
Mathematical Research Letters 8, 279–291 (2001)

MONOPOLE EQUATION AND THE
11
8

-CONJECTURE

M. Furuta

1. Introduction

Let M be a 4-dimensional oriented closed spin manifold. We write bl(M) for
the l-th Betti number of M and sign(M) for the signature of M . In [13] Y.
Matsumoto conjectured the following inequality.

Conjecture. b2(M) ≥ 11
8
| sign(M)|.

This conjecture is now known as the 11/8 conjecture. Since the K3 surface
satisfies the equality, the coefficient 11/8 cannot be replaced by a larger number.
In this paper we show a weaker inequality.

Theorem 1. If the intersection form of M is not definite, the following inequal-
ity is satisfied.

b2(M) ≥ 5
4
| sign(M)| + 2.

Note that if the intersection form of M is definite, a theorem of S.K. Donaldson
implies b2(M) = sign(M) = 0 ([6,7]).

V. A. Rohlin’s theorem implies that k = − sign(M)/16 is an integer ([15]).
Let b+ be the dimension of a maximal positive definite subspace of H2(M, Q).
The 11/8-conjecture is equivalent to the inequality 3k ≤ b+. The inequality in
Theorem 1 is equivalent to 2k + 1 ≤ b+.

Donaldson’s theorem mentioned above says that k ≥ 1 implies b+ ≥ 1. Don-
aldson also proved that k ≥ 1 implies b+ ≥ 3 when H1(M, Z) is 2-torsion free
([6,7]). To obtain these estimates he used moduli spaces of instantons on M with
small instanton numbers. In 1994 P. B. Kronheimer explained, in his lecture in
Cambridge, how to use N. Seiberg and E. Witten’s monopole equation to get
similar results ([10]). In particular he showed that k ≥ 1 always implies b+ ≥ 3
without any condition on H1(M, Z).

In this paper we consider moduli spaces of monopoles following Kronheimer’s
lecture. Our key idea is to use a finite dimensional approximation of the mono-
pole equation.

We formulate the monopole equation in Section 2 so that we can see the Pin2-
symmetry of the equation explicitly. The finite dimensional approximation of

Received November 28, 1997. Revision received February 8, 2001.

279



280 M. FURUTA

the equation is constructed in Section 3 and its Pin2-symmetry is described in
Section 4. We prove Theorem 1 in Section 5 by using equivariant K-theory. In
Appendix we summarize some elementary properties of the Adams operations
used in Section 5.

Since the preprint version of this article appeared in 1995, there have been
some related works. See [13], [4] and [8].

2. Monopole equation

To show Theorem 1, we can assume (1) sign(M) is non-positive and (2)
b1(M) = 0 without loss of generality, since (1) if we reverse the orientation
of M , then the sign of sign(M) changes and (2) if b1(M) is not zero, then we
can construct, by using surgery along non-trivial loops, another spin manifold
with its first Betti number zero and with the same second Betti number and
signature. We assume these two conditions in the rest of this paper.

In this section we formulate the monopole equation for the spin structure of
M . Let H be the quaternion numbers and Sp1 be the group of the quaternions
with norm 1. The monopole equation has an S1-symmetry from definition,
where S1 is the intersection of Sp1 with C in H. Let Pin2 be the normalizer
of S1 in Sp1. An important aspect of the equation is the equation has actually
a Pin2-symmetry ([11,16]). This extra symmetry will play a crucial role in the
proof of Theorem 1.

Recall that Spin4 is isomorphic to the product of two copies of Sp1. We define
four Spin4 ×Pin2-modules −H+, +H, −H and +H+ as follows. As vector spaces,
they are just four copies of H. The actions of (q−, q+, q0) ∈ Spin4 ×Pin2 =
Sp1 × Sp1 × Pin2 on a ∈ −H+, φ ∈ +H, ψ ∈ −H and ω ∈ +H+ are defined by
q−aq+

−1, q+φq0
−1, q−ψq0

−1 and q+ωq+
−1 respectively.

