaternion q.

Connect f0 and f1 by a generic Pin2-equivariant one-parameter path

ft : S(V0 ⊕ W0) → V1 ⊕ W1.

Since dimS(W0) + 1 < dimW1, the zero set M = f−1
t (0) does not intersect

S(0 ⊕ W0).

B := (S(V0 ⊕ W0) \ S(0 ⊕ W0))/U(1) × [0, 1]
B̄ := (S(V0 ⊕ W0) \ S(0 ⊕ W0))/P in2 × [0, 1]
E := (S(V0 ⊕ W0) \ S(0 ⊕ W0)) ×U(1) (V1 ⊕ W1) × [0, 1]

Ē := (S(V0 ⊕ W0) \ S(0 ⊕ W0)) ×Pin2 (V1 ⊕ W1) × [0, 1]

s :=
∐

t

ft

By using the Leray-Hirsh theorem for the fiber bundle

RP2 → S(V0)/P in2 → HP(V0),

it is easy to calculate the Stiefel-Whitney classes of B̄ and Ē. In particular we
have

w(B̄) = w(Ē)(1 + u)dim W0−dim W1+3 = w(Ē)(1 + u2) up to degree 2.

So we can apply Lemma 5.
The boundary ∂M = f−1

0 (0) of M consists of two components

{(z0, z1, 0) | z0, z1 ∈ U(1)}/U(1), {(jz0, jz1, 0) | z0, z1 ∈ U(1)}/U(1).

The action of j exchanges these two components. Since B is simply connected,
the ”spin structure” of the virtual bundle TB − E is unique. Let us introduce
another U(1)-action on B as follows:

z : B → B, [(v, q0, q1) ⊕ w] �→ [(v, q0, q1z) ⊕ w].

Then it is easy to see that this U(1)-action lifts to the spin structure of ∂M . It
implies that the spin structure on each boundary component is the Lie group
spin structure, which is not null-cobordant. Now we can apply Corollary 7 to
this situation. Since the number of the boundary components is two, this is a
contradiction.
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3.3. The third proof: the stable-homotopy Seiberg-Witten invariant
II. Now we give the third proof of Theorem 1. Suppose there exists a 4-manifold
X which satisfies all the conditions below.

1. X is an oriented spin closed 4-manifold.
2. b1(X) = 0, sign(X) = −32, b+

2 (X) = 5.

The stable-homotopy Seiberg-Witten invariant of X is an element of

{S(H2), S(R̃5)}Pin2

which is defined to be the inductive limit of the set of the homotopy classes of
Pin2-equivariant maps from S(V0⊕W0) to S(V1⊕W1) satisfying the conditions
of the previous subsection. This contradicts Proposition 8.

Remark 9. Let Z4 be the subgroup of Pin2 generated by j. Let n and m be
any natural numbers. In [9] S. Stolz has determined the necessary and sufficient
condition for some Z4-equivariant map from S(Hn) to S(R̃m) to exist. For ex-
ample he showed that there exists no Z4-equivariant map from S(H2) to S(R̃5).
If one can extend Stolz’s result also for maps stabilized by direct sums of some
copies of R̃ and H, then Proposition 8 would immediately follow. However it
does not seem straightforward to extend and apply Stolz’s method directly to
the stable case. It is still possible to prove the stable version of the result of
Stolz at least in different two ways: One method is given by N. Minami [8]. He
showed more general result which enables us to reduce the stable version to the
absolute case. The other method is given by the first and the second authors [4].
This method uses an extension of Adams’ e-invariant and gives an alternative
proof of the non-existence part of the result of Stolz1.

4. Applications

Theorem 10. Suppose X is a spin 4-manifold which has the same rational
cohomology ring as K3#K3. If X is of the form of the connected sum X0#X1,
then one of the following three cases occur.

1. X0 is a rational homology 4-sphere.
2. X1 is a rational homology 4-sphere.
3. X0 and X1 have the same rational cohomology ring as K3.

Proof. Xi satisfies

b1(Xi) = 0, 16|sign(Xi), 44 ≥ b2(Xi) ≥ 11
8
|sign(Xi)|.

The last inequality comes from the 11/8 estimate for the spin manifolds with
|sign| ≤ 32. These properties imply one of the above three possibilities.

1Added in proof: After the submission of this paper for publication, Minami pointed out
to the authors that M. C. Crabb’s method in Periodicity in Z/4-equivariant stable homotopy
theory, Contemp. Math. 96 (1989), 109–124, would give a proof of the stabilized version.
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Theorem 11. Suppose X is an oriented closed spin 4-manifold which has the
same rational cohomology ring as K3#K3. Let α be a non-torsion class of
H2(X,Z) with α2 = 0. Then α cannot be realized as the fundamental class of
any embedded sphere.

Proof. Suppose α2 = 0 and α is realized by an embedded sphere Σ. Then the
neighborhood of Σ is diffeomorphic to S2 × D2. Using the surgery along Σ, we
obtain a 4-manifold Y . Since both of the two spin structures of ∂(S2 × D2)
can be extended to D3 × S1, we have a spin structure on Y . Since α is not
a torsion class, Y satisfies that b+

2 (Y ) = 5, sign(Y ) = −32. This contradicts
Theorem 1.
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