For a principal Spin4-bundle P on the 4-manifold M , we have four associ-
ated vector bundles T , S+, S− and Λ from the Spin4 ×Pin2-modules −H+,
+H, −H and +H+. Then they are Pin2-equivariant vector bundles. Let R̃ be
the nontrivial real 1-dimensional Pin2-module defined by the multiplication of
Pin2 /S1 = {±1} and we write Ẽ = E ⊗ R̃ for Pin2-modules or Pin2-equivariant
vector bundles E. We shall consider T̃ and Λ̃ associated to −H̃+ and +H̃+.

Recall that a spin structure of M is a pair of a principal Spin4-bundle P and
an isomorphism TM ∼= T . When we fix this isomorphism, M has a canonical
orientation and a canonical Riemannian metric.

The Spin4 ×Pin2-equivariant map −H+ × +H → −H defined by (a, φ) 
→ aφ
induces the Clifford multiplication C : T⊗S+ → S−. Similarly the Spin4 ×Pin2-
equivariant map −H+ ×−H̃+ → +H̃+ defined by (a, b) 
→ āb induces the twisted
Clifford multiplication C̄ : T ⊗ T̃ → Λ̃. From the construction, C and C̄ are
Pin2-equivariant.

The Riemannian connection induces the covariant derivatives ∇1 on Γ(S+)
and ∇2 on Γ(T̃ ). Let D1 and D2 be the (twisted) Dirac operators

D1 = C∇1 : Γ(S+) → Γ(S−) and D2 = C̄∇2 : Γ(T̃ ) → Γ(Λ̃).
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We write D for the direct sum of D1 and D2:

D = D1 ⊕ D2 : Γ(S+ ⊕ T̃ ) → Γ(S− ⊕ Λ̃).

The operators D1, D2 and D are Pin2-equivariant.
We also need a Pin2-equivariant quadratic map

Q : S+ ⊕ T̃ → S− ⊕ Λ̃

induced from the Spin4 ×Pin2-equivariant map

+H × −H̃+ → −H × +H̃+, (φ, a) 
→ (aφi, φiφ̄).

Then the monopole equation we shall consider is the nonlinear Pin2-equivariant
map

D + Q : V → W,

where V is the L2
4-completion of Γ(S+ ⊕ T̃ ) and W is the L2

3-completion of
Γ(S− ⊕ Λ̃). Note that if u is in L2

4, then Du is in L2
3 and Qu is in L2

4.

Remark. (1) The twisted Clifford multiplication C̄ : T ⊗ T̃ → Λ̃. is identified
with T ∗M ⊗ T ∗M → R ⊕ Λ+ defined by (a, b) 
→ 〈a, b〉 ⊕ p+(a ∧ b). Here 〈·, ·〉
is the inner product, Λ+ is the self-dual part of Λ2T ∗M and p+ : Λ2T ∗M → Λ+

is the orthogonal projection. The real part and the imaginary part of Λ̃ are
identified with R and Λ+ respectively. Since φiφ̄ is purely imaginary, the image
of Q is contained in S− ⊕ Λ+.

(2) The twisted Dirac operator D2 : Γ(T ) → Γ(Λ̃) is identified with d∗ +
d+ : Ω1 → Ω0⊕Ω+. Here Ωk is the k-th forms on M , Ω+ is the self-dual 2-forms,
d∗ is the formal adjoint of the exterior derivative d : Ω0 → Ω1, and d+ is the
composition of d : Ω1 → Ω2 with p+ : Ω2 → Ω+. In particular we have Ker D2 =
H1(M, R) = 0 if b1(M) = 0, and also Coker D2 = H0(M, R)⊕H+(M, R), where
H+(M, R) is the space of the self-dual harmonic 2-forms. Hence the index of D2

is equal to −(1 + b+).
(3) Let A be the set of smooth connections on a complex line bundle L on

M . The monopole equation (for a spin manifold M) is usually defined as a map

F : Γ(S+ ⊗ L) ×A → Γ((S− ⊗ L) ⊕ Λ+), F(φ, A) = (DAφ, F+
A + φiφ̄).

Here DA is the Dirac operator twisted by A and F+
A is the self-dual part of

the curvature FA of A. The gauge group G = Γ(M, S1) of L naturally acts on
Γ(S+ ⊗ L) × A and Γ((S− ⊗ L) ⊕ Λ+). The map F is G-equivariant. Instead
of dividing out by G, we can take the slice at a base point A0 in A. Note that
A = A0 + Ω1 i. The slice is given by A0 + Ker(d∗ : Ω1 → Ω0) i. In particular
when L is the trivial bundle M × C and A0 is the trivial flat connection on
it, F together with the equation of cutting slice is identified with D + Q. (4)
When we restrict F on the slice, the G-symmetry is reduced to the symmetry of
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the stabilizer of A0. The stabilizer is equal to the group of the harmonic maps
Harm(M, S1) from M to S1 whose group structure is induced from that of S1.
(Here we do not have to take L to be trivial.) If we assume b1(M) = 0, then the
harmonic maps are constant, hence we have just an S1-symmetry.

(5) When L is trivial and A0 is the trivial flat connection, we have an extra
symmetry explained earlier. Actually before taking the slice, the map has the
symmetry of 〈Map(M, S1), j〉, which is a subgroup of Map(M, Sp1). Here j is
the constant map with value j. Restricted on the slice, the symmetry becomes
〈Harm(M, S1), j〉.

3. Finite dimensional approximation

An important property of the monopole equation is compactness of the moduli
space of solutions.

Lemma 3.1([11, 16]). The zero set of D + Q is compact.

We introduce the norms of V and W explicitly. Let ‖ · ‖V and ‖ · ‖W be the
L2

4-norm on V and the L2
3-norm on W defined by

‖v‖2
V =

∫
M

(|(D∗D)2v|2 + |v|2), and ‖w‖2
W =

∫
M

(|(DD∗)
3
2 w|2 + |w|2)

respectively. Here D∗ is the formal adjoint of D. More explicitly, D∗ is the
sum of D∗

1 : Γ(S−) → Γ(S+) and D∗
2 : Γ(Λ̃) → Γ(T̃ ), where D∗

1 and D2 are the
formal adjoint of D1 and D2, and identified with the (twisted) Dirac operators
associated to the (twisted) Clifford multiplications T ⊗S− → S+ and T ⊗Λ̃ → T̃
which are induced from the Spin4 ×Pin2-equivariant maps −H+ × −H → +H,
(a, ψ) 
→ āψ and −H+ × +H̃+ → −H̃+, (a, ω) 
→ aω respectively.

These norms are preserved by the Pin2-action. From Lemma 3.1, if R is
sufficiently large, then (D + Q)v �= 0 for any v ∈ V satisfying ‖v‖V ≥ R. For
this R, we have the following estimate.

Lemma 3.2. There is a positive real number ε such that ‖(D + Q)v‖W ≥ ε for
any v ∈ V with ‖v‖V = R.

The proof of the lemma will be given later.
For a nonnegative real number λ, let Vλ be the subspace of V spanned by

the eigenspaces of D∗D with eigenvalues less than or equal to λ. Similarly we
define Wλ by using DD∗. We write pλ for the L2-orthogonal projection from W
to Wλ, and pλ for 1 − pλ.

Lemma 3.3. For sufficiently large λ, we have the estimate ‖pλQv‖W < ε for
any v ∈ V satisfying ‖v‖V = R.

The proof of the lemma will be given later.
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From the lemmas 3.2 and 3.3, the map D + pλQ : V → W has no zeros on
the sphere with radius R centered in 0. The image of Vλ by the map D + pλQ
is contained in Wλ. We write

Dλ + Qλ : Vλ → Wλ

for this restriction, where Dλ is linear and Qλ is quadratic. We consider this
restriction as a finite dimensional approximation of D + Q : V → W . A direct
consequence of this construction is:

Lemma 3.4. The map Dλ + Qλ has no zeros on the sphere with radius R
centered in 0.

The proofs of the lemmas 3.2 and 3.3 are immediate if we use the following
facts which are easily shown from the Sobolev embedding theorem, Hölder’s
inequality, the elliptic estimate for D and the spectral decomposition of DD∗.

(1) For any bounded sequence v1, v2, · · · in V , there is a subsequence v′1, v
′
2, · · ·

weakly convergent to some v∞ such that the sequence Qv′1, Qv′2, · · · is strongly
convergent to Qv∞ in W .

(2) If the sequence v1, v2, · · · is weakly convergent to v∞ in V and the sequence
Dv1, Dv2, · · · is strongly convergent to w∞ in W , then v1, v2, · · · is strongly
convergent to v∞ and we also have Dv∞ = w∞.

(3) For each w in W , ‖pλw‖W is decreasing and convergent to 0 as λ → ∞.

Proof of Lemma 3.2. Suppose there is a sequence v1, v2, · · · in V satisfying
‖vd‖V = R for every d and ‖(D+Q)vd‖W → 0 as d → ∞. From (1) above, if we
replace the sequence by a subsequence, we can assume the sequence is weakly
convergent to some v∞ and the sequence Qv1, Qv2, · · · is strongly convergent to
Qv∞ in W . Then Dv1, Dv2, · · · is strongly convergent to −Qv∞. Hence from
(2) above, the sequence v1, v2, · · · is strongly convergent to v∞. This strong
convergence implies ‖v∞‖V = R and (D + Q)v∞ = 0, which is a contradiction.
�
Proof of Lemma 3.3. Suppose there are sequences v1, v2, · · · in V and λ1, λ2, · · ·
satisfying ‖vd‖V = R and ‖pλdQvd‖W ≥ ε for every d and λd → ∞ as d → ∞.
From (1) above, if we replace the sequence by a subsequence, we can assume
the sequence is weakly convergent to some v∞ and the sequence Qv1, Qv2, · · ·
is strongly convergent to Qv∞ in W . From (3) above, we have ‖pλd0 Qv∞‖W <
ε/2 for some large d0. Since Qvd is strongly convergent to Qv∞, we have
‖pλd0 (Qvd1 − Qv∞)‖W < ε/2 for some d1 ≥ d0. Then, by using (3) again,
we obtain

‖pλd1 Qvd1‖W ≤ ‖pλd0 Qvd1‖W ≤ ‖pλd0 (Qvd1 − Qv∞)‖W + ‖pλd0 Qv∞‖W

< ε/2 + ε/2 = ε,

which is a contradiction. �



284 M. FURUTA

Remark. An alternative way to construct a finite dimensional approximation
is to use an extended version of the Kuranishi map. Let V λ and Wλ be the
completions of the spaces spanned by the eigenspaces of D∗D and DD∗ with
eigenvalues larger then λ respectively. Then the restriction of D on V λ has
the inverse D−1 : Wλ → V λ. Let Φ: V → V be the map defined by Φ =
IdV + D−1pλQ. Suppose u = Φv. Then v is a zero of D + Q if and only if u is
in Vλ and pλ(D + Q)v = 0. It is not hard to show that Φ is close to the identity
on the disk centered in 0 with a fixed radius R, if λ is sufficiently large. So the
map pλ(D + Q)Φ−1 : Vλ → Wλ, which is defined only on a disk centered in 0, is
a finite dimensional approximation in the sense that Φ gives a bijection between
its zeros and the zeros of D + Q : V → W , if we restrict these maps on the
disks. When λ = 0, this construction is called the Kuranishi construction, and
the approximation describes a neighborhood of 0 of the zero set of D + Q. If we
take a larger λ, then the radius R for which the approximation is valid becomes
larger. Since the zero set is bounded, we eventually have an approximation to
describe the whole zero set as λ becomes large enough.

4. Pin2-module structures

Since D is Pin2-equivariant, Vλ and Wλ are Pin2-modules and the approxima-
tions Dλ and Qλ are still Pin2-equivariant. We think of H as a Pin2-module by
using the right Pin2-multiplication. Recall that we assumed k = − sign(M)/16 ≥
0.

Lemma 4.1. There are nonnegative integers m and n such that as Pin2-modules

Vλ = Hk+m ⊕ R̃n and Wλ = Hm ⊕ R̃b++n+1.

Proof. Recall D : V → W is the direct sum of D1 : L4
2(S

+) → L3
2(S

−) and
D2 : L4

2(T ) → L3
2(Λ̃). Let V 1

λ be the subspace of L4
2(S

+) spanned by the
eigenspaces of D∗

1D1 with eigenvalues less than or equal to λ. We define W 1
λ ,

V 2
λ and W 2

λ similarly, then we have the decompositions Vλ = V 1
λ ⊕ V 2

λ and
Wλ = W 1

λ ⊕ W 2
λ as Pin2-modules. There are finitely many points p1, p2, · · · , pl

on M such that the restriction on the fibers over these points is an injection
from V 1

λ to ⊕l
d=1(S

+)pd
which is isomorphic to Hl as a Pin2-module. Since the

Pin2-module H is irreducible, V 1
λ itself is isomorphic to a Pin2-module of the

form Hm′
for some m′. Similarly W 1

λ is of the form Hm for some m. The index
of D1 is equal to dimV 1

λ − dimW 1
λ = 4m′ − 4m, which is on the other hand

calculated from the Atiyah-Singer index theorem as follows.

index D1 = 2〈Â(M), [M ]〉 = −p1(M)
12

= −〈L(M), [M ]〉
4

= − sign(M)
4

= 4k.

Here Â(M) and L(M) are the Â-genus and the L-genus of M . Hence we have
m′ = k + m and V 1

λ = Hk+m. Similarly V 2
λ and W 2

λ are of the form R̃n and R̃n′
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for some n and n′ as Pin2-modules. From Remark (2) in Section 2, the index of
D2 is −1 − b+, which is on the other hand equal to dimV 2

λ − dimW 2
λ = n − n′.

Hence we have n′ = b+ + n + 1 and W 2
λ = R̃b++n+1. �

Remark. The above argument also gives a proof of Rohlin’s theorem: the kernel
and the cokernel of the Dirac operator D1 are the sums of copies of H, so the
index of D1 is divisible by 4, while the index is equal to − sign(M)/4 from the
index theorem. Our argument to use the monopole equation would be regarded
as a nonlinear version of this proof of Rohlin’s theorem.

We next show that the image of D + Q is actually contained in a subspace of
W of codimension 1. Let s0 be the parallel section of Λ̃ ⊂ S−⊕ Λ̃ corresponding
to the Spin4-invariant element 1 in +H̃+. Parallel sections are contained in the
kernel of the twisted Dirac operator D∗. Since the image of D is L2-orthogonal to
the kernel of D∗, the image of D is contained in the L2-orthogonal complement
s⊥0 of s0 in W . The image of Q is also contained in s⊥0 from Remark (1) in
Section 2. From the construction of the finite dimensional approximation, the
image of Dλ+Qλ is still contained in the subspace W̄λ = Wλ∩s⊥0 of codimension
1. Note that Rs0 = R̃ as a Pin2-module and hence W̄λ = Hm ⊕ R̃b++n.

Remark. The origin of the codimension 1 of W̄λ is the dimension 1 of H0(M, R),
which is also identified with the dimension of the symmetry group Pin2.

We summarize the results of Section 3 and Section 4:

Theorem 4.2. Let M be a closed spin 4-manifold with b1(M) = 0 and
sign(M) ≤ 0. Then there are finite dimensional real Pin2-modules Vλ and W̄λ

and a Pin2-equivariant linear map Dλ and a Pin2-equivariant quadratic map Qλ

from Vλ to W̄λ which satisfy the following properties.
(1) There are Pin2-module isomorphisms Vλ = Hk+m ⊕ R̃n and W̄λ = Hm ⊕

R̃b++n for some m and n, where k = − sign(M)/16.
(2) There are no zeros of Dλ + Qλ on the sphere centered in 0 with some

radius R defined by using some Pin2-invariant metric on Vλ.

Remark. For λ1 larger than λ, we have another finite dimensional approximation
Dλ1 + Qλ1 : Vλ1 → W̄λ1 , where Vλ1 = Hk+m1 ⊕ R̃n1 and W̄λ1 = Hm1 ⊕ R̃b++n1

for some m1 ≥ m and n1 ≥ n. Restricted on the sphere of radius R, Dλ1 + Qλ1

is homotopic to the join of Dλ + Qλ and the identity on the sphere S(Hm1−m ⊕
R̃n1−n) through Pin2-equivariant maps. Hence we have an inductive system of
Pin2-equivariant maps between spheres, and can define the stable class

lim
λ

[Dλ + Qλ] ∈ lim
m,n

[S(Hk+m ⊕ R̃n), S(Hm ⊕ R̃b++n)],

where [·, ·] denotes the set of Pin2-equivariant homotopy classes. Taking cones,
we also have a stable class in the inductive limit of the set of Pin2-equivariant
homotopy classes between certain compact pairs of disks and spheres. We can
think of this stable class as a model of the proper homotopy class of the map
D + Q : V → W̄ , where W̄ = s⊥0 .
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5. Equivariant maps

Let Vλ,C and W̄λ,C be the complexifications of Vλ and W̄λ, which we think of
as complex vector bundles over a point. In general, for a complex vector bundle
E over a compact space X we write BE for the disk bundle associated to E and
SE for the sphere bundle which is the boundary of BE. If X has an action of
a compact Lie group G and E is a G-equivariant bundle, then we take BE and
SE to be G-invariant ones.

Theorem 1 follows from:

Proposition 5.1. Suppose there is a continuous Pin2-equivariant map f̃ :
BVλ, C → BW̄λ,C preserving boundaries. If k > 0, then we have the inequality
2k + 1 ≤ b+.

Proof of Theorem 1 assuming Proposition 5.1. Since M is not negative-definite,
we have b+ ≥ 1 and the required inequality 2k + 1 ≤ b+ is satisfied obviously
when k = 0. Suppose k > 0. We use the notations in Theorem 4.2. Let
f : Vλ,C → W̄λ,C be the complexification of Dλ + Qλ defined by

f(u ⊗ 1 + v ⊗ i) = (Dλ + Qλ)u ⊗ 1 + (Dλ + Qλ)v ⊗ i.

Let BVλ,C be the Pin2-invariant disk {u ⊗ 1 + v ⊗ i ∈ Vλ,C

∣∣ ‖u‖V , ‖v‖V ≤ R}
and SVλ,C be its boundary. The image of BVλ,C by f does not contain 0.
We write SW̄λ,C for the quotient W̄λ,C\{0}/R+ and p : W̄λ,C\{0} → SW̄λ,C for
the projection. Then the composition f̄ of f |SVλ,C : SVλ,C → W̄λ,C\{0} with
p : W̄λ,C\{0} → SW̄λ,C is a Pin2-equivariant map. Let f̃ : BVλ,C → BW̄λ,C be
the cone of f̄ . The restriction of f̃ on the boundary SW̄λ,C is f̄ : SVλ,C → SW̄λ,C.
Then we can use Proposition 5.1 to obtain the required inequality. �

We will use equivariant K-theory to prove Proposition 5.1. Suppose, in gen-
eral, G is a compact Lie group, X is a compact G-space, E and F are G-
equivariant complex vector bundles over X and f̃ : BE → BF is a G-equivariant
bundle map preserving boundaries. The Thom isomorphism theorem for equi-
variant K-theory implies that KG(BE, SE) and KG(BF, SF ) are free KG(X)-
modules generated by the Thom classes τE and τF respectively. Let f̃∗ :
KG(BF, SF ) → KG(BE, SE) be the pullback map for f̃ .

Definition. The degree of f̃ in K-theory is the unique element α0 of KG(X)
which satisfies the relation:

f̃∗τF = α0τE .

The degree α0 satisfies the following equation in KG(X).

Lemma 5.2. Σ(−1)d[ΛdF ] = α0Σ(−1)d[ΛdE].

Proof. The restrictions of τE and τF on the zero sections are the Euler classes
of E and F , which are equal to Σ(−1)d[ΛdE] and Σ(−1)[ΛdF ] respectively (see
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(A.4) in Appendix). Hence the required relation immediately follows from the
restriction of the defining equation of α0. �

We also need other equations for α0. Let l be an integer larger than 1 and
ψl the Adams operation. (See Appendix for the definition of ψl.) The K-theory
characteristic class ρl(E) is defined to be the unique element of KG(X) satisfying
ψlτE = ρl(E)τE . (See (A.6) in Appendix, or [1].) The other equations for α0 is:

Lemma 5.3. ρl(F )α0 = (ψlα0)ρl(E).

Proof. Apply ψl on the equation f̃∗τF = α0τE to get f̃∗(ρl(F )τF ) =
(ψlα0)ρl(E)τE , where we used the multiplicative property of ψl (see (A.9) in
Appendix). Use the definition of α0 again and compare the coefficients of the
generator τE to get the equation. �

In our case we have

X = {a point}, G = Pin2,

E = Vλ,C = (Hk+m ⊕ R̃n) ⊗ C and

F = W̄λ,C = (Hm ⊕ R̃b++n) ⊗ C.

Recall KG(point) is the character ring R(G) of G.

Lemma 5.4. (1) If k > 0, then

{α ∈ R(Pin2)
∣∣ ρl(F )α = (ψlα)ρl(E)} ⊂ Ker(R(Pin2) → R(S1)).

(2) There is an element α of Ker(R(Pin2) → R(S1)) satisfying

Σ(−1)d[ΛdF ] = αΣ(−1)d[ΛdE]

if and only if 2k + 1 ≤ b+.

Proof of Proposition 5.1. It is an immediate consequence of the lemmas 5.2, 5.3
and 5.4. �

In the rest of this section we will show Lemma 5.4.

Proof of Lemma 5.4 (1). Let C be the standard 1-dimensional complex repre-
sentation of S1 and t the class of C in R(S1). Let 1 be the trivial 1-dimensional
complex representation of S1 and we use the same notation 1 for its class in
R(S1). Then R(S1) is the space of Laurent polynomials in t with integer co-
efficients. When we regard E and F as S1-modules, we write E′ and F ′ for
these representation spaces. More explicitly, E′ = 2(k + m)(C ⊕ C∗) ⊕ n and
F ′ = 2m(C⊕C∗) + b+ + n, where we used the additive notation for direct sum.
The multiplicative property of ρl implies (see (A.9) in Appendix)

ρl(E′) = {ρl(C)ρl(C∗)}2(k+m)ρl(1)n.
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For a line bundle L, in general, we have ρl(L) = 1 + [L] + [L2] + · · ·+ [Ll−1] (see
(A.8) in Appendix). From this formula, we have

ρl(E′) = {(1 + t + · · · + tl−1)(1 + t−1 + · · · + t−(l−1))}2(k+m)ln.

Similarly ρl(F ′) = {(1 + t + · · · + tl−1)(1 + t−1 + · · · + t−(l−1))}2mlb++n.
Let α be an element of R(Pin2) satisfying ρl(F )α = (ψlα)ρl(E), then the image
α′ of α by the restriction map R(Pin2) → R(S1) is expressed by a Laurent
polynomial h(t). Suppose α′ is not zero. Since the action of j in Pin2 induces
the relation h(t) = h(t−1), the degree d in t of the highest nonzero term in
h(t) is nonnegative. Then the degree of the highest nonzero term of ρl(F ′)α′ is
2(l − 1)m + d. On the other hand, from ψlh(t) = h(tl) (see (A.1) and (A.2) in
Appendix), the degree of the highest nonzero term of (ψlα′)ρl(E′) is ld + 2(l −
1)(k+m). If k > 0, since the degrees are not the same, ρl(F ′)α′ cannot be equal
to (ψlα′)ρl(E′). This is a contradiction.

Proof of Lemma 5.4 (2). The irreducible complex representations of Pin2 are
classified as follows. First we have the trivial complex 1-dimensional representa-
tion 1 and the nontrivial complex 1-dimensional representation 1̃ = R̃⊗ 1. Here
recall that R̃ is the nontrivial real 1-dimensional representation. The other ones
are complex 2-dimensional and are parameterized by positive integers d, and the
representation corresponding to d is characterized by the property that its class
in R(S1) is td + t−d. This classification implies:

Ker(R(Pin2) → R(S1)) = {c(1 − 1̃)
∣∣ c ∈ Z}.

Suppose α = c(1− 1̃) satisfies the relation Σ(−1)dΛdF = αΣ(−1)ΛdE. Take the
traces of j for the both hand sides, and we get

22m+b++n = 2 c 22k+2m+n,

which implies b+ ≥ 2k + 1. On the contrary, when b+ ≥ 2k + 1, the relation is
satisfied by α = 2b+−2k−1(1 − 1̃). �
Remark. When b+ ≥ 2k + 1, the above proof implies that Lemma 5.1 and
Lemma 5.2 provide enough equations to determine that the degree α0 of f̃ is
equal to 2b+−2k−1(1 − 1̃).

Appendix

We collect some properties of the Adams operations which are used in Sec-
tion 5. Let G be a compact Lie group and X a compact G-space. the Adams
operation ψl : KG(X) → KG(X) is defined as follows. We fix a positive integer
l in Appendix. For each positive integer r, let pr(σ1, σ2, · · · , σr) be t he poly-
nomial expressing xl

1 + xl
2 + · · · + xl

r with respect to the elementary symmetric
polynomials, where σd is the d-th elementary symmetric polynomial. When E
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and F are two G-equivariant complex vector bundles over X with ranks r and
s, one can check the relation

pr+s([Λ1(E ⊕ F )], · · · , [Λr+s(E ⊕ F )]) =

pr([Λ1E], · · · , [ΛrE]) + ps([Λ1F ], · · · , [ΛsF ])

in KG(X). Then there is a unique additive homomorphism ψl from KG(X)
to itself which satisfies ψl([E]) = pr([Λ1E], · · · , [ΛrE]). It is straightforward
to check that ψl is also a multiplicative homomorphism. When Y is a G-
invariant compact subset of X, the relative KG-group KG(X, Y ) for the compact
pair (X, Y ) is defined to be the kernel of the natural map from KG(X/Y ) to
KG(point) = R(G). Since ψl is natural for continuous maps between compact
G-spaces, we can define ψl on KG(X, Y ) so that it is natural for continuous
maps between compact pairs.
(A.1) The operation ψl : KG(X, Y ) → KG(X, Y ) is a ring homomorphism.
In particular we have the formula for line bundles from the definition:
(A.2) ψl[L] = [Ll] for a line bundle L.

Let E be an G-equivariant complex vector bundle over X, BE be its G-
invariant disk bundle and SE be the boundary of BE. The Thom class τE of E
is an element of KG(BE, SE) which has the following properties:
(A.3) KG(BE, SE) is a free KG(X)-module generated by τE ([2]).
(A.4) The restriction of τE on the zero section is equal to e(E) = Σ(−1)d[ΛdE].
The former property is the Thom isomorphism theorem in equivariant K-theory
and it is the only non-elementary theorem we need in Section 5. We call the re-
striction e(X) by the Euler class of E. The Thom classes have the multiplicative
property:
(A.5) τE⊕F = τEτF .

The definition of the K-theory characteristic class ρl(E) ∈ KG(X) is given
by:
(A.6) ψlτE = ρl(E)τE .
An explicit formula for ρl is:

(A.7) ρl(E) =
Σ(−1)dtldψl[ΛdE]
Σ(−1)dtd[ΛdE]

∣∣∣∣
t=1

.

¿From (A.7), (A.1) and (A.2) we have:
(A.8) ρl(L) = 1 + [L] + [L2] + · · · + [Ll−1] for a line bundle L, and
(A.9) ρl(E ⊕ F ) = ρl(E)ρl(F ).
Instead of using (A.7 ), we can use the multiplicative properties (A.1) and (A.5)
of the Thom classes and the Adams operation to show (A.9) directly from the
definition of ρl. In the rest of Appendix we give a short proof of (A.7). (See also
[3].)

Proof of (A.7). Since E is an G-equivariant complex vector bundle, we have
the S1-action on E defined by the multiplication of S1 ⊂ C, which commutes



290 M. FURUTA

with the G-action on E. Hence we can think of E as a G × S1-equivariant
bundle, where the S1-action on X is trivial. We write Ẽ for this G × S1-
equivariant bundle. Let τẼ and e(Ẽ) be the Thom class and the Euler class
of Ẽ. Then e(Ẽ) is an element of KG×S1(X) = KG(X) ⊗ R(S1). If we write
t for the class of the standard 1-dimensional representation of S1, then R(S1)
is the ring of the Laurent polynomials in t and e(Ẽ) = Σ(−1)dtd[ΛdE] is not
a zero-divisor. Restrict the relation ψlτẼ = ρl(Ẽ)τẼ on the zero section to
get ψle(Ẽ) = ρl(Ẽ)e(Ẽ). Then, since e(Ẽ) is not a zero-divisor, we obtain
ρl(Ẽ) = (ψle(Ẽ))/e(Ẽ), from which we can deduce (A.7). �
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